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Abstract

Resting state functional magnetic resonance (rs-fMRI) imaging offers insights into how different 

brain regions are connected into functional networks. It was recently shown that networks that are 

almost identical to the ones created from conventional correlation analysis can be obtained from a 

subset of high-amplitude data, suggesting that the functional networks may be driven by 

instantaneous co-activations of multiple brain regions rather than ongoing oscillatory processes. 

The rs-fMRI studies, however, rely on the blood oxygen level dependent (BOLD) signal, which is 

only indirectly sensitive to neural activity through neurovascular coupling. To provide more direct 

evidence that the neuronal co-activation events produce the time-varying network patterns seen in 

rs-fMRI studies, we examined the simultaneous rs-fMRI and local field potential (LFP) recordings 

in rats performed in our lab over the past several years. We developed complementary analysis 

methods that focus on either the temporal or spatial domain, and found evidence that the 

interaction between LFP and BOLD may be driven by instantaneous co-activation events as well. 

BOLD maps triggered on high-amplitude LFP events resemble co-activation patterns created from 

rs-fMRI data alone, though the co-activation time points are defined differently in the two cases. 

Moreover, only LFP events that fall into the highest or lowest thirds of the amplitude distribution 

result in a BOLD signal that can be distinguished from noise. These findings provide evidence of 

an electrophysiological basis for the time-varying co-activation patterns observed in previous 

studies.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a noninvasive method that uses the blood 

oxygenation level- dependent (BOLD) (Ogawa et al., 1992) signal to measure the neural 

activity in different parts of the brain. In resting state fMRI (rs-fMRI) (Biswal et al., 1995), a 

statistical relationship between the spontaneous activity of different areas of the brain in the 
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absence of an explicit stimulation or task indicates that the regions are functionally related 

(Biswal et al., 1995; Fox and Raichle, 2007). Temporal correlation is often used to measure 

this functional connectivity, and the spatial patterns of the BOLD signal correlation show 

high similarity to many established brain networks, including motor, visual, language, 

default mode, and attention networks (Biswal et al., 1995; Cordes et al., 2000; Hampson et 

al., 2002; Greicius et al., 2003; Fox et al., 2006; Smith et al., 2009). However, as an imaging 

method, rs-fMRI inevitably suffers from physical limitations on its temporal resolution 

(~1s), as well as the fact that neural activity is measured indirectly though neurovascular 

coupling (Logothetis et al., 2001).Recent rs-fMRI studies, using paradigm free mapping 

(PFM) (Gaudes et al., 2011; Gaudes et al., 2013; Petridou et al., 2013), point process 

analysis (PPA) (Tagliazucchi et al., 2011, 2012a), or co-activation patterns (CAPs) (Liu and 

Duyn, 2013, Liu et al., 2013) have shown that the BOLD information is compressed into a 

few temporally sparse events. It was shown that averaging these sparse activation events 

yields resting state network (RSN) patterns that are very similar to the conventional seed-

based correlation map, which requires the utilization of the entire dataset. Moreover, the 

CAPs approach also has shown that those activation events can be further divided into 

several subgroups that show specific spatial patterns, suggesting that there might be some 

dynamic organization of the brain. Following their findings, there are several CAP studies 

performed on human (Wu et al., 2013; Amico et al., 2014; Li et al., 2014; Allan et al., 2015; 

Chen et al., 2015; Tagliazucchi et al., 2016; Liu et al., 2018a; Turchi et al., 2019), rodents 

(Liang et al., 2015) and monkeys (Liu et al., 2018).

While these approaches that focus on discrete BOLD events instead of a continuous 

interaction between brain regions have provided new insights into brain function, they 

usually rely on the BOLD signal, which is an indirect measurement of neural activity. To 

better understand the neuronal origin of the CAPs observed in fMRI studies, another 

modality that more directly measures neuronal activities is needed (for review, see Keilholz, 

2014). Logothetis et al. (2001) pioneered the development of simultaneous acquisition of 

local field potentials (LFP) and fMRI data in primates. Since their initial work, there are 

increasing number of studies that have simultaneous LFP and fMRI data acquisition 

(Shmuel et al., 2006; Huttunen et al., 2008; Shmuel et al., 2008; Murayama et al., 2010; Pan 

et al., 2011; Mishra et al., 2011; Magri et al., 2012; Devonshire et al., 2012; Pan et al., 2013, 

Garth et al., 2014). However they typically draw a region of interest (ROI) to study the 

relationship between LFP and BOLD, and the potential useful information in the other 

regions of the brain is discarded. Also, the recent approaches in BOLD-fMRI that focus on 

high amplitude events provide many meaningful insights into dynamic resting state 

networks. Therefore, using methods similar to CAPs in multimodal neuroimaging may give 

supplementary information that cannot be discovered using conventional correlation analysis 

alone.

But to our best knowledge, there are only a few studies that use multimodal neuroimaging 

methods to study the neuronal origin of the dynamic resting state networks. Tagliazucchi et 

al. (2012b) performed simultaneous EEG and fMRI recording in human, and found a very 

interesting result: the fluctuation in BOLD signal functional connectivity is positively 

correlated with the local synchronization of EEG gamma band power. Another very 

intriguing phenomenon was revealed in the simultaneous LFP and fMRI recordings in 
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monkey performed by Liu et al. (2018a). They demonstrated that the fMRI global signal 

peaks co- occur with sequential spectral transitions (SST) in LFP, which is a spectral shift 

toward low frequencies.

In this paper, we investigate two key questions about the neural basis of rs-fMRI: 1) Do the 

BOLD events that are the basis of co-activation patterns reflect distinct, high amplitude 

neural events? 2) Is there a range of neural activity which reliably produces a BOLD 

response that can be distinguished from noise? Inspired by the idea of the spike-triggered 

average (Dayan and Abbott, 2001) and co-activation patterns (CAPs) (Liu and Duyn, 2013), 

we propose two new methods called the BOLD-triggered average of LFP power (referred to 

as the BOLD-triggered average in the rest of the article) and LFP-triggered co-activation 

patterns (LFP-CAPs) to see if the relationship between LFP and BOLD is driven by discrete 

high-amplitude events. The BOLD-triggered average shows the average time course of LFP 

power preceding high amplitude BOLD events, whereas the LFP-CAPs average the fMRI 

frames a certain lag (depending on the anesthetic agents) after high amplitude broadband 

LFP events to show the spatial distribution of the brain regions that “co-activate” with the 

neuronal activity recorded by LFP. The two methods provide complementary information in 

both the temporal and spatial domains, and the results suggest that the relationship between 

LFP and BOLD is also driven by a few distinct events that have the highest amplitudes in 

either the BOLD or LFP power. Further analysis shows that those high LFP events can be 

classified into several groups, producing spatial patterns that are similar to those obtained 

from the original CAPs method, which solely uses rs-fMRI data.

2. Results

2.1. BOLD-triggered Average of LFP Power Time Courses

The spike-triggered average is widely used for the analysis of electrophysiological data. 

Each action potential produced by the neuron is considered as an event, which triggers the 

extractions of the stimulus in a short time window preceding the action potential event. 

Though the stimuli in the individual windows appear random, the averaged stimulus across 

all action potential events typically exhibits a pattern that is likely to cause the firing of the 

neuron, and thus correspond to the receptive field of the neuron. We hypothesize that, if we 

separate the BOLD time points (BOLD events) into several groups based on their 

amplitudes, and within each group, average the LFP power time course preceding the BOLD 

events, we may get a pattern in LFP power (both in temporal domain and frequency domain) 

that is likely to cause the occurrence of a BOLD event with a specified amplitude.

To test our hypothesis, we analyzed 337 simultaneous single slice fMRI and primary 

somatosensory cortex (S1) LFP recordings from both hemispheres from 36 Sprague–Dawley 

rats (male, 200–300 g, Charles River) under isoflurane (ISO. n = 100) ranging from 1% to 

2%, or dexmedetomidine (DMED, n = 237) anesthesia on a 9.4T/20 cm horizontal bore 

small animal MRI system (Bruker, Billerica, MA). The details of animal preparation and 

parameter settings for data acquisition are described in section 5. Materials and Methods. 

For this comparison study, we performed a rigorous data selection procedure using several 

metrics to ensure that both BOLD and LFP data were of the highest quality. For the LFP 

data, there were two metrics: the number of gradient artifacts identified, and the noise level 
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in the LFP signal after removal of gradient artifacts. For the BOLD data, there were four 

metrics: the residual motion after motion correction, measured by the trajectory of the center 

of mass and DVARS (Power et al., 2012), image distortion, and function connectivity in 

bilateral S1 areas. Since there are 1000 TRs and 20 dummy scans, the number of gradient 

artifacts identified should equal 1020. Some scans have high noise levels that compromise 

the gradient artifact identification, in which case the number of detected triggers is not equal 

to 1020. These scans were excluded to eliminate the possibility of residual gradient noise. 

The rest of the metrics were manually inspected for all scans, and labeled as “good”, “fair” 

and “poor” (Table 1). Each scan can only have at most one “fair” metric to be selected. By 

these criteria, 56 scans under ISO and 66 scans under DMED were selected, meaning 63.8% 

of the entire dataset is not suitable for further analysis. Among the selected 122 scan 

sessions, the correlation between LFP and the corresponding S1 area for both hemispheres 

were manually calculated. If both hemispheres show “good” correlation, such dataset was 

selected for further analysis. By these criteria, 22 scans under DMED and 32 scans under 

various ISO concentrations were selected out of the 122 scan sessions. This however does 

not necessarily mean that the rest of the 122 scan sessions are of poor quality. Only 14 scan 

sessions show “bad” correlation, while the others show “fair” correlation on either or both 

LFP channels. Note too that the total number of scans includes data acquired immediately 

after the animal was placed in the scanner and before physiological condition stabilized. We 

routinely acquire data during this period to allow the detection of any technical difficulties, 

but the animal condition is rarely optimal. The data and code will be available upon request.

The BOLD signal was extracted from the ROI that has the highest correlation between LFP 

power and BOLD, which is found near the tip of the electrode. Then both the BOLD signal 

and LFP broadband power were z-scored and pooled together for by anesthesia (ISO and 

DMED). Within each dataset, the BOLD signal time points were evenly divided into 10 

percentile groups based on their amplitudes. Figure 1 illustrates the process of obtaining the 

BOLD-triggered average time course. First the percentiles were calculated from the pooled 

distribution to obtain the thresholds for each percentile group (shown in the color-coded 

histogram), and the time points within the thresholds were selected as the triggers. Then the 

LFP broadband power time course preceding each BOLD trigger was extracted and averaged 

across all fMRI scans, and the resulting time course is referred to as the “BOLD-triggered 

average”. Please note that, although as a physical value LFP power is non-negative, it can 

become negative after normalization, because both band-pass filtering and taking the z-score 

remove the direct current (DC) component. The adjacent triggers are considered as separated 

triggers, though alternatively one could make them become a single trigger, weighted by the 

duration of the event. The two methods produce very similar results (see Supplemental 

Materials, Figure S.1); we used the former for the rest of the paper.

Note that the process can be applied to the LFP power in other frequency bands as well, and 

the BOLD-triggered averages obtained in different frequency bands are directly comparable 

with each other, because they all share the same BOLD triggers and are therefore aligned 

along the time axis. Figure 2 shows the BOLD-triggered average of LFP power in six 

frequency bands (delta 1~4Hz, theta 4~8Hz, alpha 8~12Hz, low frequency beta 12~25Hz, 

high frequency beta 25~40Hz and gamma 40~100Hz) as well as the broadband power, 

which is the sum across the six frequency bands.

Zhang et al. Page 4

Neuroimage. Author manuscript; available in PMC 2020 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Generally speaking, the BOLD-triggered average shows that the LFP-BOLD relationship is 

monotonic. Before the strong positive BOLD events (70~100 percentiles), the LFP power 

exhibits an increased amplitude, whereas before the strong negative BOLD events (0~40 

percentiles), the LFP power exhibits a decreased amplitude. The peak change occurs at a 

time lag in line with previous findings (Pan et al., 2013), which is 4 seconds under ISO and 

2.5 seconds under DMED. For the BOLD events with an amplitude around the median value 

(40~70 percentiles), the LFP power shows a consistent trend (LFP power increases before a 

BOLD event higher than median value, and decreases before a BOLD event lower than 

median value), however, the effect is not significant enough to be distinguished from the 

general noise of the time courses. The 95% confidence interval of the random fluctuations is 

estimated by manually labeling the segments of BOLD-triggered average with a lag of −30 ~ 

−15 seconds and 5 ~ 20 seconds as the “noise” or irrelevant time segments, which provides 

600 time points for the empirical estimation of the noise distribution. The aforementioned 

LFP power percentiles that significantly differ from the noise (70 ~ 100% for positive 

BOLD events and 0 ~ 40% for negative BOLD events) show some minor variations in the 

exact percentile values, depending on the anesthetic agents and LFP frequency bands.

Aside from the general trend, there are some additional patterns observed in DMED that are 

worth noting. First, as the frequency increases from low frequency beta band to gamma 

band, the time course become heavily contaminated by noise, and most of the percentile 

levels are no longer significantly different from the noise. This is potentially caused by the 

low signal-to-noise ratio (SNR) in these high frequency bands under DMED anesthesia, 

because the energy distribution of LFP decays much faster as frequency goes up when 

compared to ISO anesthesia (see Figure S.2). Secondly, there is a bipolar structure in delta 

and theta bands, which means that on average, in addition to the main peak at 2.5 seconds 

before the event, there is a secondary peak with inversed polarity at 5 seconds before the 

event, suggesting an anti- correlation between LFP power and BOLD at the time-lag of −5 

seconds in these two bands. Since most of the energy is distributed in delta and theta bands, 

the broadband time course looks like a blend of these two bands.

Figure 3 shows the scatter plot of LFP power and BOLD at the maximally-correlated lag (−4 

seconds and −2.5 seconds under ISO and DMED respectively), which provides a general 

idea about how LFP power is distributed in each BOLD level. It can be seen that while the 

average value within each cluster (white line plot) shows a clear correlation with BOLD 

amplitude, individual points have a very widespread distribution. Even for the highest 10% 

BOLD events, there are still a large number of LFP power occurrences that are below zero. 

So the increase of LFP power before a high BOLD event shown in Figure 3 is only an 

average effect, meaning that a high BOLD event does not guarantee an increase in the LFP 

power. The detailed distributions are provided in Figure S.3. The BOLD-triggered average 

of the LFP without band-pass filtering is also included in Figure S.4 for comparison.

2.2. LFP Co-activation Patterns

The BOLD-triggered average of LFP power time courses shows that only a portion (0~40% 

and 70%~100%) of the time courses can be distinguished from the general random 

fluctuations of the BOLD-triggered averages, which suggests that only LFP power higher 
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than a certain threshold will trigger a BOLD response (in terms of the averaged effect). This 

finding is somewhat similar to the findings in co-activation patterns (CAPs) where it is 

revealed that the interregional BOLD correlations result from instantaneous co-activations of 

multiple brain regions at some critical time points rather than from continuous, sustained 

interregional neuronal interactions. We hypothesized that these two findings are tied together 

and the correlation between BOLD and LFP may be driven by instantaneous co-activations 

or co- deactivations as well, which might be the physiological reason why the interregional 

BOLD correlations are driven by instantaneous events.

To test the hypothesis, we proposed a modified version of CAPs that is obtained by applying 

thresholds to the LFP broadband power time course, as opposite to the original method, 

which applies thresholds to a selected seed region in the BOLD image series. In this article, 

the former method is referred to as LFP-CAPs and the latter one is referred to as BOLD-

CAPs. To calculate LFP-CAPs, first several thresholds were calculated from the percentiles 

of LFP broadband power. For any given threshold, whenever LFP broadband power 

surpasses the threshold, the corresponding BOLD time frame (4 seconds under ISO, 2.5 

seconds under DMED) succeeding the event was extracted. Each voxel was then averaged 

over the selected BOLD time frames, and the final averaged map was compared with the 

cross-correlation map between LFP broadband power and BOLD image series using the 

entire time course. In additional to LFP-CAPs, the original BOLD-CAPs were also 

calculated for comparison.

Figure 4 shows that as more and more frames are included by lowering the threshold, the 

spatial similarity between CAPs and the correlation maps increases rapidly, and reaches a 

plateau above 0.967 after including 10% of the data, suggesting the highest 10% LFP events 

or BOLD events can accurately replicate the spatial structure in correlation maps. Even a 

single frame is able to provide a general shape of the correlation map, which implies that the 

high amplitude events (either high LFP or high BOLD) are dominating the functional 

networks. These results are generally in line with Liu et al. 2013.

In addition, the highest 15% BOLD time frames were selected for temporal decomposition 

(the BOLD-CAPs only need 5% to resemble the spatial pattern, but to avoid randomness 

caused by extremely small sample size, the threshold was set to 15%). K- means clustering 

was performed on the selected BOLD time frames (the distance was defined as 1 minus 

Pearson correlation coefficient), and the within cluster averages produce the temporal 

decomposition of the co-activation patterns. Liu and Duyn (2013) selected the number of 

clusters k as 8 for posterior cingulate cortex region, and 12 for intraparietal sulcus (IPS) 

region in human. Liang et al. (2015) calculated the averaged silhouette value to evaluate the 

quality of clustering. They found 2 clusters had the highest silhouette value, although in the 

end they chose 3 clusters because it offers the third CAP that shows infralimbic cortex (IL) 

and hippocampus (HP) connections. As Liu et al. (2018b) mentioned, the target number of 

CAPs to be classified is hard to determine. Since the single slice EPI scans in rodents 

contains less information than the whole brain EPI scans in human, we chose to use fewer 

clusters. The 6 clusters we obtained in this study all show distinct spatial patterns and have 

comparable occurrence rates. So none of them appear to be trivial, and the 3 clusters used by 

Liang et al. (2015) may be too few to catch all of the information contained in our LFP-
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BOLD dataset. We also calculated the K means clustering results with K=3, K=8 and K=10 

(see supplemental materials, Figure S.8), which demonstrated that K=8 and K=10 both show 

some redundant CAP patterns. Therefore K=6 is around optimum for this particular dataset.

It can be observed both visually from the patterns themselves and the similarity matrix that, 

despite some differences, most LFP-CAPs and BOLD-CAPs are highly spatially similar to 

each other (see Figure 5). The 2 by 2 quasi-diagonal elements in bright yellow can be easily 

distinguished from the other elements, suggesting that the intra-CAPs similarities are high 

among LFP- CAPs and BOLD-CAPs, and the inter-CAPs similarities vary. It is worth noting 

that the similarity between LFP-CAPs and BOLD- CAPs is not the result of overlapping 

triggers, because the high LFP events and high BOLD events only have 25.6% overlap in the 

time domain (see Figure S.5). Other factors (like network structure) that affect network 

dynamics may account for the similarity. There is also an intra-CAPs similarity observed 

across ISO and DMED (marked by the red dotted line), which can be distinguished from 

other inter-CAPs similarities, but the correlation values are not as high as the ones within the 

same anesthetic agents. This suggests when the anesthesia changes from ISO to DMED, the 

instantaneous functional networks change in some ways, but retains certain properties of 

spatial organization. It is worth noting that the correlation maps obtained from the 

conventional correlation analysis are visually very similar in these two cases despite the 

distinct mechanisms of anesthesia under the two agents. This suggests that the CAPs method 

is more sensitive to anesthetic-related changes than the conventional correlation analysis, 

possibly because it better preserves information about network dynamics.

3. Discussion

3.1. General Findings

In this study, we utilized two complementary methods for the analysis of simultaneous rs-

fMRI and LFP recording data to show that the correlation between BOLD and LFP is 

mainly influenced by discrete high amplitude events. The high amplitude LFP power events 

not only show an increased likelihood of eliciting a localized BOLD response, but also 

produce co-activation patterns that are nearly identical to the cross correlation map between 

LFP and BOLD. Furthermore, the co-activation events can be clustered into several distinct 

groups. While it is not surprising that high amplitude LFP events result in co-activation 

patterns similar to those obtained from BOLD alone, since high amplitude BOLD events 

drive correlation between areas, and BOLD is linked to LFPs. However it is also entirely 

possible a different network patterns triggered by LFP events. So the results presented here 

provide electrophysiological evidence of neural underpinnings for the multiple BOLD-CAPs 

obtained from rs-fMRI data.

3.2. On average, the LFP power preceding the BOLD events exhibits a stereotypical 
profile.

BOLD-triggered averaging revealed that there are certain temporal patterns that manifest 

before a BOLD event. The increase or decrease of LFP power from baseline peaks at 4 

seconds before the BOLD response under ISO, and 2.5 seconds under DMED. This finding 

is in agreement with the previous studies using conventional cross correlation, but provides 
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more information about the behaviors of subsets of BOLD time points that have different 

amplitudes. On average, the high amplitude positive BOLD events (70~100 percentiles) are 

preferentially preceded by an increase in LFP power, and the negative BOLD events (0~40 

percentiles) prefer a decrease in LFP power. This amplitude preference vanishes when the 

amplitude of BOLD falls into the range near median value (40~70 percentiles), because the 

changes in LFP power are no longer distinguishable from the random fluctuations. The fact 

that about 30% of BOLD time points near the median value have no consistent 

correspondence with the LFP power implies an intrinsic limitation in extracting function 

connectivity patterns using cross correlation, because a great amount of data that contains 

little information about neural activity is influencing the result.

Note too that decreases in LFP power precede decreases in the BOLD signal. The origin of 

the negative BOLD signal has long been debated, given its complicated dependence on 

neural and vascular parameters. Here we show that during spontaneous activity, decreases in 

LFP power are closely linked to decreases in the BOLD signal. While this does not rule out 

other contributions to the negative BOLD effect seen in fMRI (e.g., vascular steal), it does 

provide support for a neural basis as well.

3.3. The correlation between LFP and BOLD is driven by a few distinct events

The results of LFP-CAPs suggest that, selecting the fMRI frames with the highest 15% of 

LFP amplitudes can accurately reproduce the spatial patterns seen in the cross correlation 

map, which requires utilizing the full dataset. This together with the thresholds found in 

BOLD-triggered average analyses suggest that the relationship between LFP and BOLD is 

dominated by a few distinct events, specifically those with LFP power amplitude higher or 

lower than a certain threshold. This finding in a way matches with the previous studies 

performed by Liu and Duyn(2013) and Tagliazucchi et al.(2012), where it is revealed that 

the interregional correlation in fMRI are driven by instantaneous BOLD events. Our work 

confirms that the same principle holds for LFP power recorded at a particular location and 

the BOLD signal, such that the relationship between the two is driven by a few high 

amplitude events.

The scatter plots of BOLD vs LFP power make it clear that despite the average relationship 

between high amplitude LFP events and high amplitude BOLD events, the relationship is 

highly variable and strong BOLD events can actually be tied to decreases in LFP power. If it 

were possible to identify the points where BOLD was linked to LFP power (e.g., by 

incorporating additional information into the analysis), the interpretation of the BOLD 

signal could be made easier. Unfortunately, our preliminary analysis that considered the 

length of the LFP burst along with its amplitude did not improve our ability to determine 

which strong BOLD responses reflected high amplitude LFP events. It may be the case that 

the noisy relationship between the two signals is fundamental to the processes that mediate 

neurovascular coupling.

3.4. Frequency Dependence of the BOLD-LFP Relationship and Other Findings

It was reported previously that the BOLD signal preferentially correlates with specific 

frequency bands of the LFP. The frequency ranges reported were gamma band under ISO 
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and fentanyl (Logothetis et al., 2001; Shmuel et al., 2008), gamma band under fentanyl and 

thiopental (Murayama et al., 2010), alpha to gamma band under remifentanil (Magri et al., 

2012), delta to gamma band under ISO (Pan et al., 2011, Pan et al., 2013), and delta and 

theta band under DMED (Pan et al., 2013). The BOLD- triggered average presented in this 

study is consistent with a frequency preference that is dependent on the anesthetic agent. 

There is no significant difference among different frequency ranges under ISO, while under 

DMED, the BOLD-triggered average appears noisier as the frequency increases, especially 

in the gamma band. These findings are in agreement with the correlation and coherence 

analysis reported in Pan et al. (Pan et al., 2013), partly because the two studies share similar 

data preprocessing pipeline and some common datasets. However, other researchers 

conclude that oftentimes gamma band is the most informative band (Logothetis et al., 2001; 

Shmuel et al., 2008; Murayama et al., 2010; Magri et al., 2012). The differences might be 

the result of a shift in the LFP power distribution towards lower frequencies under 

anesthetics like DMED, which results in very little power at the higher frequencies. This 

suggests that broadband power, rather than power in any particular band, may prove more a 

robust predictor of the BOLD signal across anesthetic protocols.

Aside from this, we also found an unexpected phenomenon, which is the bipolar structure in 

delta and theta bands under DMED. The secondary negative lobe peaks at −5 seconds, 

which suggests a strong anti-correlation exists between LFP and BOLD. However, this can 

be only interpreted as an averaged effect obtained from retrospectively regrouping the 

BOLD time points and may not be essential to trigger the BOLD events. We suspect it arises 

from the enhancement of delta and theta activity under DMED, creating ongoing oscillations 

in these frequencies.

Furthermore, a nonlinear relationship between LFP and BOLD is observed under ISO but 

not DMED. This can be seen from Figure 2 panel A, where the increase of LFP in positive 

BOLD percentile groups generally has a larger magnitude than the decrease of LFP in 

negative BOLD groups, and Figure 3 panel A, where the LFP-BOLD line plot clearly shows 

a curvature. This is a direct evidence that the relationship between LFP and BOLD can be 

nonlinear and depends on the anesthetic agents. Given the presence of nonlinearity, analysis 

methods that do not assume linear dependency should be considered instead of Pearson 

correlation (e.g., mutual information methods presented in Magri et al., 2012).

3.5. Methodological Comparison

There are a few studies that have used similar methodologies. In Liang et al., 2015, CAP 

studies were performed in awake and anesthetized (1.5% ISO) rats. In their study, whole 

brain (18 slices) EPI scans with a TR of 1 second were acquired. In our study, we only 

acquired single slice EPI scan with a TR of 0.5 second, because the gradient-induced artifact 

in the LFP is too difficult to remove when using multi-slice EPI. They also used averaged 

silhouette values to determine the optimum number of clusters, which is an interesting thing 

to study in the future for LFP-CAPs.

A few studies (Tagliazucchi et al., 2012a; Liu et al., 2018; Magri et al., 2012) as well as ours 

share a common methodology with the spike-triggered average, which has been a well-

known method in the field of neuroscience for decades.
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In the point process analysis (Tagliazucchi et al., 2012a), it was shown that the averaged 

BOLD signal around the extracted time points (supra-threshold BOLD events from a seed 

region) resembles the hemodynamic response function (HRF) evoked by a stimulus. In our 

study, we averaged the LFP power in different frequency bands, instead of the BOLD signal, 

but the triggers (supra-threshold BOLD events from a seed region) are the same as the one in 

the point process analysis.

In the simultaneous LFP and fMRI acquisition Liu et al. (2018) performed on monkeys, the 

LFP power spectral density function was averaged around the point where the BOLD global 

signal is higher than a threshold. This approach is actually very similar to ours, except they 

used the BOLD global signal as the trigger, whereas we used the BOLD signal from a seed 

region in S1 area as the trigger. The frequency dependency in LFP-BOLD relationship is not 

entirely in agreement with the findings in Liu et al. 2018. The discrepancy may come from 

the fact that they used awake monkeys whereas we used rodents under ISO or DMED 

anesthesia, which show clear anesthesia-dependent effects on the frequency distribution of 

LFPs.

In Magri et al., 2012, the high gamma LFP power was used as the trigger and the BOLD 

time courses after the LFP events were averaged. The triggers were then subdivided into 

three groups based on alpha band or beta band amplitude. While this method is able to show 

that alpha and beta bands contain complementary information to gamma band, it is difficult 

to analyze the other frequency bands in any given subgroup, because there are simply too 

many possible combinations of the subgroups in different frequency bands. On the other 

hand, in the BOLD- triggered average proposed here, different frequency bands share the 

same trigger from the BOLD seed region, which simplifies the representation of LFP-BOLD 

relationship, and makes the different frequency bands directly comparable with each other.

3.6. Implication for Future Studies

Time courses from rs-fMRI are often treated as continuous measurements of the 

hemodynamic response to neural activity. In reality, most of the information in the time 

courses appears to be carried by a much smaller set of discrete events, which in turn reflect 

discrete LFP power events. The finding that only strong LFP events result in a detectable 

hemodynamic response places fundamental limits on our ability to monitor brain dynamics 

with hemodynamic-based methods. While low-amplitude ongoing activity in the brain is 

critical for normal function, only strong excursions from the baseline activity will be 

detected. This suggests that in rs-fMRI and its relationship to the underlying neural activity, 

there are a few discrete time points that play more important roles than the remaining time 

points. Therefore, more emphasis should be put on those critical events, namely those with 

the highest BOLD amplitudes.

The thresholds for separating events from background fluctuations are dependent on the 

number of subjects as well as the duration of each scan. By including more data, one can 

reduce the random fluctuations and thus make the temporal structure of the BOLD-triggered 

average clearer (similar to SNR). In our analysis, we included 32 scans under ISO and 22 

scans under DMED, each lasts 8 min 20 sec. For any single scan without extended 

acquisition time, the amount of irrelevant data could be more than 30%.
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3.7. Technical Limitations

The level of ISO impacts neuronal activity and cerebral perfusion. Mixing datasets with 

different ISO levels, as done here, could potentially introduce variability in either the 

BOLD- triggered average time courses or the LFP-CAPs. However, it should be noted that 

all ISO rats were imaged while in the burst- suppression regime. The number of scans was 

too small to perform further separation by ISO level. In the future, the impact of varying ISO 

level on the BOLD-triggered average is worth investigating, and more datasets under 

different ISO levels are needed.

The datasets used were deliberately chosen to have high LFP- BOLD correlation at the lags 

corresponding to previously observed hemodynamic delays (−4 seconds under ISO and −2.5 

seconds under DMED). While this ensures the overall quality of data, it may introduce some 

bias as well. In all of our studies, we have found that the correlation coefficient drops 

drastically in some of the scans even when other scans of the same rat under the same 

anesthesia with almost identical physiological condition show high correlation. Minor 

fluctuations in temperature, slow changes in respiration, or other physiological effects of the 

anesthesia may result in poor data for one scan, which then returns to normal as the 

physiological parameters are corrected. We monitor rats undergoing simultaneous LFP and 

MRI very carefully, but it is difficult to keep their condition absolutely stable. The scan 

sessions that have large head motion, unstable physiological conditions, noisy LFP 

recordings, or low cross- correlation between LFP and BOLD were discarded. Given the 

fairly large amount of scan sessions available, we chose the more conservative criteria to 

ensure the data we selected has the highest quality. In total, we selected 22 scans under 

DMED and 32 scans under ISO out of 337 scans.

The LFP-CAPs utilize the spatial information obtained from fMRI, taking advantage of the 

fact the fMRI data are more densely sampled in spatial domain than LFPs, providing 

additional information about time varying activity that could not be easily discovered using 

correlation analysis alone. However, this approach is still not ideal, because although LFP is 

a more direct measurement of the neuronal activity, the LFP appears to be more loosely 

connected with BOLD signals in other regions, when compared to the BOLD seeded drawn 

near the electrode (because LFP-CAPs need more frames to reproduce the spatial pattern, as 

shown in Figure 4). So far we can only confirm that the LFP co- activates with BOLD 

signals in a similar way that the BOLD seed does, and such similarity can only imply that 

the apparent time- varying functional connectivity observed in CAPs may be the result of the 

co-activations of neurons. To collect direct evidence that the resting state networks are 

dynamic and are driven by discrete events, one needs to use multiple electrodes located in 

areas throughout the network. Such an experiment has many technical difficulties, and LFP-

CAPs remain a good alternative to provide spatial information until the successful 

implementation of multi-region, high-resolution LFP recording and MRI.

Finally, it appears that the anesthesia agent used can substantially influence the spatial 

organization of neural activity (represented by BOLD-CAPs and LFP-CAPs in this study), 

as well as the frequency dependency of the LFP-BOLD relationship. It is not surprising to 

see that ISO and DMED produce different CAPs and BOLD triggered averages, because the 

underlying physiological conditions appear to be quite different. Isoflurane is a vasodilator 
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and dexmedetomidine is a vasoconstrictor. Both change the cerebral blood flow as well as 

the cerebral blood volume, which ultimately may influence the BOLD signal. Also, high 

ISO concentration tends to reduce the spatial localization of functional connectivity, whereas 

DMED induces a neural state very similar to natural sleep without deeply suppressing 

central nervous system (CNS) activity (Magnuson et al., 2014). The hemodynamic response 

functions (HRF) have different peak times (4 seconds under ISO and 2.5 seconds under 

DMED), reflecting changes in the vasculature. The LFP power spectral density function 

shows more high frequency components under ISO than under DMED. Last but not least, 

under ISO the neurons tend to rapidly fire in a short period of time, often in a timescale of a 

few seconds, and then rest for a few seconds before starting rapid firing again. This 

phenomenon is known as the burst- suppression and is very prominent when the ISO 

concentration is high (Liu et al., 2010, Pan et al., 2011). So with these apparent differences 

in ISO and DMED anesthesia conditions, and the discrepancy among our study and the other 

studies using different anesthetic agents, it can be seen that the anesthetic agent plays a very 

important role in fMRI studies, as well as other concurrent neurophysiological recording 

studies. The underlying mechanism of how the dynamic functional connectivity and the 

frequency dependency of the LFP-BOLD relationship is altered by the anesthetic agent still 

remain an open question, and it is worthwhile to investigate in the future.

4. Conclusion

To conclude, in this article we proposed two methods to analyze simultaneous fMRI and 

LFP recording data: the BOLD- triggered average and the LFP-CAPs. The BOLD-triggered 

average shows that the there is a particular temporal pattern in the LFP power shortly before 

any type of BOLD events, especially those events with the highest BOLD amplitudes where 

the pattern of LFP power stimulus is most easily distinguished from the background noise. 

Under different anesthesia, the temporal patterns in the averaged LFP power show different 

frequency preferences.

The spatial similarities between the LFP-CAP and the cross correlation map suggests that 

the relationship between LFP and BOLD is driven by instantaneous co-activations or co- 

deactivations , which is in line with the finding in BOLD-triggered averages that the 

averaged LFP stimulus will exhibit some noticeable patterns only if the BOLD triggers are 

high in amplitude The spatial similarities between LFP-CAPs and BOLD- CAPs suggests 

that the time-varying resting state networks found in fMRI studies may be attributed to the 

time-varying behavior of LFP in different brain regions, although the underlying mechanism 

is still not fully understood.

5. Materials and Methods

5.1. Animal Preparation

All animal experiments were performed in compliance with NIH guidelines and were 

approved by the Emory University Institutional Animal Care and Use Committee. 

Previously acquired data from 36 Sprague–Dawley rats (male, 200–300 g, Charles River) 

were used in this study. A full description of the methods is given in the prior publication 

(Pan et al., 2011) and summarized here. All rats were anesthetized with 2% isoflurane 
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during surgery. Fine tip electrodes (~10 μm in diameter, borosilicate pipettes) were prepared 

with micropipette pullers (PE-2; NARISHIGE). The electrodes were filled with artificial 

cerebrospinal fluid (ACSF), resulting in an impedance of 1 – 5MΩ between the chloridized 

silver wire and the extracellular environment. The details of the surgical procedures and 

microelectrode implantation have been described in (Pan et al., 2010). A pair of micro-glass 

electrodes was implanted in S1FL of the left and right hemispheres separately and secured to 

the skull using dental cement (methyl methacrylate) for all rats. In order to reduce the MRI 

artifacts caused by susceptibility, a layer of toothpaste (Colgate, NY) was applied to replace 

the removed skin and muscle over the skull, and also the dental cement was used at the area 

>0.5 mm posterior to the imaging slice.

5.2. Simultaneous fMRI imaging and LFP recording

All imaging was performed on a 9.4T/20 cm horizontal bore small animal MRI system 

(Bruker, Billerica, MA). A three-plane scout image was first acquired to position the fMRI 

scans. To improve the homogeneity of the magnetic field, the volume of interest (6 mm3) 

was shimmed using FASTMAP (Gruetter 1993). Manual shimming adjustment was then 

applied when necessary to improve the field homogeneity of the selected slice. For fMRI 

studies, a coronal imaging slice was selected to cover bilateral S1FL areas, in which the 

glass recording electrode tips were implanted. The EPI imaging parameters were FOV, 1.92 

× 1.92 cm2; matrix size, 64 × 64; in-plane resolution, 0.3 × 0.3 mm2; slice thickness, 2 mm; 

and TR/TE, 500/15 ms. A total of 337 resting state scans were collected under several 

different concentrations of isoflurane ranging from 1% to 2%. (ISO, n = 100) or 

dexmedetomidine (DMED, n = 237) anesthesia. The isoflurane, in a mixture of 70% O2 and 

30% room air, was continuously delivered to the nosecone, allowing for free breathing 

throughout the experiment. The rat’s oxygen saturation, measured with a pulse oximeter, 

was kept above 98% throughout the data acquisition process. For DMED studies, a bolus of 

0.025 mg/kg dexmedetomidine was injected subcutaneously. Isoflurane was disconnected 10 

min afterwards, and switched to a continuous subcutaneous infusion of dexmedetomidine 

(0.05 mg/kg/h). The dose was increased by a factor of three (0.15 mg/kg/h) after ~1.5 h, 

following the protocol for prolonged sedation described in (Pawela et al., 2009). The DMED 

scans were conducted >3 h after switching from ISO to avoid any residual ISO effects 

(Magnuson et al., 2014). The fMRI image acquisition lasts 8 min 20 sec (1000 TR), and 20 

dummy scans were acquired to reduce transient signal intensity fluctuations at the start of 

the image series, which makes the total length of LFP segments that contains gradient-

induced artifacts become 8 min 30 sec. Because the whole dataset was acquired over a 

period of several years, there were two sets of recording parameters: 1. (×500 amplified, 0–

100 Hz band-pass filtered, 60 Hz notch-filtered, 12 kHz sampling rate, and ~10 min 

acquisition length) and 2. (×1000 amplified, 0.1 Hz–5 kHz band- pass filtered, 60 Hz notch-

filtered, and 12 kHz sampling rate, and ~14 min acquisition length). The LFP recording lasts 

longer than the image acquisition to record the LFP without the gradient- induced artifacts, 

which provides a benchmark for the artifact- removal algorithm. There are two LFP 

recording segments before and after the image acquisition that last either around 1 min or 

around 3 min, depending on the parameter sets. However, these differences in the recording 

parameters will not compromise the analysis because in the data processing the LFP was all 

band-pass filtered to 0.1–100Hz, the amplitude was normalized, and the excessive LFP 
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segments were truncated to match the length of fMRI data. A 16 bit analog-to-digital 

converter (PCI-6281; National Instruments) was used for analog to digital conversion. All 

physiological parameters were monitored and maintained within normal ranges, including 

rectal temperature, respiration rate, SpO2/cardiac rate. The animals were sacrificed at the 

end of the experiment.

5.3. LFP Data Pre-processing

The electrophysiological signal recorded during fMRI scans contains neural signals and 

gradient-induced artifacts, which are easily distinguished by their high amplitudes. These 

gradient- induced artifacts were removed offline in MATLAB (Mathworks) following a 

similar procedure to that illustrated in (Pan et al., 2011). To identify the time when gradient-

induced artifacts are present, the rising edge is captured by comparing the first order 

derivative with a predefined threshold. If the total number of the detected gradient-induced 

artifacts equals to 1020 (the duration of fMRI scan was 1000 TRs, and there were 20 dummy 

scans before the actual data acquisition), the LFP data was then proceeded to the next step. 

Otherwise if the artifacts are not identified correctly due to the presence of some large noise 

spikes, we first tried to manually replace those spikes with linear interpolations. If the 

artifact identification was still problematic after manual denoising, the dataset was 

discarded.

The LFP data can be divided into several segments using the triggers, and there should be 

1020 segments that contains gradient-induced artifacts in each scan. Those segments were 

averaged to obtain the noise template, which was then subtracted from the individual 

segments of the raw LFP signal to get the denoised LFP signal. This method takes care of 

the gradient artifacts in the second phase (25 ms after the trigger), but the residual artifacts 

in the first phase (0~25 ms after the trigger) were still overwhelming after subtracting the 

noise template, so the first 25 ms of the LFP data were replaced with linear interpolation.

The denoised LFP signal was then low-pass filtered to 100 Hz using to remove any residual 

artifacts, and downsampled from 12KHz to 500Hz to reduce file size and computation cost. 

These downsampled LFP signals were then used to calculate the band- limited power (BLP) 

in different frequency ranges (Delta 1~4Hz, Theta 4~8Hz, Alpha 8~12Hz, Beta Low 

12~25Hz, Beta High 25~40Hz, Gamma 40~100Hz) using sliding window. The sliding 

window has a length of 1 second and 50% overlap (so the window moves 0.5 second every 

time to match the temporal resolution of fMRI data, which is 0.5 second as well) and is 

centered at the echo time of the fMRI scan for each TR index. Within each window, the 

power spectral density (PSD) function was calculated using Welch’s method (4 segments, 

50% overlap) and was integrated over different frequency bands to obtain the BLP time 

courses at the corresponding TR index. The BLP time courses were then band-pass filtered 

(0.01–0.1Hz for ISO and 0.01–0.25Hz for DMED (Pan et al., 2013)). After the pre-

processing, the raw LFP data with a sampling rate of 12 KHz was converted to BLP time 

courses with a temporal resolution of 0.5 seconds and a duration of 1000 TRs, which is 8 

min 20 sec long. For further BOLD triggered average analysis, the BLP time courses in 

every frequency band from the same scan was normalized by a common scaling factor such 
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that the standard deviation of the broadband power is equal to 1, which makes the datasets 

with various amplitudes comparable with each other.

5.4. FMRI Data Pre-processing

The fMRI data was preprocessed in the following procedure. A brain mask for each scan 

was obtained from the first image of the scan using active contour methods and was dilated 

by 2 voxels before running motion correction on SPM 12. The motion corrected image 

series were then spatially smoothed using a Gaussian kernel with a FWHM of 2.8 voxel 

(2.8*0.3mm = 0.84mm). Then global signal and linear drift regression, as well as band-pass 

filtering (0.01–0.1Hz for ISO and 0.01–0.25Hz for DMED) were performed voxel-wise. As 

a quality assurance step, the cross-correlation map of LFP bandlimited-power versus BOLD 

is calculated at the lag when the correlation is expected to reach the maximum (4 seconds for 

ISO and 2.5 seconds for DMED). If there are high LFP broadband power versus BOLD S1-

seed cross-correlation, and a bilateral symmetry in BOLD S1- seeded correlation map, the 

dataset was considered as high-quality data and was proceeded to the next step. By these 

criteria, 22 scans under DMED from 10 rats and 32 scans under various ISO concentrations 

from 12 rats were selected out of 337 scans from 36 rats. The selected datasets were then 

normalized voxel-wise to produce the BOLD image series for the co-activation patterns 

analysis. For BOLD triggered average analysis, a ROI was manually selected based on the 

cross-correlation map, and the BOLD signal was averaged over the ROI. Finally, the BOLD 

signal averaged over the ROI was z-scored so that the averaged BOLD signal is comparable 

with other fMRI scans.

5.5. Co-deactivation Patterns (CDAPs)

In addition to co-activation patterns, we also calculated co- deactivation patterns (CDAPs). 

The CDAPs were calculated using the method described in (Liu et al., 2013). The CDAPs 

were obtained by applying thresholds to the LFP broadband power time course, similar to 

calculating CAPs except the BOLD frames were selected when LFP broadband power was 

lower than the threshold, and the sign of the averaged intensity was flipped for better 

comparison with the correlation map. The comparison between CAPs and CDAPs are shown 

in Figure S.6 and Figure S.7. Although the CAPs described in the original paper lost 

similarities when the thresholds are too low (because the co-deactivation frames cancel out 

the effect of the co-activation frames), however, we found that those co-deactivation frames 

do not always destroy the patterns, and solely using them can produce a nearly identical 

spatial map, which is in agreement with the findings in (Liu et al., 2013), though they 

generally requires more frames to achieve the same level of similarities. So the fact that 

CAPs can reproduce correlation map should be interpreted as co-activation frames contain 

information that is sufficient, but not necessary to resemble the correlation map. The 

underlying reason might be the complicated coupling in the timing of CAPs and CDAPs, 

which is probably induced by the nature of temporal filtering with a relatively narrow 

frequency band of the power time course.

Another thing to notice is that, the amount of frames needed to reach the similarity plateau is 

different for different CAPs. Generally speaking, BOLD-CAPs and BOLD-CDAPs are the 

two fastest to reach the plateau (need 5~10% of the data), followed by LFP-CAPs (need 
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around 20%), and the LFP-CDAPs is the slowest (may need up to 30%). It is implied that 

since the spatial patterns in the correlation map can be accurately replicated by only a small 

portion of dataset, those selected frames contains all the information needed for resembling 

the pattern. So it is reasonable to assume that, if fewer frames is needed for resembling the 

pattern, then each frame contains more information than otherwise. Since LFP is linked to 

BOLD signal through intermediate steps including hemodynamic functions, whereas BOLD 

signal is more directly tied to the BOLD signals in other region through the same 

mechanism, it is not surprising to see that BOLD-CAPs reach plateau quicker than LFP-

CAPs. The fact that LFP-CAPs need fewer frames than LFP-CDAPs implies that the LFP 

activation is more dominant than deactivation when driving the LFP-BOLD relationship.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustration of the procedure to obtain the BOLD-triggered average time course.
The data shown is from the ISO group (32 scans, each containing 1000 time points). The 

pooled distribution is evenly divided into 10 groups, each containing 3200 samples (red for 

high BOLD value and blue for low BOLD value, this color-coding applies to all figures that 

involve BOLD amplitude groups). A 200-second segment of a particular scan is plotted to 

illustrate the procedure. For a selected BOLD group (90~100% BOLD is shown), the 

thresholds were obtained from the pooled distribution (>1.28 BOLD S.D. for this group), 

and applied to the time course to identify those time points as the BOLD events (marked in 

red circles on the top). Then the corresponding LFP segments proceeding the BOLD events 

were extracted (red segments on the bottom) and averaged across all 32 scans to obtain the 

BOLD-triggered average time course. For display purposes, only four LFP segments were 

shown.
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Figure 2. Time courses of the BOLD-triggered average of LFP power in different frequency 
bands under ISO anesthesia (panel A, 32 scans) and DMED anesthesia (panel B, 22 scans).
The x-axis is the time lag with respect to the BOLD triggers. The y-axis is the normalized 

LFP power (the standard deviation of broadband LFP power is 1 LFP S.D.). The vertical 

cursors show the maximally-correlated lag (−4 seconds for ISO in all frequency bands; −2.5 

second for DMED in all frequency bands, with an additional line for the negative deviation 

which is located at −5.5 seconds for Delta band and Broadband, and at −5 seconds for Theta 

band). Each point in the time courses is the averaged value of roughly 10% of the dataset. 

The upper threshold and lower threshold for 95% confidence intervals are obtained from the 

97.5 and 2.5 percentiles of the noise empirical distribution, respectively. BetaL, low 

frequency beta 12~25Hz, BetaH, high frequency beta, 25~40Hz.
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Figure 3. Scatter plot of LFP vs BOLD and the centroids of each BOLD group under ISO (panel 
A, 32 scans) and DMED (panel B, 22 scans).
Each dot represents a time point with its BOLD value and LFP power value. Since each scan 

session has 1000 time points, each plot in panel A consists of 32000 points, and each plot in 

panel B consists of 22000 points. The time delay is already adjusted (the LFP power is 

delayed by 4 seconds under ISO and 2.5 seconds under DMED). Each centroid shows the 

averaged LFP power within each BOLD group. The centroids are essentially showing the 

BOLD-triggered averages at the maximally-correlated lag, which are the value specified by 

the vertical cursors in Figure 2.
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Figure 4. Co-activation patterns become more similar to the correlation map as more frames are 
included for calculation.
From left to right, as the threshold (shown in percentiles) become lower, more frames are 

included. The LFP-BOLD correlation map (at the maximally correlated lag) and BOLD S1-

seeded correlation map are shown on the far right (the yellow triangles show the location of 

the electrode and the S1-seed). For each CAP, the spatial similarity with regard to the 

correlation map is shown in the bottom right corner of each image. It can be seen that the 

spatial similarity increases very quickly as more frames are included, and reaches a plateau 

near 1 when a certain amount of frames are included. Even if only 10%~20% of the dataset 

is used, most CAPs can replicate a spatial pattern nearly identical to the correlation map, 

which is calculated from the entire dataset. Each image is normalized by its 98 percentile to 

enable easier comparison of the spatial patterns.
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Figure 5. Temporal decomposition of the selected co-activation frames (left) and the similarity 
matrix (right).
The frames selected based on high amplitude events are further divided into six clusters 

using the k-means algorithm (k=6) to produce CAPs. The threshold used for selecting 

frames was 15% for both LFP-CAPs and BOLD-CAPs. The LFP-CAPs under ISO are 

sorted based on the consistency (the average spatial similarity of each fMRI frame to the 

group mean). The LFP-CAPs under DMED are sorted to maximize the summed spatial 

similarity between LFP-CAPs under ISO and LFP-CAPs under DMED (for easier 

comparison across different anesthetic conditions). The BOLD-CAPs are also sorted in a 

similar way using LFP-CAPs as the benchmark. The consistency (light red) and fraction 

values (light blue) of the CAPs are shown on the bottom of each image. The similarity 

matrix shows the spatial similarity (Pearson correlation) between any combinations of two 

CAPs. Within each anesthetic agent group, there are 6 different CAPs groups. Within each 

CAP group, there are also two elements: LFP-CAP and BOLD-CAP, giving 24x24 elements 

visualized in this matrix
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