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Abstract

O-Linked N-acetyl glucosamine (O-GIcNAC) is a protein modification found on thousands of
nuclear, cytosolic, and mitochondrial proteins. Many O-GIlcNAc sites occur in close proximity to
protein sites that are likewise modified by phosphorylation. While several studies have uncovered
crosstalk between these two signaling modifications on individual proteins and pathways, an
understanding of the role of O-GIcNAc in regulating kinases, the enzymes that install the
phosphate modification, is still emerging. Here we review recent methods to profile the O-GIcNAc
modification on a global scale that have revealed over 100 kinases as modified by O-GIcNAc, and
highlight existing studies about regulation of these kinases by O-GIcNAc. Continuing efforts to
profile the O-GIcNAc proteome and understand the role of O-GIcNAc on kinases will reveal new
mechanisms of regulation and potential avenues for manipulation of the signaling mechanisms at
the intersection of O-GIcNAc and phosphorylation.
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Introduction

O-Linked Atacetyl glucosamine (O-GIcNAC) is one of the major chemical codes used for
cellular signaling. O-GIcNAc was first discovered in mammalian cells in 19841 and has now
been found across species on serine or threonine residues of thousands of proteins in the
nuclear, cytosolic, and mitochondrial compartments (Figure 1A).2 3 Due to the occurrence
of O-GIcNAc on proteins in these intracellular compartments and the fact that O-GIcNAc is
a biosynthetic product culminating from glycolysis, amino acid synthesis, nucleotide levels,
and fatty acid levels, the modification is commonly thought to act as a nutrient sensor for the
proteome.3 The O-GIcNAc modification is found across species. The O-GIcNAc
modification modifies thousands of proteins in animals and plants,# and has now been
identified on proteins in fungi® and the tailoring enzymes has been found in bacteria.®
Notably, the recent discovery of intracellular O-fucose in the plant proteome’ and O-
mannose in the yeast proteome® points to the potentially central role for a sugar-based
nutrient sensing mechanism across organisms. The function of O-GIcNAc in nutrient
sensing and the impact of its dysregulation on specific diseases have been previously and
extensively reviewed,®17 which highlights a rapidly growing focus on deciphering the O-
GIcNAC code.
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The intersection between O-GIcNAc and phosphorylation signaling was first posited with
the discovery of O-GIcNAc on serine and threonine residues that also serve as modification
sites for phosphorylation.18 This discovery sparked multiple inquiries aimed at investigating
the crosstalk between these two modifications. The interface of O-GIcNAc and
phosphorylation has since proven to be an important pillar of cellular signaling arising from
these modifications, particularly as many regions of O-GIcNAcylation are also substrates for
phosphorylation. O-GIcNAc, like phosphorylation, is a dynamic modification that is rapidly
cycled on protein substrates.1> However, in contrast to phosphorylation for which over 500
kinases and phosphatases execute the enzymatic introduction and removal of the phosphate
group,1® O-GIcNAC is tailored on thousands of substrates by only two enzymes: O-GIcNAc
transferase (OGT) installs and O-GIcNAcase (OGA) removes O-GIcNAc from proteins
(Figure 1B). Evidence for the functional significance of O-GIcNAc cycling was obtained
when early work demonstrated that both OGT and OGA are essential for organismal
development. OGT is required for normal human neurological development2? and deletion
of OGT leads to embryonic lethality in mice,2! while deletion of OGA leads to neonatal
lethality with developmental delay in mouse embryos.22 Furthermore, conditional deletion
of OGT in numerous cell types leads to senescence and apoptosis.23 Numerous functional
outcomes of protein O-GIcNAcylation have been described, including alteration of protein—
protein interactions, subcellular localization, enzymatic activity, and protein stability.1> 24
The dysregulation and abnormal levels of O-GIcNAc have been linked to various diseases,
including diabetes,25 cancer,25: 27 immune disorders?® and neurodegeneration,2% 30 which

have inspired efforts to pursue the O-GIcNAc modification as a potential therapeutic target.
31,32

Signaling between O-GIcNAc and phosphorylation pathways may be broadly categorized
into two major models: that of crosstalk on a protein substrate, or through post-translational
regulation of the PTM-installing enzymes themselves (Figure 2). In the first model, a protein
substrate may act as a scaffold for O-GIcNAc or phosphorylation via competitive
modification or cooperative modification (Figure 2A). In instances of competitive
modification, a protein substrate may be alternatively glycosylated or phosphorylated, which
inhibits the subsequent modification of the protein at the same or proximal amino acid
residues. The competitive modification of a protein by O-GIcNAc or phosphorylation has
been described for the tumor suppressor p53,33 the oncoprotein c-Myc,34 and the
Alzheimer’s associated-protein tau,3° among others. For example, the structural effects of
modification on a region of tau revealed that the addition of phosphate drove helical
formation, while the addition of O-GIcNAc opposed helical formation by NMR solution
structure.38 Conversely, modification of the murine estrogen receptor with O-GIcNAc
increased the helical turn propensity while phosphorylation decreased helicity.3” In instances
of cooperative modification, the O-GIcNAcylation or phosphorylation of a protein substrate
promotes subsequent modification of the protein substrate. For example, mutation of the
three O-GIcNACc sites of cyclin-dependent kinase inhibitor p27(Kipl) to alanine significantly
decreased phosphorylation at S10; conversely, a SI0A mutation decreased O-GIcNAcylation
of p27(Kip1l), while the S10E mutation acted as a phosphomimetic that increased O-
GlcNAcylation of p27(Kip1).38 Recently, the 14-3-3 proteins were identified as receptors for
the O-GIcNAc modification, pointing to the potential integration of O-GIcNAc and
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phosphorylation signaling pathways through a common protein “reader”.39 Thus, tuning a
protein surface with O-GIcNAc, phosphorylation, or a combination thereof results in distinct
conformational changes that drive downstream functional effects; these have been previously
reviewed.10. 40, 41

Here, we aim to highlight the intersection of O-GIcNAc and phosphorylation from studies
on the systems level and focus on an additional model arising from the system-wide
profiling data, where the direct modification of kinases by O-GIcNAc results in regulation of
substrate scope, kinase activity, and ultimately drives changes to downstream signaling
(Figure 2B).

Regulation of O-GIcNAc by O-GIcNAc transferase and O-GIcNAcase

Like the O-GIcNAc modification itself, the enzymes OGT and OGA that install O-GIcNAc
perform multifaceted roles that are still under investigation. OGT is a glycosyltransferase
that is expressed in all mammalian tissues and possesses a tetratricopeptide repeat (TPR)
domain and a catalytic domain (Figure 3). OGT is expressed in three isoforms that vary by
the length of the TPR domain, termed the nucleocytoplasmic or full-length OGT (ncOGT,
13.5 TPRs), the mitochondrial isoform (mOGT, 9 TPRs), and the short isoform (sOGT, 2.5
TPRs) (Figure 3A).42 The TPR domain mediates protein—protein interactions (PPls) of OGT
with substrate proteins, which is only beginning to be understood.24 4345 Structurally, the
TPR domain forms a series of stacked alpha-helical domains that form a coiled tube-like
structure that funnels polypeptide sequences to the catalytic domain primarily through
associations with asparagine and aspartate residues lining the domain.43 46 The catalytic
domain transfers the sugar from a UDP-GIcNACc donor to serine or threonine residues that
are positioned by the TPR domain (Figure 3B). Mutation of H508 or K852 reduce binding
of UDP-GIcNAc and thus impair catalytic activity (highlighted in red, Figure 3B). The
catalytic domain catalyzes additional chemistries, including transfer of UDP-GIcNAC to
cysteine residues,*’ transfer of glucose,*® proteolysis,*? and deamidation.>? In cells, OGT
forms dimers and trimers through associations in the TPR domain that also alter UDP-
GIcNAc binding constants.51 52 OGT possesses three of its own O-GIcNAc sites and is
modified by other PTMs, including phosphorylation, ubiquitinylation, and sumoylation.53
OGT appears to require accessory proteins to modify protein substrates efficiently, as
reduction or removal of the TPR domain reduces activity with full length proteins, but
retains catalytic activity with synthetic peptides in vitro.#2 46 Further exploration of the
substrate selection mechanisms for OGT will improve the understanding of the regulatory
role of O-GIcNAc and its dynamic cycling.

O-GIcNACc is catalytically removed from proteins by OGA. Similar to OGT, the mechanisms
of how OGA selects from numerous O-GIcNAc substrates and the functions of the separate
domains of OGA are still emerging. OGA is composed of three domains: a catalytic domain
and a histone acetyltransferase (HAT)-like domain connected by a stalk domain (Figure 4A).
54 The stalk domain is interspersed with an unstructured region that forms a binding
interaction with OGT.5® OGA is encoded by a single gene that is expressed as two main
isoforms in vertebrates, the full length isoform, OGA(l), and a short isoform lacking the C-
terminal HAT-like domain, OGA(II).%8 Full-length OGA(l) is a nucleocytoplasmic enzyme,
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while OGA(II) is found predominantly in the nucleus and in lipid droplets.>” The crystal
structure of human OGA had eluded definition until very recently.58-60 These structures of
OGA(II) revealed a remarkable homodimer, wherein the stalk domain of one monomer
covers the catalytic domain of the other monomer to create a substrate-binding cleft.5 A
series of contacts between the stalk domains stabilize the homodimer. OGA is regulated at
least in part by an O-GIcNAc-related feedback mechanism that triggers gene expression;
inhibition of OGA by Thiamet G treatment causes a compensatory increase in OGA
expression and decrease in OGT expression.8! Large-scale profiling studies have revealed
several sites for ubiquitination and phosphorylation of OGA, including an O-GIcNAc site at
S405, indicating possible regulation by OGT.52 The biochemical characterization of these
modification sites may illuminate additional mechanisms of OGA regulation.

Methods to detect and map O-GIcNAc on the systems-level

The O-GlcNAc modification is relatively difficult to detect and quantify in the proteome.2
O-GIcNAC was discovered in 1984 when sugar radiolabeling was measured in the
nucleocytoplasmic space,! several decades after other PTMs like phosphorylation were
discovered on the same proteins. The discovery of O-GIcNAc may have been delayed due to
difficulty in detection since generally changes in O-GIcNAc levels do not affect glycoprotein
migration during gel electrophoresis, and O-GIcNACc is enzymatically labile and rapidly
removed from proteins when the cell is damaged or lysed. Furthermore, O-GIcNAc is also
chemically labile to common mapping techniques to analyze PTMs, such as mass
spectrometry (MS).83 Analysis of O-GIcNAc by MS pushes detection limits due to
occurrence of O-GIcNAc at substoichiometric levels on the protein, ion suppression of the
glycopeptide in the presence of unmodified peptides, and ready fragmentation of the glycan
from the peptide during ionization processes in the mass spectrometer.64 65 Recently,
advances in chemical glycoproteomics have drastically accelerated the mapping of the
modification site in the global proteome; these advances have recently been reviewed.56
Here we highlight specifically advances in the large-scale profiling of O-GIcNAc and
summarize the O-GlcNAcome characterized from large-scale complex glycoproteomic
studies to date.

Although O-GIcNAc is found widely throughout the nucleocytoplasmic proteome, its
substoichiometric modification site occupancy necessitates the combination of an efficient
enrichment method coupled to a sensitive analytical detection method. The enrichment of O-
GIcNAC has been achieved by several means. Lectin weak affinity column chromatography
using wheat germ agglutinin (WGA) enables the enrichment of O-GIcNAc and other sugars
after multiple rounds of enrichment. Alternatively, the introduction of bioorthogonal handles
via metabolic labeling®”: 68 or chemoenzymatic labeling®® results in the selective installation
of an azido-sugar as a reporter for O-GIcNAc on proteins, enabling the further
functionalization with a variety of reporting strategies (e.g., fluorescence microscopy, anti-
biotin Western blot). Metabolic labeling involves the addition of a sugar carrying a
bioorthogonal handle, such as an azido-sugar, to living systems that metabolically
incorporate the azido-sugar to protein substrates. Several sugar reporter molecules for O-
GIcNAc have been developed, including Ac,GalNAz or Ac,GIcNAz, or O-GIcNAc-specific
reporters 6AIKGICNAc, 70 6AzGIcNAc, ! 1,3-Ac,GalNAz, and 1,3-ProGalNAz.72 The latter
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two were validated to reduce background S-glycosylation from other metabolic reporters.’3
Chemoenzymatic labeling uses a mutant GalT1 enzyme that accepts azido- or keto-sugars
for enzymatic labeling of the O-GIcNAc residue itself.”* The azide introduces a handle that
is selectively tagged with reporter molecules using copper-catalyzed azide—alkyne
cycloaddition (CUAAC) chemistry. Reaction of the azide groups with cleavable biotin tags
and isolation of the O-GIcNAc peptide enables maps of O-GIcNAc modification sites
throughout the proteome. Both metabolic labeling and chemoenzymatic labeling may
produce off-target labeling products due to the addition of reactive azido-sugar intermediates
or promiscuity of the labeling for additional glycan types.’ 7> Thus, the assignment of O-
GIcNAcylated proteins is best performed at glycosite-level resolution.

Analysis of the O-GIcNAc modification is commonly achieved by Western blot or MS-based
proteomics. Visualization of O-GIcNAcylated proteins by Western blot is commonly
performed using the O-GIcNAc CTD110.6, RL2, or 18B10.C7 antibodies. If the
glycoprotein is labeled by an azido-sugar, a mass shift assay using a 5-kilodalton PEG mass
tag carrying an alkynyl functional group may be performed to determine the stoichiometry
of the O-GIcNAc modification on individual proteins.”® The intensity of the shifted bands
relative to the unshifted band allows for determination of O-GIcNAc stoichiometry. To
characterize the protein glycosite(s), mass spectrometry-based proteomics has emerged as
the primary mechanism for site-specific mapping of the O-GIcNAc modification site on
individual proteins to the complex proteome. However, due to the chemical lability of the O-
linked glycosidic bond from the peptide backbone by collision induced dissociation (CID) or
higher-energy CID (HCD) resulting in altered fragmentation mechanisms for glycopeptides,
the assignment of the glycopeptide species is challenging, and in cases of successful
identification of the glycopeptide the glycosite may only be localized to the serine and
threonine residues in the peptide sequence. Solutions to this challenge included
determination of the modification site using a sequence of induced beta-elimination of O-
GIcNAc from the peptide backbone, followed by controlled Michael addition of
dithiothreitol as a reporter for the glycosite, yielding early insight to the O-GIcNAc
proteome.’” The further development of ETD and electron-transfer higher energy collision
induced dissociation (EthCD) methods on high resolution mass spectrometers enabled the
detection of O-GIcNAcylated peptides via a fragmentation method that leaves the glycosidic
bond intact. Chemical glycoproteomics methods, such as Isotope Targeted Glycoproteomics
(IsoTaG), combine metabolic labeling with enrichment to map exactly when and where O-
GlcNAc is modifying the protein network (Figure 5).”8 The development of efficient
enrichment methods for O-GIcNAc coupled to advances in MS technology have drastically
increased the number of O-GIcNACc sites that have been identified from the whole proteome
of multiple species.28 62, 79,80

Intersection of O-GIcNAc and phosphorylation on the systems-level

The cell integrates glycosylation, phosphorylation, and the myriad of other chemical
modifications on a protein into a functional signaling output. Through MS-based
proteomics, the ability to map a diversity of modification sites has enhanced significantly
over the past decade, concomitantly increasing the depth of maps of the O-GIcNAc
proteome.56 In particular, the crosstalk between O-GIcNAc and phosphorylation has long
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fascinated the field. The possibility of O-GIcNAc blocking proximal phosphosites was first
suggested by Hart and coworkers in 1987.18 In 2008, a large-scale phosphosite profiling
study in mouse fibroblasts revealed roughly half of the 711 mapped phosphosites changed in
abundance in response to a global increase in O-GIcNAc glycosylation via chemical
inhibition of OGA.81 Furthermore, inhibition of phosphatase by okadaic acid decreased
global O-GIcNAc levels by Western blot in NIH/3T3 cells.82: 83 In primary human T cells,
45% of O-GIcNAc sites occur in close proximity to a previously mapped phosphorylation
site (within 10 amino acids).84 However, conflicting evidence for crosstalk between the O-
GIcNAc modification and phosphorylation exists. In 2012, clustering of a profile of 1,750
glycosites and 16,500 phosphosites mapped from the murine synaptosome was statistically
independent, implying that crosstalk between glycosites and phosphosites at a static state
was insignificant.85 In contrast, evidence for reciprocal regulation between O-GIcNAc and
phosphorylation was recently demonstrated in vitro on a specific four-amino acid consensus
sequence: AS/T, P, VIA/T, SIT-C.40 Phosphorylation of the sequence at the N-terminal S/T
resulted in inhibition of glycosylation at the C-terminal S/T, while glycosylation of the N-
terminal S/T resulted in inhibition of phosphorylation at the C-terminal S/T. The observed
competitive modification model with this consensus sequence was subsequently evaluated
on synthetic peptides derived from ten proteins naturally containing the consensus sequence.
All possible permutations of this four-residue sequence are enriched in the human proteome
compared to randomly-selected four-residue sequences, potentially indicative of an
evolutionary selection for this consensus sequence. Further evaluation of O-GIcNAc and
phosphorylation maps from cellular or in vivo systems may reveal instances of PTM
crosstalk on a global scale.

regulation of kinases

Crosstalk between O-GIcNAc and phosphorylation additionally occurs through the direct O-
GlcNAcylation of the kinome, thus regulating downstream phosphorylation events. While
crosstalk between O-GIcNAc and phosphorylation is most commonly studied from the
perspective of regulation at an individual protein substrate, emerging examples demonstrate
that O-GIlcNAcylation of the kinase influences substrate selection and enzymatic activity.
86,87 Both OGT and OGA have been immunoprecipitated in protein complexes containing
kinases (and phosphatases, see below).88: 89 In vitro glycosylation of a kinase microarray
with OGT found that approximately 39% of these kinases are substrates.?% Our analysis of
the O-GIcNAc literature and glycoproteomics datasets found over 100 kinases possessing a
mapped O-GIcNAc site to date. We review the current O-GIcNAcylated kinome based on
large-scale O-GIcNAc maps’8: 84, 91-98 and the several examples of the O-GIcNAc
modification regulating kinase activity, thereby highlighting the central role of O-GIcNAc in
regulating phosphorylation on protein substrates and on the kinases themselves (Figure 6,
Table 1).

The AGC kinase family contains Ser/Thr protein kinases named after three representative
families, the cAMP-dependent protein kinase (PKA), the cGMP-dependent protein kinase
(PKG) and the protein kinase C (PKC) families. The AGC family contains more than 60
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human protein kinases. To our knowledge, seven members of this kinase family have been
identified as O-GIcNAc modified.

PKA plays a role in CREB signaling and additionally modifies tau. O-GlcNAcylation of
PKA subunit PKAca and PKACp alters their subcellular localization and enhances their
kinase activity.9 Protein kinase B (AKT) is a serine/threonine kinase involved in multiple
cellular processes, including the insulin response, apoptosis, and cell migration. AKT was
found to be modified by O-GIcNAc in 2006.100 Enrichment of AKT by wheat germ
agglutinin increased under high glucose conditions or when dosing the OGA inhibitor
PUGNAC, indicative of higher O-GIcNAc levels on AKT. Follow up experiments
demonstrated that elevated global O-GIcNAc levels correlate with AKT translocation from
the cytoplasm to the nucleus. Two separate laboratories later reported distinct glycosites on
AKT.101.102 Hart and co-workers used tyrosine as a glyco-mimetic mutation to show that O-
GlcNAcylation at T305 and/or T312 on AKT inhibits phosphorylation at T308, a residue in
the activation loop of AKT whose phosphorylation is necessary for AKT activation.103
These studies implicated glycosylation as a mechanism to downregulate AKT activity using
an in vitro AKT activity assay.191 Gong and co-workers later report that increased O-
GlcNAcylation on AKT positively correlates with markers for apoptosis and overexpression
of AKT alleviates this phenotype.102 AKT2 has also been identified as O-GIcNAc modified.
104 Treatment of rat adipocytes with the OGA inhibitor PUGNAc increased glycosylation
and decreased insulin-induced phosphorylation of AKT2 by Western blot.

O-GIcNAc may be linked to regulation of cancer cell migration via another member of the
AGC kinase family, ROCK.105 Chemical inhibition of OGA resulted in accelerated
migration that was found to be mediated by the RhoA/ROCK/MLC (myosin light chain)
interaction in SKOV3 and 59M ovarian cancer cells. Knockout RhoA or inhibition of ROCK
eliminates the change in cell migration caused by OGA inhibition. While direct O-
GlcNAcylation of RhoA or ROCK was not established in this study, a glycosite on ROCK
has recently been identified in a large-scale glycoproteomics study.84 Biochemical
confirmation and characterization of this glycosite will lead to further conclusions about the
role of O-GIcNAc in regulating ROCK and cell migration.

The CMGC family of kinases contains the cyclin-dependent kinases (CDK), mitogen-
activated protein kinases (MAPK), glycogen synthase kinases, and the CDC-like kinases
(CLK). These kinases are involved in cell-cycle regulation and signaling, cell
communication, and cell growth.

GSK3p regulates OGT via phosphorylation and is likewise regulated by OGT through O-
GIcNAc. Inhibition of GSK3p alters the abundance of several O-GIcNAc sites on GSK3p in
the mouse and monkey proteomes, a result that could be attributed to the loss of
phosphorylation on OGT or other GSK3 substrates.106: 107 |n addition, the O-GIcNAc
modification on GSK3p results in regulation of the molecular chaperones that are stably
expressed under heat-shock conditions.198 Specifically, knockout of OGT in MEF cells
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results in altered expression of HSP72, a heat shock protein that is governed by the GSK3pB-
substrate HSF1.

Several studies additionally report regulation of CMGC complexes by O-GIcNAc. In these
examples, members of the CMGC kinase complex are glycosylated, leading to alteration of
the Kinase function and substrate selectivity that affect essential cellular processes, including
motility and cell cycle progression. For example, p27 is a tumor suppressor gene that
functions by inhibiting CDK2/Cyclin E. Shen and co-workers mapped glycosites on p27 at
Ser2, Ser106, Ser110, Thr157, and Thr198.19° O-GIcNAcylation of Ser2 destabilizes p27
and works synergistically with phosphorylation of Ser10 to move the cell cycle forward.
Furthermore, Western blot and immunohistochemical analyses of hepatocellular carcinoma
tissues and their corresponding nontumorous tissues were performed, and revealed that
elevated O-GIcNAc on p27 correlates with increased cell proliferation. Together, these
results indicate that the dynamic interplay between O-GIcNAcylation and phosphorylation
on p27 in complex with CDK2 controls CDK?2 activity via regulation of p27 stability.

The calcium/calmodulin-dependent kinases (CAMK) are a family of enzymes stimulated by
calmodulin, a protein that is activated in response to increased intracellular calcium
concentrations. As many CAMK substrates are transcription factors, this kinase family is
known for being closely tied to regulation of gene expression. A number of CAMK subunits
are modified by OGT, with the effects on CAMKIV being best studied.86 CAMKIV is O-
GlcNAcylated at several sites. Modification of CAMKIV with O-GIcNAc at the active site
reduces the level of stimulatory phosphorylation at T200 and results in inhibition of the
kinase activity.

Unc-51-like-kinase 1 (ULK1) is an important gatekeeper of the autophagy pathway. ULK1
is glycosylated at T754. Glycosylation of ULK1 can only occur once ULK1 has been
dephosphorylated by PP1 to remove a phosphosite installed by mTOR.110 O-GlcNAcylation
of ULK1 at T754 promotes binding to substrate ATG14L, which results in
phosphatidylinositol-(3)-phosphate production and initiation of autophagy. In this example,
dephosphorylation by PP1 represents a gatekeeping step for subsequent O-GIcNAcylation,
and illustrates key regulatory mechanisms by O-GIcNAc in the autophagy pathway.

AMPK is a heterotrimeric kinase that has a protective function from cellular metabolic
stress. AMPK activity is strongly associated with depleted cellular energy levels as the
kinase is activated by 5’-AMP and ADP, but inhibited by ATP. Stimulation with 5’-AMP or
ADP yields a net upregulation of catabolic and downregulation of anabolic processes. The
kinase complex is further activated by phosphorylation of T172 in the AMPK alpha subunit.
During differentiation of C2C12 mouse skeletal muscle myotubes, AMPK activity is closely
associated with OGT translocation to the nucleus. The altered localization of OGT results in
increased O-GlcNAcylation of nuclear proteins and H3K9 acetylation!!! and results in
phosphorylation of OGT at T444. Phosphorylation of OGT by AMPK alters the O-GIcNAc
landscape. All a and y subunits of AMPK substrates for OGT, and active AMPK shows
increased O-GlcNAcylation of the y1 subunit.
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The homologs of yeast Sterile 7, 11, and 20 kinase family contains many kinases involved in
cell growth, differentiation, oxidative damage, and apoptosis, including many MAP and
serine/threonine protein kinases.112 113 pAK, GCK, MEK, and MKK kinases are also part
of the STE family. Prominent O-GlcNAcylated members of this family include WNK1-3,
PAK1-2, TAO1-2, SLK, OSR1, and several MAP3K proteins, all revealed in large-scale
proteomics experiments. The functional outcomes of glycosites on kinases in the STE family
have yet to be biochemically characterized.

Despite the limited number of kinases in the CK1 family, kinases in the CK1 family are
involved in regulation of membrane transport, cell division, DNA repair, and nuclear
localization. CK16 and CK2a have been discovered to be O-GIcNAc modified to date. The
O-GIcNAcylation of CK18 was discovered in a large-scale murine synaptosome proteomics
study at multiple potential sites that remain to be functionally characterized.! Glycosylation
of human CK2a was evaluated by Cole and coworkers.8” The mapped glycosite S347 was
found proximal to multiple known phosphosites on CK2a.. By semi-synthesis, O-
GlcNAcylation of CK2a was found to inhibit phosphorylation at T344, which decreased the
interaction of CK2a with Pinl and produced a net destabilization of CK2a.

The protein tyrosine kinase family can be subdivided into two main groups: cytosolic
tyrosine kinases (CTKSs) (e.g., Src, JAK, Abl) and receptor tyrosine kinases (RTKSs) (e.g.,
EGFR, VEGFR, FLT3). Receptor tyrosine kinases are transmembrane proteins that are
activated by the binding of an extracellular ligand that induces dimerization and subsequent
autophosphorylation of two RTK monomers, followed by phosphorylation of downstream
signaling proteins. Since tyrosine kinases regulate many key processes including cell growth
and survival, their dysregulation has been found in the development and progression of a
wide range of cancers. The tyrosine kinase-like family (TKL) is closely related to TK, but its
members are serine/threonine kinases instead (e.g. Raf). Diverse members of this kinase
family are shown to be glycosylated, including those involved in cell differentiation
(BMPR?2).30. 84,91 Regulatory functions for the O-GIcNAC sites on kinases in this family
await biochemical characterization.

Other kinases

Kinases that phosphorylate non-protein targets are also privy to regulation by O-GIcNAc.
GNE is an epimerase/kinase responsible for converting UDP-GIcNAc to ManNAc-6P.114 A
GNE point mutation at M743T, commonly observed in GNE myopathy, results in
significantly higher O-GIcNAcylation of GNE than its wildtype counterpart. Elevated O-
GlcNAcylation on GNE was found to inhibit the epimerase activity of both the wildtype
enzyme and the M743T mutant. One hypothesis for why GNE is regulated by O-GIcNAc is
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due to its role in the consumption of UDP-GIcNAC, the donor sugar used by OGT from the
hexosamine biosynthesis pathway.

OGT madifies kinases involved in sugar metabolism and glycolysis in addition to GNE,
including pyruvate kinase M2 and phosphofructokinase 1.11%: 116 phosphofructokinase 1
(PFK1) is an enzyme in glycolysis responsible for converting fructose-6-phosphate to
fructose-1,6-bisphosphate, a committal step that sends the product through the rest of the
glycolytic pathway as compared to the hexosamine biosynthetic pathway. OGT installs O-
GlcNAc at S529 of PFK(1, attenuating its kinase activity.11® This modification increases in
abundance under hypoxic conditions, leading to the redirection of glycolytic flux from the
glycolysis pathway toward the pentose phosphate pathway, a glucose-consuming metabolic
pathway necessary for synthesis of nucleotides and other sugars.

Phosphatases

Protein phosphatases are a family of approximately 200 enzymes that remove
phosphorylation from the protein substrate. Several examples of interplay between O-
GIcNAc and dephosphorylation have been reported, including the identification of a
functional complex between OGT and protein phosphatase 1.117 For example, priming
phosphorylation of folliculin-interacting protein 1 (FNIP1) at S938 by CK2 leads to many
subsequent phosphorylation events of FNIPZ1, ultimately resulting in binding to Hsp90 to
inhibit its ATPase activity. If this priming phosphorylation does not occur, OGT can
glycosylate FNIP1 at S938, blocking subsequent phosphorylation steps, and consequently
lead FNIP1 to be ubiquitinated and degraded.18 Activation of the transcription factor Sp1 is
enhanced on dephosphorylation by phosphatase 2A and may be additionally controlled by
reciprocal O-GIcNAc and phosphate modification.119

A number of phosphatases are also privy to modification by O-GIcNAc (e.g., MYPT1,
PPFIA2-4, PPP6R2, PTPNG, PTPN7, PTPRC, TNS2, SIRPA).84. 85,9293 Djrect regulation
of phosphatase activity by O-GIcNAc has been reported in a few instances. O-
GlcNAcylation of protein tyrosine phosphatase 1B (PTP1B) at S104, S201, and S386
inhibits PTP1B activity, which leads to an increase in AKT and GSK3p activity and
therefore insulin response in HepG2 cells.220 Human small CTD phosphatase 1 (hSCP1)
was identified as O-GIcNAc modified by Western blot, and its glycosite at S41 was
confirmed by Q-TOF MS and site-directed mutagenesis.}?1 Additionally, the phosphatase
myosin phosphatase target subunit 1 (MYPT1) may regulate the substrate specificity of
OGT.89 MYPT1 and OGT can be co-immunoprecipitated, MYPT1 is modified by O-
GIcNAC, and depletion of MYPT1 alters OGT substrate selectivity in Neuro-2a
neuroblastoma cells. These studies highlight additional mechanisms of cellular integration of
the O-GIcNAc modification and phosphorylation signaling and a significant opportunity for
further study.

Conclusion

The O-GIcNAc modification has emerged a prominent regulator of phosphorylation during
cellular signaling via tuning kinase activity in addition to crosstalk between O-GIcNAc and
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phosphorylation on protein substrates. Regulation of kinases by the O-GIcNAc modification
may enable cells to manage resources in disparate pathways according to nutrient
availability, and thus finely tune signaling pathways through other modifications like
phosphorylation. With the convergence of methods to study and engineer O-GIcNAc on the
systems scale and on individual proteins emerging, the increasing evaluation of the functions
for O-GIcNAc on kinases and the enzymes that install it will yield a wealth of insights to
regulatory mechanisms cells use to integrate these pathways. In particular, the role of O-
GlIcNAcylation in the STE, TK, and TKL kinase families awaits elucidation. Due to the
global nature of O-GIcNAc in cells, further illumination of the functions of O-GIcNAc on
kinases will lead to important discoveries in cellular regulation and dysregulation relevant to
all areas of biology under normal physiology or disease.
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Keywords

O-linked N-acetyl glucosamine (O-GIcNAC): a carbohydrate that is installed on serine/
threonine residues of nuclear/cytosolic proteins by O-GIcNAc transferase (OGT) and
removed by O-GIcNAcase (OGA)

Glycosylation: the enzymatic addition of a sugar molecule to another biomolecule

Kinase: an enzyme that catalyzes covalent attachment of a phosphate group to its
substrate

Phosphatase: an enzyme that catalyzes the removal of a phosphate group from its
substrate

Phosphorylation: the enzymatic addition of a phosphate group to another molecule

Glycoproteomics: the identification and characterization of carbohydrate-modified
proteins from a biological sample in the whole proteome via a profiling method (e.g.,
mass spectrometry)

Crosstalk: the phenomenon where changes in one biological pathway directly affects
signaling in another biological pathway

Post-Translational M odification (PTM): the chemical modification of proteins after
protein biosynthesis, often catalyzed by enzymes

PTM Crosstalk: the presence of one PTM affecting the substitution pattern of another
PTM

Signaling: the transduction of a signal via non-covalent or covalent associations of
biological molecules within a pathway

ACS Chem Biol. Author manuscript; available in PMC 2020 May 27.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Schwein and Woo Page 20

A. T o

O-GIcNAC phosphate

B.
OGT cellular signaling
T
@\] E >, through the
OGA

O-GIcNAc code
O-GIcNACc protein
(>3,000 known substrates)

Figurel.
The essential O-GlcNAc modification of proteins. A. Structure of O-GIcNAc (highlighted in

red) and phosphate appended to a serine or threonine amino acid. B. O-GIcNAc is installed
by OGT and removed by OGA to over 3,000 known nuclear and cytoplasmic proteins.
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Figure 2.
Modes of crosstalk between O-GIcNAc and phosphorylation. A. Post-translational

modification of a protein with O-GIcNAc or phosphorylation may be competitive, where one
modification precludes the other, or cooperative, where multiple modifications propagate
specific regulatory outcomes. B. Modification of a kinase with O-GIcNAc can alter
downstream substrate selection and signaling through phosphorylation.
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Figure 3.
Structure of OGT. A. Linear representation of full length OGT(13.5), mOGT(9), and

SOGT(2.5). B. Model of the TPR domain (purple) and catalytic domain of OGT (yellow).43
Point mutations at H508 and K852 reduce catalytic activity (highlighted in red).
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Figure 4.
Structure of OGA isoforms. A. Linear representation of OGA isoforms | and II. Isoform | is

full length OGA. Isoform 11 lacks the HAT-like domain. B. Crystal structure of the human
OGA homodimer analogous to OGA(I1) from the side view (PDB: 5UN9).%9 The catalytic
domain is grey and the stalk domain blue.
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Figure5.

Workflow for Isotope Targeted Glycoproteomics (IsoTaG). Live cells are labeled with an
azidosugar (e.g., Ac,GalNAZz) as a reporter for the O-GIcNAc modification. Enrichment,
digestion, and acid cleavage of the tag recovers the modified glycopeptide for
characterization by MS.
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Figure®6.
Human kinome with known O-GIcNAc modified kinases circled in red. Illustration

reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).
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