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Abstract

O-Linked N-acetyl glucosamine (O-GlcNAc) is a protein modification found on thousands of 

nuclear, cytosolic, and mitochondrial proteins. Many O-GlcNAc sites occur in close proximity to 

protein sites that are likewise modified by phosphorylation. While several studies have uncovered 

crosstalk between these two signaling modifications on individual proteins and pathways, an 

understanding of the role of O-GlcNAc in regulating kinases, the enzymes that install the 

phosphate modification, is still emerging. Here we review recent methods to profile the O-GlcNAc 

modification on a global scale that have revealed over 100 kinases as modified by O-GlcNAc, and 

highlight existing studies about regulation of these kinases by O-GlcNAc. Continuing efforts to 

profile the O-GlcNAc proteome and understand the role of O-GlcNAc on kinases will reveal new 

mechanisms of regulation and potential avenues for manipulation of the signaling mechanisms at 

the intersection of O-GlcNAc and phosphorylation.
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Introduction

O-Linked N-acetyl glucosamine (O-GlcNAc) is one of the major chemical codes used for 

cellular signaling. O-GlcNAc was first discovered in mammalian cells in 19841 and has now 

been found across species on serine or threonine residues of thousands of proteins in the 

nuclear, cytosolic, and mitochondrial compartments (Figure 1A).2, 3 Due to the occurrence 

of O-GlcNAc on proteins in these intracellular compartments and the fact that O-GlcNAc is 

a biosynthetic product culminating from glycolysis, amino acid synthesis, nucleotide levels, 

and fatty acid levels, the modification is commonly thought to act as a nutrient sensor for the 

proteome.3 The O-GlcNAc modification is found across species. The O-GlcNAc 

modification modifies thousands of proteins in animals and plants,4 and has now been 

identified on proteins in fungi5 and the tailoring enzymes has been found in bacteria.6 

Notably, the recent discovery of intracellular O-fucose in the plant proteome7 and O-

mannose in the yeast proteome8 points to the potentially central role for a sugar-based 

nutrient sensing mechanism across organisms. The function of O-GlcNAc in nutrient 

sensing and the impact of its dysregulation on specific diseases have been previously and 

extensively reviewed,9–17 which highlights a rapidly growing focus on deciphering the O-

GlcNAc code.
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The intersection between O-GlcNAc and phosphorylation signaling was first posited with 

the discovery of O-GlcNAc on serine and threonine residues that also serve as modification 

sites for phosphorylation.18 This discovery sparked multiple inquiries aimed at investigating 

the crosstalk between these two modifications. The interface of O-GlcNAc and 

phosphorylation has since proven to be an important pillar of cellular signaling arising from 

these modifications, particularly as many regions of O-GlcNAcylation are also substrates for 

phosphorylation. O-GlcNAc, like phosphorylation, is a dynamic modification that is rapidly 

cycled on protein substrates.15 However, in contrast to phosphorylation for which over 500 

kinases and phosphatases execute the enzymatic introduction and removal of the phosphate 

group,19 O-GlcNAc is tailored on thousands of substrates by only two enzymes: O-GlcNAc 

transferase (OGT) installs and O-GlcNAcase (OGA) removes O-GlcNAc from proteins 

(Figure 1B). Evidence for the functional significance of O-GlcNAc cycling was obtained 

when early work demonstrated that both OGT and OGA are essential for organismal 

development. OGT is required for normal human neurological development20 and deletion 

of OGT leads to embryonic lethality in mice,21 while deletion of OGA leads to neonatal 

lethality with developmental delay in mouse embryos.22 Furthermore, conditional deletion 

of OGT in numerous cell types leads to senescence and apoptosis.23 Numerous functional 

outcomes of protein O-GlcNAcylation have been described, including alteration of protein–

protein interactions, subcellular localization, enzymatic activity, and protein stability.15, 24 

The dysregulation and abnormal levels of O-GlcNAc have been linked to various diseases, 

including diabetes,25 cancer,26, 27 immune disorders28 and neurodegeneration,29, 30 which 

have inspired efforts to pursue the O-GlcNAc modification as a potential therapeutic target.
31, 32

Signaling between O-GlcNAc and phosphorylation pathways may be broadly categorized 

into two major models: that of crosstalk on a protein substrate, or through post-translational 

regulation of the PTM-installing enzymes themselves (Figure 2). In the first model, a protein 

substrate may act as a scaffold for O-GlcNAc or phosphorylation via competitive 

modification or cooperative modification (Figure 2A). In instances of competitive 

modification, a protein substrate may be alternatively glycosylated or phosphorylated, which 

inhibits the subsequent modification of the protein at the same or proximal amino acid 

residues. The competitive modification of a protein by O-GlcNAc or phosphorylation has 

been described for the tumor suppressor p53,33 the oncoprotein c-Myc,34 and the 

Alzheimer’s associated-protein tau,35 among others. For example, the structural effects of 

modification on a region of tau revealed that the addition of phosphate drove helical 

formation, while the addition of O-GlcNAc opposed helical formation by NMR solution 

structure.36 Conversely, modification of the murine estrogen receptor with O-GlcNAc 

increased the helical turn propensity while phosphorylation decreased helicity.37 In instances 

of cooperative modification, the O-GlcNAcylation or phosphorylation of a protein substrate 

promotes subsequent modification of the protein substrate. For example, mutation of the 

three O-GlcNAc sites of cyclin-dependent kinase inhibitor p27(Kip1) to alanine significantly 

decreased phosphorylation at S10; conversely, a S10A mutation decreased O-GlcNAcylation 

of p27(Kip1), while the S10E mutation acted as a phosphomimetic that increased O-

GlcNAcylation of p27(Kip1).38 Recently, the 14-3-3 proteins were identified as receptors for 

the O-GlcNAc modification, pointing to the potential integration of O-GlcNAc and 
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phosphorylation signaling pathways through a common protein “reader”.39 Thus, tuning a 

protein surface with O-GlcNAc, phosphorylation, or a combination thereof results in distinct 

conformational changes that drive downstream functional effects; these have been previously 

reviewed.10, 40, 41

Here, we aim to highlight the intersection of O-GlcNAc and phosphorylation from studies 

on the systems level and focus on an additional model arising from the system-wide 

profiling data, where the direct modification of kinases by O-GlcNAc results in regulation of 

substrate scope, kinase activity, and ultimately drives changes to downstream signaling 

(Figure 2B).

Regulation of O-GlcNAc by O-GlcNAc transferase and O-GlcNAcase

Like the O-GlcNAc modification itself, the enzymes OGT and OGA that install O-GlcNAc 

perform multifaceted roles that are still under investigation. OGT is a glycosyltransferase 

that is expressed in all mammalian tissues and possesses a tetratricopeptide repeat (TPR) 

domain and a catalytic domain (Figure 3). OGT is expressed in three isoforms that vary by 

the length of the TPR domain, termed the nucleocytoplasmic or full-length OGT (ncOGT, 

13.5 TPRs), the mitochondrial isoform (mOGT, 9 TPRs), and the short isoform (sOGT, 2.5 

TPRs) (Figure 3A).42 The TPR domain mediates protein–protein interactions (PPIs) of OGT 

with substrate proteins, which is only beginning to be understood.24, 43–45 Structurally, the 

TPR domain forms a series of stacked alpha-helical domains that form a coiled tube-like 

structure that funnels polypeptide sequences to the catalytic domain primarily through 

associations with asparagine and aspartate residues lining the domain.43, 46 The catalytic 

domain transfers the sugar from a UDP-GlcNAc donor to serine or threonine residues that 

are positioned by the TPR domain (Figure 3B). Mutation of H508 or K852 reduce binding 

of UDP-GlcNAc and thus impair catalytic activity (highlighted in red, Figure 3B). The 

catalytic domain catalyzes additional chemistries, including transfer of UDP-GlcNAc to 

cysteine residues,47 transfer of glucose,48 proteolysis,49 and deamidation.50 In cells, OGT 

forms dimers and trimers through associations in the TPR domain that also alter UDP-

GlcNAc binding constants.51, 52 OGT possesses three of its own O-GlcNAc sites and is 

modified by other PTMs, including phosphorylation, ubiquitinylation, and sumoylation.53 

OGT appears to require accessory proteins to modify protein substrates efficiently, as 

reduction or removal of the TPR domain reduces activity with full length proteins, but 

retains catalytic activity with synthetic peptides in vitro.42, 46 Further exploration of the 

substrate selection mechanisms for OGT will improve the understanding of the regulatory 

role of O-GlcNAc and its dynamic cycling.

O-GlcNAc is catalytically removed from proteins by OGA. Similar to OGT, the mechanisms 

of how OGA selects from numerous O-GlcNAc substrates and the functions of the separate 

domains of OGA are still emerging. OGA is composed of three domains: a catalytic domain 

and a histone acetyltransferase (HAT)-like domain connected by a stalk domain (Figure 4A).
54 The stalk domain is interspersed with an unstructured region that forms a binding 

interaction with OGT.55 OGA is encoded by a single gene that is expressed as two main 

isoforms in vertebrates, the full length isoform, OGA(I), and a short isoform lacking the C-

terminal HAT-like domain, OGA(II).56 Full-length OGA(I) is a nucleocytoplasmic enzyme, 
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while OGA(II) is found predominantly in the nucleus and in lipid droplets.57 The crystal 

structure of human OGA had eluded definition until very recently.58–60 These structures of 

OGA(II) revealed a remarkable homodimer, wherein the stalk domain of one monomer 

covers the catalytic domain of the other monomer to create a substrate-binding cleft.59 A 

series of contacts between the stalk domains stabilize the homodimer. OGA is regulated at 

least in part by an O-GlcNAc-related feedback mechanism that triggers gene expression; 

inhibition of OGA by Thiamet G treatment causes a compensatory increase in OGA 

expression and decrease in OGT expression.61 Large-scale profiling studies have revealed 

several sites for ubiquitination and phosphorylation of OGA, including an O-GlcNAc site at 

S405, indicating possible regulation by OGT.62 The biochemical characterization of these 

modification sites may illuminate additional mechanisms of OGA regulation.

Methods to detect and map O-GlcNAc on the systems-level

The O-GlcNAc modification is relatively difficult to detect and quantify in the proteome.2 

O-GlcNAc was discovered in 1984 when sugar radiolabeling was measured in the 

nucleocytoplasmic space,1 several decades after other PTMs like phosphorylation were 

discovered on the same proteins. The discovery of O-GlcNAc may have been delayed due to 

difficulty in detection since generally changes in O-GlcNAc levels do not affect glycoprotein 

migration during gel electrophoresis, and O-GlcNAc is enzymatically labile and rapidly 

removed from proteins when the cell is damaged or lysed. Furthermore, O-GlcNAc is also 

chemically labile to common mapping techniques to analyze PTMs, such as mass 

spectrometry (MS).63 Analysis of O-GlcNAc by MS pushes detection limits due to 

occurrence of O-GlcNAc at substoichiometric levels on the protein, ion suppression of the 

glycopeptide in the presence of unmodified peptides, and ready fragmentation of the glycan 

from the peptide during ionization processes in the mass spectrometer.64, 65 Recently, 

advances in chemical glycoproteomics have drastically accelerated the mapping of the 

modification site in the global proteome; these advances have recently been reviewed.66 

Here we highlight specifically advances in the large-scale profiling of O-GlcNAc and 

summarize the O-GlcNAcome characterized from large-scale complex glycoproteomic 

studies to date.

Although O-GlcNAc is found widely throughout the nucleocytoplasmic proteome, its 

substoichiometric modification site occupancy necessitates the combination of an efficient 

enrichment method coupled to a sensitive analytical detection method. The enrichment of O-

GlcNAc has been achieved by several means. Lectin weak affinity column chromatography 

using wheat germ agglutinin (WGA) enables the enrichment of O-GlcNAc and other sugars 

after multiple rounds of enrichment. Alternatively, the introduction of bioorthogonal handles 

via metabolic labeling67, 68 or chemoenzymatic labeling69 results in the selective installation 

of an azido-sugar as a reporter for O-GlcNAc on proteins, enabling the further 

functionalization with a variety of reporting strategies (e.g., fluorescence microscopy, anti-

biotin Western blot). Metabolic labeling involves the addition of a sugar carrying a 

bioorthogonal handle, such as an azido-sugar, to living systems that metabolically 

incorporate the azido-sugar to protein substrates. Several sugar reporter molecules for O-

GlcNAc have been developed, including Ac4GalNAz or Ac4GlcNAz, or O-GlcNAc-specific 

reporters 6AlkGlcNAc,70 6AzGlcNAc,71 1,3-Ac2GalNAz, and 1,3-Pr2GalNAz.72 The latter 
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two were validated to reduce background S-glycosylation from other metabolic reporters.73 

Chemoenzymatic labeling uses a mutant GalT1 enzyme that accepts azido- or keto-sugars 

for enzymatic labeling of the O-GlcNAc residue itself.74 The azide introduces a handle that 

is selectively tagged with reporter molecules using copper-catalyzed azide–alkyne 

cycloaddition (CuAAC) chemistry. Reaction of the azide groups with cleavable biotin tags 

and isolation of the O-GlcNAc peptide enables maps of O-GlcNAc modification sites 

throughout the proteome. Both metabolic labeling and chemoenzymatic labeling may 

produce off-target labeling products due to the addition of reactive azido-sugar intermediates 

or promiscuity of the labeling for additional glycan types.73, 75 Thus, the assignment of O-

GlcNAcylated proteins is best performed at glycosite-level resolution.

Analysis of the O-GlcNAc modification is commonly achieved by Western blot or MS-based 

proteomics. Visualization of O-GlcNAcylated proteins by Western blot is commonly 

performed using the O-GlcNAc CTD110.6, RL2, or 18B10.C7 antibodies. If the 

glycoprotein is labeled by an azido-sugar, a mass shift assay using a 5-kilodalton PEG mass 

tag carrying an alkynyl functional group may be performed to determine the stoichiometry 

of the O-GlcNAc modification on individual proteins.76 The intensity of the shifted bands 

relative to the unshifted band allows for determination of O-GlcNAc stoichiometry. To 

characterize the protein glycosite(s), mass spectrometry-based proteomics has emerged as 

the primary mechanism for site-specific mapping of the O-GlcNAc modification site on 

individual proteins to the complex proteome. However, due to the chemical lability of the O-

linked glycosidic bond from the peptide backbone by collision induced dissociation (CID) or 

higher-energy CID (HCD) resulting in altered fragmentation mechanisms for glycopeptides, 

the assignment of the glycopeptide species is challenging, and in cases of successful 

identification of the glycopeptide the glycosite may only be localized to the serine and 

threonine residues in the peptide sequence. Solutions to this challenge included 

determination of the modification site using a sequence of induced beta-elimination of O-

GlcNAc from the peptide backbone, followed by controlled Michael addition of 

dithiothreitol as a reporter for the glycosite, yielding early insight to the O-GlcNAc 

proteome.77 The further development of ETD and electron-transfer higher energy collision 

induced dissociation (EthCD) methods on high resolution mass spectrometers enabled the 

detection of O-GlcNAcylated peptides via a fragmentation method that leaves the glycosidic 

bond intact. Chemical glycoproteomics methods, such as Isotope Targeted Glycoproteomics 

(IsoTaG), combine metabolic labeling with enrichment to map exactly when and where O-

GlcNAc is modifying the protein network (Figure 5).78 The development of efficient 

enrichment methods for O-GlcNAc coupled to advances in MS technology have drastically 

increased the number of O-GlcNAc sites that have been identified from the whole proteome 

of multiple species.28, 62, 79, 80

Intersection of O-GlcNAc and phosphorylation on the systems-level

The cell integrates glycosylation, phosphorylation, and the myriad of other chemical 

modifications on a protein into a functional signaling output. Through MS-based 

proteomics, the ability to map a diversity of modification sites has enhanced significantly 

over the past decade, concomitantly increasing the depth of maps of the O-GlcNAc 

proteome.66 In particular, the crosstalk between O-GlcNAc and phosphorylation has long 
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fascinated the field. The possibility of O-GlcNAc blocking proximal phosphosites was first 

suggested by Hart and coworkers in 1987.18 In 2008, a large-scale phosphosite profiling 

study in mouse fibroblasts revealed roughly half of the 711 mapped phosphosites changed in 

abundance in response to a global increase in O-GlcNAc glycosylation via chemical 

inhibition of OGA.81 Furthermore, inhibition of phosphatase by okadaic acid decreased 

global O-GlcNAc levels by Western blot in NIH/3T3 cells.82, 83 In primary human T cells, 

45% of O-GlcNAc sites occur in close proximity to a previously mapped phosphorylation 

site (within 10 amino acids).84 However, conflicting evidence for crosstalk between the O-

GlcNAc modification and phosphorylation exists. In 2012, clustering of a profile of 1,750 

glycosites and 16,500 phosphosites mapped from the murine synaptosome was statistically 

independent, implying that crosstalk between glycosites and phosphosites at a static state 

was insignificant.85 In contrast, evidence for reciprocal regulation between O-GlcNAc and 

phosphorylation was recently demonstrated in vitro on a specific four-amino acid consensus 

sequence: N-S/T, P, V/A/T, S/T-C.40 Phosphorylation of the sequence at the N-terminal S/T 

resulted in inhibition of glycosylation at the C-terminal S/T, while glycosylation of the N-

terminal S/T resulted in inhibition of phosphorylation at the C-terminal S/T. The observed 

competitive modification model with this consensus sequence was subsequently evaluated 

on synthetic peptides derived from ten proteins naturally containing the consensus sequence. 

All possible permutations of this four-residue sequence are enriched in the human proteome 

compared to randomly-selected four-residue sequences, potentially indicative of an 

evolutionary selection for this consensus sequence. Further evaluation of O-GlcNAc and 

phosphorylation maps from cellular or in vivo systems may reveal instances of PTM 

crosstalk on a global scale.

O-GlcNAc regulation of kinases

Crosstalk between O-GlcNAc and phosphorylation additionally occurs through the direct O-

GlcNAcylation of the kinome, thus regulating downstream phosphorylation events. While 

crosstalk between O-GlcNAc and phosphorylation is most commonly studied from the 

perspective of regulation at an individual protein substrate, emerging examples demonstrate 

that O-GlcNAcylation of the kinase influences substrate selection and enzymatic activity.
86, 87 Both OGT and OGA have been immunoprecipitated in protein complexes containing 

kinases (and phosphatases, see below).88, 89 In vitro glycosylation of a kinase microarray 

with OGT found that approximately 39% of these kinases are substrates.90 Our analysis of 

the O-GlcNAc literature and glycoproteomics datasets found over 100 kinases possessing a 

mapped O-GlcNAc site to date. We review the current O-GlcNAcylated kinome based on 

large-scale O-GlcNAc maps78, 84, 91–98 and the several examples of the O-GlcNAc 

modification regulating kinase activity, thereby highlighting the central role of O-GlcNAc in 

regulating phosphorylation on protein substrates and on the kinases themselves (Figure 6, 

Table 1).

AGC

The AGC kinase family contains Ser/Thr protein kinases named after three representative 

families, the cAMP-dependent protein kinase (PKA), the cGMP-dependent protein kinase 

(PKG) and the protein kinase C (PKC) families. The AGC family contains more than 60 
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human protein kinases. To our knowledge, seven members of this kinase family have been 

identified as O-GlcNAc modified.

PKA plays a role in CREB signaling and additionally modifies tau. O-GlcNAcylation of 

PKA subunit PKAcα and PKAcβ alters their subcellular localization and enhances their 

kinase activity.99 Protein kinase B (AKT) is a serine/threonine kinase involved in multiple 

cellular processes, including the insulin response, apoptosis, and cell migration. AKT was 

found to be modified by O-GlcNAc in 2006.100 Enrichment of AKT by wheat germ 

agglutinin increased under high glucose conditions or when dosing the OGA inhibitor 

PUGNAc, indicative of higher O-GlcNAc levels on AKT. Follow up experiments 

demonstrated that elevated global O-GlcNAc levels correlate with AKT translocation from 

the cytoplasm to the nucleus. Two separate laboratories later reported distinct glycosites on 

AKT.101, 102 Hart and co-workers used tyrosine as a glyco-mimetic mutation to show that O-

GlcNAcylation at T305 and/or T312 on AKT inhibits phosphorylation at T308, a residue in 

the activation loop of AKT whose phosphorylation is necessary for AKT activation.103 

These studies implicated glycosylation as a mechanism to downregulate AKT activity using 

an in vitro AKT activity assay.101 Gong and co-workers later report that increased O-

GlcNAcylation on AKT positively correlates with markers for apoptosis and overexpression 

of AKT alleviates this phenotype.102 AKT2 has also been identified as O-GlcNAc modified.
104 Treatment of rat adipocytes with the OGA inhibitor PUGNAc increased glycosylation 

and decreased insulin-induced phosphorylation of AKT2 by Western blot.

O-GlcNAc may be linked to regulation of cancer cell migration via another member of the 

AGC kinase family, ROCK.105 Chemical inhibition of OGA resulted in accelerated 

migration that was found to be mediated by the RhoA/ROCK/MLC (myosin light chain) 

interaction in SKOV3 and 59M ovarian cancer cells. Knockout RhoA or inhibition of ROCK 

eliminates the change in cell migration caused by OGA inhibition. While direct O-

GlcNAcylation of RhoA or ROCK was not established in this study, a glycosite on ROCK 

has recently been identified in a large-scale glycoproteomics study.84 Biochemical 

confirmation and characterization of this glycosite will lead to further conclusions about the 

role of O-GlcNAc in regulating ROCK and cell migration.

CMGC

The CMGC family of kinases contains the cyclin-dependent kinases (CDK), mitogen-

activated protein kinases (MAPK), glycogen synthase kinases, and the CDC-like kinases 

(CLK). These kinases are involved in cell-cycle regulation and signaling, cell 

communication, and cell growth.

GSK3β regulates OGT via phosphorylation and is likewise regulated by OGT through O-

GlcNAc. Inhibition of GSK3β alters the abundance of several O-GlcNAc sites on GSK3β in 

the mouse and monkey proteomes, a result that could be attributed to the loss of 

phosphorylation on OGT or other GSK3β substrates.106, 107 In addition, the O-GlcNAc 

modification on GSK3β results in regulation of the molecular chaperones that are stably 

expressed under heat-shock conditions.108 Specifically, knockout of OGT in MEF cells 
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results in altered expression of HSP72, a heat shock protein that is governed by the GSK3β-

substrate HSF1.

Several studies additionally report regulation of CMGC complexes by O-GlcNAc. In these 

examples, members of the CMGC kinase complex are glycosylated, leading to alteration of 

the kinase function and substrate selectivity that affect essential cellular processes, including 

motility and cell cycle progression. For example, p27 is a tumor suppressor gene that 

functions by inhibiting CDK2/Cyclin E. Shen and co-workers mapped glycosites on p27 at 

Ser2, Ser106, Ser110, Thr157, and Thr198.109 O-GlcNAcylation of Ser2 destabilizes p27 

and works synergistically with phosphorylation of Ser10 to move the cell cycle forward. 

Furthermore, Western blot and immunohistochemical analyses of hepatocellular carcinoma 

tissues and their corresponding nontumorous tissues were performed, and revealed that 

elevated O-GlcNAc on p27 correlates with increased cell proliferation. Together, these 

results indicate that the dynamic interplay between O-GlcNAcylation and phosphorylation 

on p27 in complex with CDK2 controls CDK2 activity via regulation of p27 stability.

CAMK

The calcium/calmodulin-dependent kinases (CAMK) are a family of enzymes stimulated by 

calmodulin, a protein that is activated in response to increased intracellular calcium 

concentrations. As many CAMK substrates are transcription factors, this kinase family is 

known for being closely tied to regulation of gene expression. A number of CAMK subunits 

are modified by OGT, with the effects on CAMKIV being best studied.86 CAMKIV is O-

GlcNAcylated at several sites. Modification of CAMKIV with O-GlcNAc at the active site 

reduces the level of stimulatory phosphorylation at T200 and results in inhibition of the 

kinase activity.

Unc-51-like-kinase 1 (ULK1) is an important gatekeeper of the autophagy pathway. ULK1 

is glycosylated at T754. Glycosylation of ULK1 can only occur once ULK1 has been 

dephosphorylated by PP1 to remove a phosphosite installed by mTOR.110 O-GlcNAcylation 

of ULK1 at T754 promotes binding to substrate ATG14L, which results in 

phosphatidylinositol-(3)-phosphate production and initiation of autophagy. In this example, 

dephosphorylation by PP1 represents a gatekeeping step for subsequent O-GlcNAcylation, 

and illustrates key regulatory mechanisms by O-GlcNAc in the autophagy pathway.

AMPK is a heterotrimeric kinase that has a protective function from cellular metabolic 

stress. AMPK activity is strongly associated with depleted cellular energy levels as the 

kinase is activated by 5’-AMP and ADP, but inhibited by ATP. Stimulation with 5’-AMP or 

ADP yields a net upregulation of catabolic and downregulation of anabolic processes. The 

kinase complex is further activated by phosphorylation of T172 in the AMPK alpha subunit. 

During differentiation of C2C12 mouse skeletal muscle myotubes, AMPK activity is closely 

associated with OGT translocation to the nucleus. The altered localization of OGT results in 

increased O-GlcNAcylation of nuclear proteins and H3K9 acetylation111 and results in 

phosphorylation of OGT at T444. Phosphorylation of OGT by AMPK alters the O-GlcNAc 

landscape. All α and γ subunits of AMPK substrates for OGT, and active AMPK shows 

increased O-GlcNAcylation of the γ1 subunit.
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STE

The homologs of yeast Sterile 7, 11, and 20 kinase family contains many kinases involved in 

cell growth, differentiation, oxidative damage, and apoptosis, including many MAP and 

serine/threonine protein kinases.112, 113 PAK, GCK, MEK, and MKK kinases are also part 

of the STE family. Prominent O-GlcNAcylated members of this family include WNK1–3, 

PAK1–2, TAO1–2, SLK, OSR1, and several MAP3K proteins, all revealed in large-scale 

proteomics experiments. The functional outcomes of glycosites on kinases in the STE family 

have yet to be biochemically characterized.

CK1

Despite the limited number of kinases in the CK1 family, kinases in the CK1 family are 

involved in regulation of membrane transport, cell division, DNA repair, and nuclear 

localization. CK1δ and CK2α have been discovered to be O-GlcNAc modified to date. The 

O-GlcNAcylation of CK1δ was discovered in a large-scale murine synaptosome proteomics 

study at multiple potential sites that remain to be functionally characterized.91 Glycosylation 

of human CK2α was evaluated by Cole and coworkers.87 The mapped glycosite S347 was 

found proximal to multiple known phosphosites on CK2α. By semi-synthesis, O-

GlcNAcylation of CK2α was found to inhibit phosphorylation at T344, which decreased the 

interaction of CK2α with Pin1 and produced a net destabilization of CK2α.

TK/TKL

The protein tyrosine kinase family can be subdivided into two main groups: cytosolic 

tyrosine kinases (CTKs) (e.g., Src, JAK, Abl) and receptor tyrosine kinases (RTKs) (e.g., 

EGFR, VEGFR, FLT3). Receptor tyrosine kinases are transmembrane proteins that are 

activated by the binding of an extracellular ligand that induces dimerization and subsequent 

autophosphorylation of two RTK monomers, followed by phosphorylation of downstream 

signaling proteins. Since tyrosine kinases regulate many key processes including cell growth 

and survival, their dysregulation has been found in the development and progression of a 

wide range of cancers. The tyrosine kinase-like family (TKL) is closely related to TK, but its 

members are serine/threonine kinases instead (e.g. Raf). Diverse members of this kinase 

family are shown to be glycosylated, including those involved in cell differentiation 

(BMPR2).30, 84, 91 Regulatory functions for the O-GlcNAc sites on kinases in this family 

await biochemical characterization.

Other kinases

Kinases that phosphorylate non-protein targets are also privy to regulation by O-GlcNAc. 

GNE is an epimerase/kinase responsible for converting UDP-GlcNAc to ManNAc-6P.114 A 

GNE point mutation at M743T, commonly observed in GNE myopathy, results in 

significantly higher O-GlcNAcylation of GNE than its wildtype counterpart. Elevated O-

GlcNAcylation on GNE was found to inhibit the epimerase activity of both the wildtype 

enzyme and the M743T mutant. One hypothesis for why GNE is regulated by O-GlcNAc is 
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due to its role in the consumption of UDP-GlcNAc, the donor sugar used by OGT from the 

hexosamine biosynthesis pathway.

OGT modifies kinases involved in sugar metabolism and glycolysis in addition to GNE, 

including pyruvate kinase M2 and phosphofructokinase 1.115, 116 Phosphofructokinase 1 

(PFK1) is an enzyme in glycolysis responsible for converting fructose-6-phosphate to 

fructose-1,6-bisphosphate, a committal step that sends the product through the rest of the 

glycolytic pathway as compared to the hexosamine biosynthetic pathway. OGT installs O-

GlcNAc at S529 of PFK1, attenuating its kinase activity.116 This modification increases in 

abundance under hypoxic conditions, leading to the redirection of glycolytic flux from the 

glycolysis pathway toward the pentose phosphate pathway, a glucose-consuming metabolic 

pathway necessary for synthesis of nucleotides and other sugars.

Phosphatases

Protein phosphatases are a family of approximately 200 enzymes that remove 

phosphorylation from the protein substrate. Several examples of interplay between O-

GlcNAc and dephosphorylation have been reported, including the identification of a 

functional complex between OGT and protein phosphatase 1.117 For example, priming 

phosphorylation of folliculin-interacting protein 1 (FNIP1) at S938 by CK2 leads to many 

subsequent phosphorylation events of FNIP1, ultimately resulting in binding to Hsp90 to 

inhibit its ATPase activity. If this priming phosphorylation does not occur, OGT can 

glycosylate FNIP1 at S938, blocking subsequent phosphorylation steps, and consequently 

lead FNIP1 to be ubiquitinated and degraded.118 Activation of the transcription factor Sp1 is 

enhanced on dephosphorylation by phosphatase 2A and may be additionally controlled by 

reciprocal O-GlcNAc and phosphate modification.119

A number of phosphatases are also privy to modification by O-GlcNAc (e.g., MYPT1, 

PPFIA2–4, PPP6R2, PTPN6, PTPN7, PTPRC, TNS2, SIRPA).84, 85, 92, 93 Direct regulation 

of phosphatase activity by O-GlcNAc has been reported in a few instances. O-

GlcNAcylation of protein tyrosine phosphatase 1B (PTP1B) at S104, S201, and S386 

inhibits PTP1B activity, which leads to an increase in AKT and GSK3β activity and 

therefore insulin response in HepG2 cells.120 Human small CTD phosphatase 1 (hSCP1) 

was identified as O-GlcNAc modified by Western blot, and its glycosite at S41 was 

confirmed by Q-TOF MS and site-directed mutagenesis.121 Additionally, the phosphatase 

myosin phosphatase target subunit 1 (MYPT1) may regulate the substrate specificity of 

OGT.89 MYPT1 and OGT can be co-immunoprecipitated, MYPT1 is modified by O-

GlcNAc, and depletion of MYPT1 alters OGT substrate selectivity in Neuro-2a 

neuroblastoma cells. These studies highlight additional mechanisms of cellular integration of 

the O-GlcNAc modification and phosphorylation signaling and a significant opportunity for 

further study.

Conclusion

The O-GlcNAc modification has emerged a prominent regulator of phosphorylation during 

cellular signaling via tuning kinase activity in addition to crosstalk between O-GlcNAc and 
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phosphorylation on protein substrates. Regulation of kinases by the O-GlcNAc modification 

may enable cells to manage resources in disparate pathways according to nutrient 

availability, and thus finely tune signaling pathways through other modifications like 

phosphorylation. With the convergence of methods to study and engineer O-GlcNAc on the 

systems scale and on individual proteins emerging, the increasing evaluation of the functions 

for O-GlcNAc on kinases and the enzymes that install it will yield a wealth of insights to 

regulatory mechanisms cells use to integrate these pathways. In particular, the role of O-

GlcNAcylation in the STE, TK, and TKL kinase families awaits elucidation. Due to the 

global nature of O-GlcNAc in cells, further illumination of the functions of O-GlcNAc on 

kinases will lead to important discoveries in cellular regulation and dysregulation relevant to 

all areas of biology under normal physiology or disease.
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Keywords

O-linked N-acetyl glucosamine (O-GlcNAc): a carbohydrate that is installed on serine/

threonine residues of nuclear/cytosolic proteins by O-GlcNAc transferase (OGT) and 

removed by O-GlcNAcase (OGA)

Glycosylation: the enzymatic addition of a sugar molecule to another biomolecule

Kinase: an enzyme that catalyzes covalent attachment of a phosphate group to its 

substrate

Phosphatase: an enzyme that catalyzes the removal of a phosphate group from its 

substrate

Phosphorylation: the enzymatic addition of a phosphate group to another molecule

Glycoproteomics: the identification and characterization of carbohydrate-modified 

proteins from a biological sample in the whole proteome via a profiling method (e.g., 

mass spectrometry)

Crosstalk: the phenomenon where changes in one biological pathway directly affects 

signaling in another biological pathway

Post-Translational Modification (PTM): the chemical modification of proteins after 

protein biosynthesis, often catalyzed by enzymes

PTM Crosstalk: the presence of one PTM affecting the substitution pattern of another 

PTM

Signaling: the transduction of a signal via non-covalent or covalent associations of 

biological molecules within a pathway
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Figure 1. 
The essential O-GlcNAc modification of proteins. A. Structure of O-GlcNAc (highlighted in 

red) and phosphate appended to a serine or threonine amino acid. B. O-GlcNAc is installed 

by OGT and removed by OGA to over 3,000 known nuclear and cytoplasmic proteins.
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Figure 2. 
Modes of crosstalk between O-GlcNAc and phosphorylation. A. Post-translational 

modification of a protein with O-GlcNAc or phosphorylation may be competitive, where one 

modification precludes the other, or cooperative, where multiple modifications propagate 

specific regulatory outcomes. B. Modification of a kinase with O-GlcNAc can alter 

downstream substrate selection and signaling through phosphorylation.
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Figure 3. 
Structure of OGT. A. Linear representation of full length OGT(13.5), mOGT(9), and 

sOGT(2.5). B. Model of the TPR domain (purple) and catalytic domain of OGT (yellow).43 

Point mutations at H508 and K852 reduce catalytic activity (highlighted in red).
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Figure 4. 
Structure of OGA isoforms. A. Linear representation of OGA isoforms I and II. Isoform I is 

full length OGA. Isoform II lacks the HAT-like domain. B. Crystal structure of the human 

OGA homodimer analogous to OGA(II) from the side view (PDB: 5UN9).59 The catalytic 

domain is grey and the stalk domain blue.
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Figure 5. 
Workflow for Isotope Targeted Glycoproteomics (IsoTaG). Live cells are labeled with an 

azidosugar (e.g., Ac4GalNAz) as a reporter for the O-GlcNAc modification. Enrichment, 

digestion, and acid cleavage of the tag recovers the modified glycopeptide for 

characterization by MS.
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Figure 6. 
Human kinome with known O-GlcNAc modified kinases circled in red. Illustration 

reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).
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