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1  | INTRODUC TION

In eukaryotic cells, the nuclear envelope (NE) is a protective barrier 
for the genome and a communication interface between the nucleus 
and the cytoplasm. This dynamic cellular compartment is mainly com-
posed of three components: the nuclear lamina, a double membrane, 
and the nuclear pore complexes (NPCs). The double membrane 

comprises the inner nuclear membrane (INM) and the outer nuclear 
membrane (ONM), separated by the perinuclear space. The ONM is 
contiguous with the lumen of the endoplasmic reticulum (ER) (Dauer 
& Worman, 2009). These two membranes merge at numerous sites, 
giving rise to the NPCs. The latter are supramolecular structures that 
constitute channels for selective import and export of macromole-
cules as well as the diffusion of small molecules. Structurally, these 
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Abstract
The nuclear envelope (NE) is the central organizing unit of the eukaryotic cell serving 
as a genome protective barrier and mechanotransduction interface between the cy-
toplasm and the nucleus. The NE is mainly composed of a nuclear lamina and a double 
membrane connected at specific points where the nuclear pore complexes (NPCs) 
form. Physiological aging might be generically defined as a functional decline across 
lifespan observed from the cellular to organismal level. Therefore, during aging and 
premature aging, several cellular alterations occur, including nuclear-specific changes, 
particularly, altered nuclear transport, increased genomic instability induced by DNA 
damage, and telomere attrition. Here, we highlight and discuss proteins associated 
with nuclear transport dysfunction induced by aging, particularly nucleoporins, nu-
clear transport factors, and lamins. Moreover, changes in the structure of chromatin 
and consequent heterochromatin rearrangement upon aging are discussed. These 
alterations correlate with NE dysfunction, particularly lamins’ alterations. Finally, tel-
omere attrition is addressed and correlated with altered levels of nuclear lamins and 
nuclear lamina-associated proteins. Overall, the identification of molecular mecha-
nisms underlying NE dysfunction, including upstream and downstream events, which 
have yet to be unraveled, will be determinant not only to our understanding of sev-
eral pathologies, but as here discussed, in the aging process.
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protein complexes are constituted by the nucleoporins (Nups) that 
are crucial functional components of the diffusion barrier and trans-
port channels (Knockenhauer & Schwartz, 2016; Terry & Wente, 
2009). The ONM is encompassed by several specific integral mem-
brane proteins that bind to the INM and cytoskeletal components, as 
well as by proteins found in the ER and ribosomes. In turn, the INM 
contains several transmembrane proteins that are in close associ-
ation with both chromatin and the nuclear lamina. Nuclear lamina 
is a generally dense meshwork composed of A- and B-type lamins 
and lamin-associated proteins underlying the INM that provide 
structural, mechanical, and functional support to the nucleus (Burke 
& Stewart, 2013; Turgay et al., 2017; Worman, 2016). In mammals, 
A-type lamins result from the LMNA gene alternative splicing, giving 
rise to both lamin A and lamin C isoforms. B-type lamins result from 
expression of two distinct genes, namely LMNB1 and LMNB2, orig-
inating lamin B1 and B2 isoforms, respectively. Interestingly, while 
the B-type lamins form a looser network closely associated with the 
INM, the A-type lamins’ network is more tightly spaced and remain in 
proximity to the INM facing the nucleoplasm (Delbarre et al., 2006; 
Goldberg, Huttenlauch, Hutchison, & Stick, 2008; Nmezi et al., 2019; 
Shimi et al., 2008, 2015; Xie et al., 2016). Another interesting aspect 
is that the lamins bind directly to chromatin via the lamina-associ-
ated domains (LADs). Both A- and B-type lamins bind to chromatin 
through interaction with INM proteins containing the LAP2–emerin–
MAN1 (LEM) domain. Further, the lamin B receptor (LBR) that binds 
to B-type lamins also interacts with heterochromatin protein (HP1) 
(Polioudaki et al., 2001; Ye & Worman, 1996) (discussed in section 
3). Therefore, altogether the INM–nuclear lamina–chromatin as-
sociation regulates several nuclear functions, including chromatin 
regulation, DNA replication and transcription, gene expression and 
cell signaling, as well as mechanotransduction, mitosis, and meio-
sis together with the ONM components (Wilson & Berk, 2010). Of 
note, although several lamin-binding proteins have been identified 
it is possible that by resorting to recently developed highly reliable 
methods like APEX2, BioID, and 2C-BioID (Chojnowski et al., 2018; 
James et al., 2019; Roux, Kim, Raida, & Burke, 2012), other interac-
tors will be forthcoming.

Another important type of nucleocytoplasmic communication is 
the linker of the nucleoskeleton and cytoskeleton (LINC) complex 
that couples the nuclear interior to cytoskeletal structures through 
the building of communication bridges across the NE. The LINC 
complex is formed by the Sad1/UNC84 (SUN) proteins (INM pro-
teins) and nesprins (ONM proteins) (Sosa, Kutay, & Schwartz, 2013; 
Starr & Fridolfsson, 2010).

The identification of mutations in the LMNA gene that causes 
premature aging disorders as Hutchinson–Gilford progeria (HGPS), 
mainly associated with defects and alterations in the nuclear pro-
teins, increased the interest in the potential role of the nuclear lam-
ina and nuclear lamina-associated proteins as major regulators of 
the normal aging process. Premature aging disorders, or progerias, 
represent a powerful model for the study of potential mechanisms 
underlying physiological aging (Serebryannyy & Misteli, 2018). This 
hypothesis is strongly supported by several observations suggesting 

that sequestration of nucleoplasmic proteins at the nuclear periph-
ery impacts cell stemness, the DNA damage response, changes in 
chromatin regulation, and telomere maintenance. Additionally, it 
has become evident that the loss of NE integrity leads to a grad-
ual decrease in nucleocytoplasmic transport, selective loss and 
degradation of NE components, culminating in nuclear rupture, and 
aberrant transport of molecules between the nucleus and the cy-
toplasm (Robijns, Houthaeve, Braeckmans, & Vos, 2018). Together, 
these data indicate that NE integrity and its dynamic remodeling are 
pivotal requirements for cellular homeostasis and, consequently, to 
maintaining a healthy status. Therefore, when NE integrity is some-
how perturbed, NE dysfunction and/or NE stress occurs, which 
appears to be a hallmark in several pathologies, like cancer and lam-
inopathies, but also in viral infection and aging.

Physiological aging is mainly defined as a functional decline 
across lifespan observed from the cellular to organismal level (re-
viewed in López-Otín, Blasco, Partridge, Serrano, & Kroemer, 2013). 
Therefore, the risk of developing complex diseases with aging in-
creases. Importantly, the cellular function decline results from both 
intrinsic cellular modifications, including mitochondrial functional al-
terations and decreased differentiation potential, and also from en-
vironmental alterations, such as nutrient accessibility and endocrine 
signaling. Despite the extensive effort to determine the aging-asso-
ciated molecular and cellular changes, the precise underlying mo-
lecular mechanisms remain elusive. Nonetheless, there are several 
well-recognized cellular and molecular hallmarks of aging, such as 
changes in nutrient availability, intercellular signaling, mitochondrial 
functions, imbalanced proteostasis, and cellular senescence. These 
are accompanied by nuclear-specific alterations, such as enhanced 
genomic damage and instability and telomere erosion (reviewed in 
López-Otín et al., 2013).

Here, we review and discuss the contribution of NE dysfunction 
to aging, with particular focus on alterations in the NPCs and nuclear 
transport as well as on changes in the nuclear lamina and its asso-
ciated proteins, which are responsible for chromatin regulation and 
telomere maintenance.

2  | NUCLE AR TR ANSPORT

NE dysfunction is generated as a consequence of nuclear periphery 
integrity loss leading to gradual decrease in nucleocytoplasmic mol-
ecules transportation and selective deterioration of NE components, 
culminating in NE rupture, and aberrant nuclear transport (reviewed 
in Robijns et al., 2018). Remarkably, these alterations might have ad-
ditional impacts on genome instability, chromatin remodeling, and 
gene expression (discussed in sections 3 and 4).

The NE remodeling is a dynamic and restricted process of cells 
with proliferative capacity. Hence, in proliferating cells, during inter-
phase, the nuclear genomic content doubles and the NE surface area 
expands considerably, but also NPCs and other NE components are 
newly synthetized and integrated into the NE membranes (Webster, 
Witkin, & Cohen-Fix, 2009). NE components have specific limited 
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lifespan, being degraded when their life cycle ends and when dam-
aged. The NPCs consist of an extremely complex macromolecular 
structure composed mainly by Nups that are associated with stable 
sub-complexes, such as the scaffold complexes (Nup107-160 com-
plex and Nup93-205 complex), the peripheral components (Nup214 
complex, Nup98 complex, Nup62 complex, Nup50, Nup153, and 
Tpr), and three transmembrane proteins responsible for anchoring 
the NPC to the NE, named Ndc1, Pom121, and Gp210 (D’Angelo & 
Hetzer, 2008). Most of the peripheral nucleoporins comprise phe-
nylalanine-glycine-rich repeats (being called FG-Nups; e.g., Nup153), 
through which they interact with nuclear transport receptors pro-
viding a selective barrier for the diffusion of molecules larger than 
60 kDa (Rabut, Lénárt, & Ellenberg, 2004). Of note, while peripheral 
Nups have a high turnover rate, scaffold Nups are only disassembled 
and reassembled during mitosis. This indicates that the scaffold com-
plex is constant during interphase and remodeled throughout the 
mitotic phase of cell cycle (Daigle et al., 2001; Rabut et al., 2004). In 
nonproliferative cells, NPC scaffold members present a long-life res-
idence at the NPC with no turnover. This suggests that the NPCs and 
their functional performance declines across lifespan and may cause 
nuclear dysfunction and, consequently, loss of nuclear integrity.

Recently, Robijns et al. (2018) proposed three forms of NE stress 
that might affect the NE transport: NE erosion, NE shedding/bleb-
bing, and NE rupture generated by defects in NPCs and/or other 
NE constituents, leading to NE dysfunction. NE erosion results from 
NPC clustering and degradation that will significantly decrease NE 
selectivity. In aged vascular smooth muscle cells (VSMCs), prelamin 
A, the lamin A precursor protein, accumulates inducing NE invag-
inations, trapping Nup153, which consequently compromises the 
Ras-related nuclear protein (Ran) gradient, and large cargo transpor-
tation to the nucleus. As a result, 53BP1 is not efficiently recruited 
to DNA damage sites; thus, damage increases (Salamat, Dhar, Neagu, 
& Lyon, 2010; Warren & Shanahan, 2011) (Figure  1 and Table  1). 
Briefly, it was established that Nup153 is essential for Ran nuclear 
localization, and when the Ran gradient is perturbed, there is a com-
mitment of 53BP1 nuclear import, consequently inducing genome 
instability (Cobb et al., 2016), potentially by propagating DNA dam-
age (Figures 1, 2 and Table 1).

Previous studies indicated that long-lived NPC structure dete-
riorates with time, thereby increasing nuclear permeability across 
the lifespan. These authors observed that Nup93 was lost in old 
and permeable nuclei (D’Angelo, Raices, Panowski, & Hetzer, 2009). 
Interestingly, Nup93 has previously been functionally associated 
with the NPC permeability barrier (Galy, Mattaj, & Askjaer, 2003), 
which explains the correlation between the age-related loss of this 
particular Nup and the increased nuclear permeability observed 
(D’Angelo et al., 2009) (Figure 2 and Table 1). Additionally, in aged 
permeable nuclei (where Nup93 was lost), there is a decreased signal 
of FG-Nups, detected by the mAb414 antibody that recognizes sev-
eral Nups, including Nup62 (D’Angelo et al., 2009) (Table 1). Of note, 
Nup93 was shown to bind FG-Nups located at the central channel, 
supporting that the NPC diffusion barrier is established by recruiting 
those Nups to the pore (Alber et al., 2007; Frosst, Guan, Subauste, 

Hahn, & Gerace, 2002; Grandi et al., 1997). These deteriorated NPCs 
showed increased permeability and tubulin accumulation within the 
nucleus (Figure 2). In old cells, oxidative stress increases the pore 
leakiness, and the protein components released by NPCs can be 
found carbonylated. This suggests that oxidative damage might be 
responsible for the damage accumulation in old NPCs with a conse-
quential decline of nuclear barrier selectivity (D’Angelo et al., 2009) 
(Figure 2). However, a recent study performed in yeast concluded 
that oxidative damage is unlikely to be a direct cause for the age-de-
pendent deterioration of nuclear transport. Alternatively, Rempel 
et al. (2019) proposed that in aged cells, misassembled NPCs accu-
mulate as a result of NPC assembly quality control decline leading 
to a reduction of permeable and functional NPCs, and a consequent 
decrease in the transport dynamics (Rempel et al., 2019).

Studies using aged human fibroblasts also showed a decrease 
of several nuclear transport factors, namely karyopherin a2, CAS, 
and RanBP1, with a concomitant reduction in the protein nuclear 
import rate. These results clearly indicate that the import reduction 
observed with aging will cause alterations in the activity of crucial 
transport factors (Pujol, Söderqvist, & Radu, 2002) (Figure 2).

Novel and important insights arise from studying premature 
aging models which are often applicable to physiological aging 
(Dreesen & Stewart, 2011; Kubben & Misteli, 2017; López-Otín 
et al., 2013). Progerin, the mutant form of lamin A, is responsi-
ble for the HGPS premature aging syndrome and for changes in 
the nuclear lamina structure (Table  1). HGPS patient-derived fi-
broblasts have the nucleocytoplasmic transport of several factors 
with important nuclear functions compromised. The expression of 
progerin inhibits the nuclear localization of Ubc9 (E2-conjugating 
enzyme), disturbs the Ran gradient, prevents Tpr import, and 
reduces levels of histone H3 lysine 9 trimethylation (H3K9me3) 
(Kelley et al., 2011). Overall, the nuclear import rate is decreased 
in HGPS patient cells. Recently, using the same HGPS patient-de-
rived cells, it was shown that the nuclear import protein trans-
portin-1 (TNPO1) is sequestered by microtubules and mislocated 
in the cytoplasm, affecting the nuclear localization of its cargo 
proteins, namely Nup153 and hnRNPA1. Consequently, there is a 
disturbance of the Ran gradient, nuclear Tpr anchorage and chro-
matin organization and gene expression deregulation (Cobb et al., 
2016; Larrieu et al., 2018) (Figure 2 and Table 1). Notably, Nup153 
and Tpr are the Nups that form the basket located at the NPC’s nu-
clear side. Remarkably, many of the defects caused by the progerin 
expression were significantly reduced with remodelin, which is a 
small-molecule inhibitor of N-acetyltransferase 10 (NAT10) able 
to reverse the abnormalities induced by altered nuclear lamina 
(Cobb et al., 2016; Larrieu, Britton, Demir, Rodriguez, & Jackson, 
2014; Larrieu et al., 2018). Indeed, in HGPS cellular models, the 
NAT10 activity and microtubule stability are increased. This led 
to proposals that NAT10-mediated hyperacetylation of tubulin is 
responsible for the higher association of TNPO1 to microtubules 
observed in those cells. Recently, it was described that, by inhib-
iting NAT10, remodelin releases the TNPO1 from microtubules 
sequestration, enabling the TNPO1-dependent import of Nup153 
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and hnRNPA1, thereby rescuing NPCs functionality and improving 
HGPS cellular phenotypes (Larrieu et al., 2018).

García-Aguirre et al. (2019) recently described an exacerbation 
of the exportin 1-driven nuclear protein export in both HGPS and 
normal aging, thus affecting the nuclear transport. Exportin 1 me-
diates the nuclear export of cargo proteins bearing a leucine-rich 
nuclear export signal, across the NPC via a Ran-GTP gradient. In 
HGPS patient-derived fibroblasts, the enhanced nuclear export is 
correlated to progerin-induced exportin 1 overexpression, and its 
pharmacological inhibition alleviates the progeroid/aging hallmarks 
(García-Aguirre et al., 2019).

In cells where oncogene and replicative senescence is induced, 
the generation of blebs occurs, which subsequently originate NE-
derived vesicles. Essentially, during NE blebbing, NE budding and 
cytoplasmic chromatin fragment (CCF) formation occurs (Figure 2), 
resulting in simultaneous exclusion of chromatin and nuclear lam-
ina fragments together. The CCFs are subsequently degraded at 
lysosomes (Ivanov et al., 2013). Additional studies have indicated 
that the LC3, which is an autophagy protein located in the nucleus, 
binds directly to lamin B1. The complex LC3:lamin B1 mediates the 
lamin B1 degradation upon Ras-induced oncogenic insults, via nu-
cleocytoplasmic transport and consequent targeting of lamin B1 

to the lysosome (Figure  2 and Table  1). More importantly, when 
autophagy was inhibited or the interaction between LC3:lamin B1 
blocked in primary human cells, the activated Ras-induced lamin 
B1 loss is prevented and oncogene-induced senescence is attenu-
ated (Dou et al., 2015). These results clearly indicate the existence 
of nuclear autophagy (nucleophagy) in mammalian cells, and two 
types were recently proposed by Luo and colleagues: macronuc-
leophagy and micronuclear autophagy (Luo, Zhao, Song, Cheng, & 
Zhou, 2016). Briefly, macronucleophagy was described as a com-
mon type of nuclear autophagy, where the nuclear materials des-
tined for degradation are encapsulated and subsequently targeted 
to autophagic degradation. Lamin B1 together with LC3 is respon-
sible for the autophagosome generation. In micronuclear autoph-
agy, upon genotoxicity, local bleb formation occurs which results 
in the formation of persistent micronuclei (MN). These MN contain 
damaged chromosomal fragments, enriched in DNA damage and 
repair biomarkers, namely γH2AFX, which are degraded by autoph-
agy upon fusion with the lysosome (Luo et al., 2016). Overall, these 
events of NE remodeling in response to NE shedding/blebbing 
contribute to NE dysfunction through increased nuclear permea-
bility and, among certain conditions, may induce genome instability 
(Figure 2).

F I G U R E  1  Mechanisms responsible for nuclear envelope dysfunction during aging. With age, prelamin A accumulates and induces NE 
invaginations, trapping Nup153. This results in disruption of the nuclear basket of the NPC, leading to NPC clustering and degradation that 
decreases NE selectivity. The mislocalization of Nup153 affects the Ran gradient by interfering with its import into the nucleus, which in 
turn reduce the nuclear import of large molecules, namely 53BP1. 53BP1 is a key protein for DSB repair and the decrease of its import to the 
nucleus compromises the DNA damage repair, leading to the accumulation of DNA damage in the cells. DSB, DNA double-stranded break; 
NE, nuclear envelope; NPC, nuclear pore complex
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Overall, nuclear permeability as a result of NPC clustering and 
degradation as well as NE shedding/blebbing might originate NE 
ruptures (NERs). These could be transient NERs or irreversible 
ones. NERs have been reported in viral infections, several types 
of laminopathies, and different types of cancer cells (De Noronha 
et al., 2001; De Vos et al., 2011; Denais et al., 2016; Raab et al., 
2016; Vargas, Hatch, Anderson, & Hetzer, 2012). Moreover, simi-
lar irreversible ruptures have been reported in mitotic MN (Hatch, 
Fischer, Deerinck, & Hetzer, 2013). It is also well accepted that 
disturbed or weakened nuclear lamina lead to nuclear rupture 
(Figure  1). In fact, NE regions where lamins are decreased are 
more predisposed to bleb formation and subsequent rupture. 
Additionally, a negative correlation between the A- and B-type 
lamins’ levels and NER incidence has been described (De Vos et al., 
2011; Irianto et al., 2016; Robijns et al., 2016; Vargas et al., 2012). 
Given that it is well accepted that both A- and B-type lamins are 
altered throughout aging, one can hypothesize that NERs also 
increase with the aging process. Essentially, cytoskeletal pres-
sure might originate NE blebs at weak regions (e. g. derived from 
A-type lamins depletion) culminating in rupture. Consequently, 
the exchange of macromolecules as well as soluble components 

and organelles between the nucleus and cytoplasm occur, and 
in some cases, these changes are permanent. However, the NE 
breaks could be repaired quickly, and it has been proposed that 
barrier-to-autointegration factor (BAF) is required for this pro-
cess. Upon a NER, BAF accumulates and recruits INM LEM domain 
proteins, endosomal sorting complexes required for transport-III 
(ESCRT-III) membrane repair machinery, and membranes to rup-
ture sites restoring the nucleocytoplasmic barrier (Halfmann et al., 
2019). After NERs, one of the components of ESCRT-III targeted 
to the rupture site is the CHMPB4. Importantly, when CHMPB4 
levels are decreased, the time of NER increases considerably 
(Denais et al., 2016; Raab et al., 2016; Robijns et al., 2016). The 
consequences of NERs are somehow dramatic since the loss of 
NE integrity will perturb cellular homeostasis. An example of this 
perturbation is that upon NERs, an uncoordinated bidirectional 
exchange of proteins occurs, some of which are transcription reg-
ulatory proteins or complexes, namely Oct-1, cyclin B, and RelA 
(De Vos et al., 2011). Of note, depending on the extension and 
the duration of the rupture that, in turn, depends on repair time, 
these alterations might cause gene regulatory program alter-
ations. Despite the transient shifts of soluble components caused 

F I G U R E  2   Summary of the contributions of nuclear envelope dysfunction to aging. Nuclear transport, chromatin regulation and 
telomere maintenance changes upon NE dysfunction in physiological and premature aging. HP1, heterochromatin protein 1; LADs, lamina-
associated domains; NPC, nuclear pore complexes; SADS, senescence-associated distention of satellites; SAHF, senescence-associated 
heterochromatin foci
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by ruptures, they also originate permanent macromolecular com-
plex translocations, like PML bodies (De Vos et al., 2011; Houben 
et al., 2013) and intact organelles, such as mitochondria (De Vos 
et al., 2011; Vargas et al., 2012). PML bodies are stress sensors 
and DNA-processing factories that, in normal circumstances, are 
located at the nucleus. This mislocation may impact proper DNA 
maintenance. Furthermore, mitochondria translocation upon NER 
might represent an additional source of ROS, originating DNA 
damage (Sieprath et al., 2015). Finally, the repair factors reduction 
from broken sites may induce damage accumulation (Irianto et al., 
2017). Potentially, the unregulated DNA damage could generate 
genome instability. In fact, it has been proposed that NERs are di-
rectly correlated with genome integrity. Interphasic DNA exposed 
to the cytoplasmic environment is more susceptible to DNA dam-
age as evidenced by increased levels of both γ-H2AX and 53BP1 
(Denais et al., 2016; Raab et al., 2016). Overall, when cells face 
NERs, they mobilize membrane repair machinery to promote DNA 
damage repair and redistribute mislocated proteins to preserve 
gene expression and, consequently, genome stability and integrity.

SUN1, a protein member of the LINC complex, is also associated 
with NPC and is important for the uniform distribution of NPCs across 
the nuclear surface (Liu et al., 2007). It was shown that SUN1 is over-
expressed and accumulates in HGPS patient-derived fibroblasts, and 
that its reduction results in the correction of the nuclear defects and 
cell senescence (Chen et al., 2012, 2014) (Figure 2 and Table 1). SUN1 
displays preferential binding for the farnesylated progerin/prelamin 
A, resulting in its aggregation and accumulation in HGPS cells that 
ultimately disturb both NE and ER structures (Chen et al., 2014; Liu 
et al., 2007). SUN1 overexpression was also correlated with alter-
ations on actin-dependent nuclear movement and centrosome ori-
entation observed in both HGPS fibroblasts and fibroblasts of aged 
individuals, as a result of imbalanced nucleocytoskeletal connections 
(Chang et al., 2019). Moreover, SUN1 overexpression or depletion 
has been shown to cause clustering of NPCs, similar to the HGPS 
cellular phenotypes. Therefore, it seems that SUN1 may have a cru-
cial role in the nuclear morphological alterations and NPC clustering 
observed in HGPS (Chen et al., 2014; Liu et al., 2007).

In summary, several lines of evidence suggest the involvement 
of NPCs in the pathogenesis of aging and age-associated diseases. 
Further research on unraveling the molecular mechanisms underly-
ing NPCs and nuclear lamina damages/loss of function during lifes-
pan will significantly contribute to the understanding of NE stress/
NE dysfunction.

3  | CHROMATIN ORGANIZ ATION

Higher-order structure of chromatin organization has received in-
creased attention in recent years. Using advanced techniques like 
next-generation sequencing, new perceptions regarding DNA ter-
ritories organization, and intra- and interchromosomal interactions 
regulation were attained (de Wit & de Laat, 2012). Basically, small 
and active chromosomes (gene-rich chromosome territories) tend 

to be located at the center of the nucleus, whereas inactive and 
heterochromatic regions (gene-poor chromosome territories) are at 
the nuclear periphery, pericentromeric bodies, and perinucleolar re-
gions (Lemaître & Bickmore, 2015; Politz, Scalzo, & Groudine, 2016; 
Saksouk, Simboeck, & Déjardin, 2015). Some genes are positioned 
at the nuclear periphery in proximity to the NPCs and associated 
with transcriptional activity in several organisms (Boyle, 2001; Croft 
et al., 1999).

Overall, in the nucleus, the gene positioning is not random and 
the inter- and intra-chromosomal interactions are needed for the 
regulation of a specific locus, but also for other processes, namely 
DNA repair and replication. The chromatin fiber plasticity may be 
restricted by the generation of higher-order structures through 
INM proteins’ interactions. The chromatin is stably associated with 
nuclear lamins, and strong evidence exists supporting that the nu-
clear lamina together with INM components are crucial for chro-
matin organization and regulation, via modulating and anchoring 
heterochromatin and chromosomal domains through interactions 
with chromatin-associated and transcription factors. Nuclear lam-
ina is important for the maintenance of genome integrity, whereby 
it is responsible for the recruitment of the machinery for DNA 
damage response (Cancino et al., 2011; Gonzalo & Kreienkamp, 
2015). Additionally, lamins and INM proteins bind directly or in-
directly to chromatin via recruitment of intermediate factors. 
Interestingly, lamins also bind to mitotic chromosomes (Glass et al., 
1993). Moreover, the amino acids 396–430 located in the tail of 
lamins A/C are responsible for the binding in vitro (Taniura, Glass, & 
Gerace, 1995) and in vivo (Goldberg et al., 1999; Mattout, Goldberg, 
Tzur, Margalit, & Gruenbaum, 2007; Taniura et al., 1995) to core his-
tones. Lamins also bind to DNA through AT-rich sequences, named 
scaffold/matrix regions (S/MARs) both in vitro and in vivo (Guelen 
et al., 2008; Ludérus et al., 1992; Zhao, Harel, Stuurman, Guedalia, 
& Gruenbaum, 1996). Furthermore, both A- and B-type lamins bind 
to chromatin via interaction with INM proteins containing the LEM 
domain, namely LAP2, emerin, and MAN2. LAP2α and LAP2β bind 
to BAF, which is a critical chromatin-lamina associating factor. BAF 
is also required for emerin and A-type lamins assembly during NE 
reassembly at telophase and may mediate their stabilization at 
interphase (Haraguchi et al., 2001; Samwer et al., 2017). Further, 
the LBR that specifically binds to B-type lamins interacts with HP1 
(Polioudaki et al., 2001; Ye & Worman, 1996).

Of note, NPCs also physically interact with the genome and play 
an important role in the chromatin organization and in transcrip-
tional regulation (Buchwalter, Kaneshiro, & Hetzer, 2019; Sood & 
Brickner, 2014). Nups have affinity for distinct regions of the chro-
matin, binding to repressed and active genes (Buchwalter et al., 
2019; Casolari et al., 2004). In fact, recently, it was described that 
while Nup107 targets active sites, Nup93 targets silenced regions 
bound by polycomb group proteins (Gozalo et al., 2020). Overall, 
the nuclear periphery, particularly the nuclear lamina together with 
INM proteins, represents a scaffold platform for the organization of 
chromatin and chromosomal domains, which are crucial for genome 
integrity maintenance.
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Moreover, using advanced techniques, the genomic 3-D organi-
zation was deciphered and, consequently, specific subdomains iden-
tified and described. Among these are the lamin-associated domains 
(LADs) and the nucleolar-associated domains (NADs) that associ-
ate chromatin with nuclear lamina and the nucleolus, respectively 
(Guelen et al., 2008; Van Koningsbruggen et al., 2010). In particular, 
studies of genome-wide mapping using the powerful DNA adenine 
methyltransferase identification (DamID) technique (Steensel & 
Henikoff, 2000) have indicated the existence of 1,100–1,400 LADs, 
that corresponds to large regions of the genome related to both 
emerin and type-B lamins (Guelen et al., 2008). These regions were 
subsequently characterized as regions of weak expression, also pre-
senting a mark of repressive chromatin, suggesting heterochromatin 
sequestration at the nuclear periphery. Interestingly, identical LADs 
were found in cells expressing lamin B1, LBR, and BAF, and the au-
thors proposed that hypothetically they are structured in two distinct 
complexes: the first composed of lamin B1 and LBR and the second 
of A-type lamins and LAP2, emerin, and MAN1 (Solovei et al., 2013). 
Of note, in the absence of lamins B1 and B2, or BAF, the LADs can be 
repositioned, while the positioning of NADs is mainly dependent on 
BAF and lamin A, indicating a dynamic regulation of LADs and NADs 
by specific components of the nuclear lamina (Kind & van Steensel, 
2014; Padeken & Heun, 2014). Not surprisingly lamins’ depletion, 
due to aging and aging-associated diseases, alters the chromatin fiber 
plasticity and the differentiation capacity of embryonic stem cells 
(ESCs). Remarkably, a study by Amendola & Steensel (2015) showed 
that mouse ESCs do not require lamins for LAD organization. The 
authors proposed that the role of lamin in LADs might be dependent 
on the cell type and that other components of the nuclear lamina 
might help to organize LADs (Amendola & Steensel, 2015). However, 
a more recent study reported decondensation or detachment of 
specific LAD regions from the nuclear periphery in lamin null mouse 
ESCs, which alters the chromatin domain interactions and transcrip-
tion (Zheng et al., 2018). Additional studies indicated that lamins are 
essential for chromatin organization at early developmental stages 
(Melcer et al., 2012). Further, the dynamics of heterochromatin 
proteins, like histone H1, is restricted by LMNA ectopic expression 
(Melcer et al., 2012). LBR binds to H3K9me3 through HP1 (Ye & 
Worman, 1996) and H4K20me3 via its tudor domain (Hirano et al., 
2012), and it is enough to sequester heterochromatin at the nuclear 
periphery. Downregulation of LBR and lamin A induced alterations in 
chromatin architecture (Polioudaki et al., 2001; Ye & Worman, 1996).

In HGPS patients’ fibroblasts, it was shown that accumulation of 
progerin in the nuclear lamina causes alterations in the repressive 
histone mark H3K27me3 distribution, and in the associations be-
tween heterochromatin and nuclear lamina, which ultimately results 
in a global loss of chromatin compartmentalization (McCord et al., 
2013). Moreover, progerin expression leads to depletion of nucle-
oplasmic lamins A/C and LAP2α (Vidak, Kubben, Dechat, & Foisner, 
2015). In turn, ectopic expression of LAP2α rescues the prolifera-
tion defects observed in HGPS patients’ cells, but in a lamin A/C-
independent manner (Chojnowski et al., 2015; Vidak et al., 2015). 
Vidak et al. (2015) suggested that LAP2α rescued the proliferation 

defects by regulating ECM gene expression, whereas Chojnowski 
et al. (2015) proposed that LAP2α stabilizes the chromatin structure 
by increasing H3K27me3 levels and preventing the progerin-asso-
ciated DNA damage that resulted in premature senescence. Lamin 
A/C also associates with euchromatin and lamins A/C-enriched frac-
tions overlap with those found associated with LAP2α (Figure 2 and 
Table 1). LAP2α deficiency changes lamin A/C interaction with het-
erochromatin (Gesson et al., 2016).

Lamin B1 is mainly associated with heterochromatin, whose 
levels are reduced in multiple models of cellular senescence 
(Dreesen, Chojnowski, et al., 2013; Freund, Laberge, Demaria, & 
Campisi, 2012; Scaffidi & Misteli, 2005; Taimen et al., 2009; Wang, 
Ong, Chojnowski, Clavel, & Dreesen, 2017). In turn, some studies 
showed that lamin B1 depletion causes premature senescence 
(Shimi et al., 2011) and changes the histone marks distribution with 
a dramatic relocation of H3K27me3 (Sadaie et al., 2013; Shah et al., 
2013), whereas the overexpression increases the proliferation 
and delays senescence onset (Shimi et al., 2011). However, recent 
studies showed that lamin B1 reduction has a minimal effect on 
cell proliferation but renders cells more susceptible to senescence 
(Dreesen, Chojnowski, et al., 2013), while lamin B1 overexpression 
induces senescence (Barascu et al., 2012; Dreesen, Chojnowski, 
et al., 2013). Moreover, lamin B1 knockout mice studies also chal-
lenge the concept that lamin B1 has an essential role in proliferation, 
given that lamin B1 knockout mice develop to term and developed 
all the internal organs (Kim et al., 2011), and lamin B1 knockout ke-
ratinocytes proliferate in vivo normally (Yang et al., 2011). Hence, 
the role of lamin B1 in cellular senescence remains controversial 
and the causal relationship between depletion of lamin B1 levels 
and cellular senescence deserves further investigation.

Senescence-associated lamin B1 loss is mainly achieved by tran-
scriptional downregulation and inhibition of its mRNA translation 
via miRNA-23a (Dreesen, Chojnowski, et al., 2013; Freund et al., 
2012; Shimi et al., 2011). Additionally, Dou et al. (2015) showed 
that lamin B1 levels could be affected by elimination via autophagic 
degradation in the lysosomes through interaction with LC3 in se-
nescent cells (Dou et al., 2015) (Figure 2). Interestingly, LC3 binds 
poorly to lamins A/C and B2. There is a perfect overlap between 
LC3 and lamin B1 binding places that corresponds to LAD domains 
of the heterochromatin, associating the autophagy process and 
the dramatic chromatin alterations with senescence (Ivanov et al., 
2013). Overall, in HGPS, NE defects are observed and progerin ac-
cumulation correlates with alterations in chromatin architecture re-
organization and decreased peripheral heterochromatin thickness, 
decreased H3K9me3 and HP1, and increased H4K20me3 (Figure 2 
and Table 1). In normal aging, these alterations are accompanied by 
lamin B1 downregulation and degradation by autophagy, indicat-
ing an important role of NE/NE dysfunction upon epigenetic alter-
ations related to the onset and progression of cellular senescence 
and aging. Lamin B1 alterations contribute to the appearance of se-
nescence-associated distention of satellites (SADS) that consist of 
large scale decondensation of pericentromeric satellites (Swanson, 
Manning, Zhang, & Lawrence, 2013) (Figure 2 and Table 1).
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During the aging process, many types of cells originate areas of 
condensed chromatin called senescence-associated heterochroma-
tin foci (SAHF) (Figure 2). Of note, these SAHFs are not formed in all 
senescent cells and their assembly is highly dependent on the induc-
tion of senescence, and SAHFs are normally related to oncogenic and 
not replicative senescence (Funayama, Saito, Tanobe, & Ishikawa, 
2006; Jeanblanc et al., 2012; Narita et al., 2003; Zhang et al., 2005). 
SAHF are structures well organized, which accumulate both HP1 
and H3K9me3. They are composed of several concentric chromatin 
layers, where H3K9me3 is in the center surrounded by H3K27me3 
(Chandra et al., 2012; Chandra & Narita, 2013). SAHF regulate gene 
expression, particularly of cell cycle arrest-associated genes, upon 
oncogene-induced senescence due to their relocation to repressive 
regions (Narita et al., 2003; Zhang, Chen, & Adams, 2007) or by in-
hibiting DNA damage response (Di Micco et al., 2011). The H3K9me3 
chromatin-enriched domains, like pericentrosome region or telo-
meres, are not SAHF components but are located at their periphery 
(Narita et al., 2003; Zhang et al., 2005, 2007). Additional heteroch-
romatin components together with HP1 and H3K9me3 contribute 
to heterochromatin remodeling, namely MacroH2A (histone variant 
related to gene silencing), histone cell cycle defective homolog A 
(HIRA), and anti-silencing function 1A (Robin & Magdinier, 2016).

In HGPS patient cells, a heterochromatin decrease is observed 
but they do not have SAHFs (Scaffidi & Misteli, 2006; Shumaker 
et al., 2006). However, additional data have indicated that there are 
similarities between SAHF- and progerin-induced senescence that 
correspond to loss of the GC-poor contacts of LADs before SAHF ap-
pearance. The authors proposed a two-step mechanism for SAHF for-
mation involving the nuclear lamina disruption (Chandra et al., 2015).

In senescent cells, the chromatin remodeling reflects the nuclear 
architecture alterations observed at the organism level during phys-
iological aging. Alterations in several histone-modifying enzymes 
occur through the lifespan (reviewed in López-Otín et al., 2013; Zane, 
Sharma, & Misteli, 2014), and among these are sirtuins (SIRTs), a family 
of NAD-dependent deacetylases with multiple roles in metabolism, 
cancer, and aging (reviewed in López-Otín et al., 2013). It is well ac-
cepted that both SIRT1 and SIRT6 are involved with longevity given 
their functions in genomic stability, metabolic regulation, and chroma-
tin remodeling (Liu & Zhou, 2013) (Figure 2). Interestingly, SIRT1 activ-
ity is dependent of lamin A binding, but not on progerin or prelamin A 
binding. Moreover, SIRT1 is responsible for the autophagy-mediated 
deacetylation of H4K16 (Füllgrabe et al., 2013), connecting lamin A ex-
pression to the autophagic action. In turn, hMOF is an acetyl transfer-
ase that also binds lamin A and not prelamin A. This binding mediates 
hMOF location at the nuclear periphery, and it has been proposed that 
hMOF:lamin A complex may have a role in autophagy through associa-
tion with SIRT1, but this role needs to be further investigated. Hence, 
it seems that nuclear lamina is implicated in both acetylation and 
deacetylation of histones. SIRT6 also binds lamin A but not prelamin 
A, resulting in increased SIRT6 enzymatic activity (Ghosh, Liu, Wang, 
Hao, & Zhou, 2015). SIRT6 deacetylates several lysines of the histone 
H3 to aid DNA damage repair. Lamin A is fundamental for SIRT6 re-
cruitment to DNA damage sites and adequate chromatin interaction. 

SIRT6 expression and activity is decreased in HGPS models, contrib-
uting to the alterations in DNA damage repair, chromatin structural 
organization, and telomere maintenance (Endisha et al., 2015; Ghosh 
et al., 2015). Additionally, lamin A binds to remodeling complexes, 
namely polycomb repressive complex (PRC) and nucleosome remod-
eling and deacetylase (NuRD), establishing a repressive heterochro-
matin state at the periphery of the nucleus possibly through stabilizing 
the Rbbp4/7 complex, which promotes adequate chromatin structural 
organization and function (Cesarini et al., 2015; Pegoraro et al., 2009).

4  | TELOMERE MAINTENANCE

Telomeres are specialized nucleoproteic complexes that in verte-
brates are composed of the hexanucleotide repeat TTAGGG asso-
ciated with the shelterin protein complex, which in turn contains 
six proteins: telomeric repeat-binding factors 1 and 2 (TRF1 and 
TRF2), repressor/activator protein 1 (RAP1), protection of telomere 
1 (POT1), TINT1-PTOP-PIP1 (TPP1) and TRF1- and TRF2-interacting 
nuclear protein 2 (TIN2). The shelterin complex is located at the 
chromosomes’ end and ensures genome stability by protecting the 
telomeres from the action of DNA damage repair machinery through 
generation of a characteristic chromatin loop named T-Loop. 
Telomeres shorten with each round of cell division, as a consequence 
of the nonconservative replicative machinery, and, in fact, telomere 
erosion is observed in aged human tissues (López-Otín et al., 2013). 
Of note, in lower eukaryotes, telomeres localize at the nuclear pe-
riphery but, in humans, only part of the telomeres are at periphery. 
This positioning is determined by the proliferative state and also by 
the nuclear lamina organization (Arnoult et al., 2010; Chojnowski 
et al., 2015; Crabbe, Cesare, Kasuboski, Fitzpatrick, & Karlseder, 
2012; Gonzalez-Suarez et al., 2009; Guidi et al., 2015; Ludérus et al., 
1996). The factors commanding telomere positioning in humans re-
main poorly understood; however, there is an intriguing relationship 
between telomeres and nuclear periphery that is discussed below.

In vertebrates, TRF1 and TRF2 bind to duplex telomeric DNA as 
homodimers (shelterin complex) to preserve the integrity of telo-
meres (Wood et al., 2014). Telomere length is negatively regulated 
by TRF1, which may be positioned at the nuclear periphery by lamin 
B1 during nuclear reassembly upon mitosis. TFR2 forms a protective 
telomere T-loop at chromosome ends and interstitial telomeric se-
quences. This telomere stabilization is dependent on the interaction 
with lamin A/C and LAP2α (Chojnowski et al., 2015; Dechat et al., 
2004; Ludérus et al., 1996; Wood et al., 2014). Further, the interac-
tion of lamin A/C:TRF2 mediates the organization of chromatin loops 
at the interstitial telomeres which contain the chromatin. Remarkably, 
in lamin A/C-depleted cells these structures might be disturbed 
(Shumaker et al., 2006). Additionally, telomeres are regulated by lam-
ina-associated proteins. LAP2α colocalize with telomeres at discrete 
foci at the nucleoplasm (Chojnowski et al., 2015). At the end of mito-
sis and during NE reorganization, both LAP2α and BAF stably bind to 
telomeres at the decondensing chromatin region and then co-segre-
gate with telomeres at the inner nuclear space (Dechat et al., 2004).
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Of note, TRF2 does not bind to progerin and, in cells where lamin 
A/C is absent and in HGPS patient cells, the telomeres are lost (Wood 
et al., 2014). Moreover, both LAP2α and lamin A/C are decreased in 
HGPS models (Chojnowski et al., 2015; Naetar, Ferraioli, & Foisner, 
2017; Pekovic et al., 2007; Scaffidi & Misteli, 2006; Vidak et al., 
2015) (Figure 2 and Table 1). Progerin expression reduces the levels 
of LAP2α and might prevent the interaction of TRF2 with lamin A/C 
and, which consequently leads to telomere attrition through TRF2 
deregulation (Figure  2). Furthermore, the expression of a domi-
nant-negative TRF2 protein induces uncapping of telomeres which is 
well correlated with increased progerin production (Cao et al., 2011). 
Moreover, TRF2 expression is reduced in response to DNA damage 
in models of adult-onset progeroid syndromes caused by LMNA 
mutations through propagation of DNA damage and p53-mediated 
senescence (Shah et al., 2013). The INM protein lamina-associated 
polypeptide 1 (LAP1) is also involved in lamins and chromatin posi-
tioning, and it was recently associated with telomeres function by 
TRF2 and RIF1 binding. However, the molecular mechanism through 
which LAP1 and TRF2 regulate telomere function remains to be elu-
cidated (Serrano, Cruz e Silva, & Rebelo, 2016).

The mouse centrosomes and telomeres showed a peripheral 
clustering localization, whereas a nuclear interior localization is ob-
served in the case of human telomeres (Weierich et al., 2003). An 
exception was observed during meiosis, when the LINC complex 
proteins participate in bouquet formation and in the sequestration of 
telomeres into a subnuclear area together with the paring of homol-
ogous chromosomes (Ding et al., 2007; Lottersberger, Karssemeijer, 
Dimitrova, & Lange, 2015; Penkner et al., 2009; Pereira, Serrano, 
Martins, da Cruz e Silva, & Rebelo, 2019).

Another recently described component of the shelterin complex 
is AKT-interacting protein (AKTIP), which interacts with TRF1, TRF2, 
and proliferating cell nuclear antigen (PCNA) (Burla et al., 2015). 
AKTIP is located at the nuclear periphery and binds to lamin A/C, 
lamin B, and PCNA to control the replication of telomere and sta-
bilization [100]. In HGPS models, the nuclear periphery location of 
AKTIP is lost (Figure 2) (Burla et al., 2016). Interestingly, AKTIP de-
crease induces cell senescence that is well correlated with increasing 
prelamin A expression and the appearance of nuclear abnormalities 
(Burla et al., 2015, 2016). These data lead the authors proposing a 
regulatory loop where nuclear periphery changes originate telomere 

F I G U R E  3  Nuclear transport, chromatin organization and telomere maintenance alterations upon physiological or premature aging. CCF, 
cytoplasmic chromatin fragment; LADs, lamina-associated domains; NADS, nucleolar-associated domains; NPC, nuclear pore complexes; 
SAHF, senescence-associated heterochromatin
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dysfunction and, consequently, the nuclear periphery is affected by 
shortened telomeres, leading to NE dysfunction.

5  | FUTURE PERSPEC TIVES

The increase in life expectancy is one of the highest achievements 
of humanity; however, aging and age-related diseases represent a 
huge challenge, being now considered a health problem affecting 
millions of people worldwide. Although the underlying cellular and 
molecular mechanisms of the aging processes remain elusive, the 
recent years of aging research have provided important achieve-
ments. It has been suggested that NE integrity and its dynamic 
remodeling are pivotal requirements for cellular homeostasis and, 
consequently, a healthy status. In addition, the huge number of 
age-related diseases caused by mutations in nuclear proteins is 
intriguing and demonstrates that nuclear homeostasis is impor-
tant for the aging process. Therefore, we could hypothesize that 
when the NE structure and function and consequently integrity is 
somehow perturbed, NE dysfunction occurs and could also be a 
hallmark of aging and of several pathologies, including cancer, viral 
infection, and laminopathies. The nuclear periphery integrity is 
achieved by the nuclear lamina (lamins), nuclear lamina-associated 
proteins (INM proteins), and NPCs (nucleoporins). Defects in nu-
clear transport, alterations in chromatin organization and function 
as well as telomere attrition are correlated with nuclear protein al-
terations, namely nucleoporins, nuclear transport factors, lamins, 
INM proteins, chromatin-associated factors, histones modifica-
tions, and sheltering complex proteins, revealing that NE proteins 
are essential determinants of aging (Figure 3).

The use of adequate aging model systems to study the aging pro-
cess has limited the understanding of the molecular mechanisms un-
derlying aging. The premature aging disorders (progerias) represent a 
powerful and unique way to understand physiological aging. In fact, 
using HGPS patients’ cells it was observed that the nuclear import rate 
was decreased and that the TNPO1 is sequestered by the microtubules 
and mislocated at cytoplasm affecting the nuclear localization of the 
cargo proteins (Nup153 and hnRNPA1). Interestingly, an inhibitor of 
NAT10 was able to release TNPO1 from microtubules, enabling the 
Nup153 and hnRNPA1 import, rescuing NPCs functionality and im-
proving HGPS cellular phenotype (Cobb et al., 2016; Kelley et al., 2011; 
Larrieu et al., 2018). These results are of paramount importance, and 
hopefully, similar strategies could be applied to physiological aging pre-
venting nuclear transport abnormalities that cause nuclear dysfunction. 
Nonetheless, more studies should be conducted in order to confirm 
that the NE dysfunctions observed in progeria are a cause rather than a 
consequence of HGPS cells undergoing premature senescence.

Moreover, prelamin A and progerin accumulation are features of 
aging and premature aging diseases, indicating a common mecha-
nism between physiological aging and HGPS. An interesting strategy 
to prevent the aging phenotype could be related with the mainte-
nance of nuclear lamina integrity, both A- and B-type lamins, given 
that these proteins together with lamina-associated proteins are 

essential for the nuclear transport, chromatin organization and ge-
nome integrity, and telomere maintenance (Figure 3).

The hypothesis that nuclear dysfunction is a hallmark of several 
pathologies, including aging, is emerging. Therefore, unraveling the 
different molecular mechanisms underlying NE dysfunction or NE 
stress will significantly impact the understanding of physiological 
and premature aging.
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