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Abstract. To determine whether the presence of Blastocystis is associated with other gastrointestinal parasite infections,
stool samples from 95 Honduran rural children were analyzed using multi-parallel quantitative real-time polymerase chain
reaction (PCR) and Kato–Katz. Combined results detected the following prevalence: Blastocystis, 71.6%; Trichuris trichiura,
63.2%;Giardia lamblia, 40.0%;Ascaris lumbricoides, 15.8%;andNecator americanus, 4.2%.Agewas foundassociatedwith the
quantityofbothBlastocystisDNA(rs=0.524,P<0.001)andT. trichiuraDNAin thestool (fg/μL)byquantitativePCR(rs=0.272,P<
0.001). In addition, there was an association with T. trichiura and Blastocystis infection (odds ratio [OR] = 4.72; 95% CI = 1.83,
12.20;P<0.001). Thesefindingsdemonstrate ahighprevalenceofBlastocystisandother intestinal parasites in a rural location in
Honduras.

In this study, a previously developed multi-parallel real-time
quantitative PCR (qPCR) assay was used in combination with
the Kato–Katz (KK) technique to determine the association of
Blastocystis with the presence of Ascaris lumbricoides, Ancy-
lostoma duodenale, Necator americanus, Strongyloides ster-
coralis, Trichuris trichiura, Cryptosporidium spp., Entamoeba
histolytica, and Giardia lamblia.1

The studywaspart of a larger investigationonsoil-transmitted
helminths (STHs), and a subsample of fecal samples from 95
children (mean age = 6.1 years; range = 8 months–13 years;
47.4% females) were analyzed for the present study. Children
were residents of impoverished rural villages in and around La
Hicaca, Department of Yoro, in northern Honduras.2 Children in
these communities are treated annually and sometimes bi-
annually with 400 mg/day × 3 days with albendazole. Stool
samples’aliquotswerestored in70%ethanol and transported to
Houston laboratories where they were stored at −20�C for mo-
lecular diagnosis of intestinal parasites.
At collection, the KK method was used to determine the

presence of STHs in stool samples; STH eggs were identified
and the number of eggs per gram calculated. Kato–Katz
smears were examined between 30 and 60 minutes of prep-
aration. Quality control procedures were applied, with 10% of
positive and 100% of negative smears reexamined by a dif-
ferent researcher immediately after the first reading.
DNA was extracted from 50 mg of stool from each sample

usingMPFastDNA™ for Soil Kit (MPBiochemicals, Solon,OH)
according to the manufacturer’s instructions for all parasites,
except T. trichiura, which required an additional heating step.1

DNA extraction from the stool and qPCR methods were
implemented as described by Mejia et al.1 Species-specific pri-
mers and probes were previously designed and tested for eight
gastrointestinal (GI) parasites.1 Primers for Blastocystis were
designed for a segment of the small subunit (SSU) rRNA gene

with the ability to amplify DNA fromsubtypes 1–10, as published
by Poirier et al.3 The sequence information for Blastocystis pri-
mers and probes (target region SSU RNA, GenBank Accession
No. J02459)used inmulti-parallel qPCRwereas follows: forward
primer sequence (59→39) AGTAGTCATACGCTCGTCTCAAA,
reverseprimersequence (59→39) TCTTCGTTACCCGTTACTGC,
probe sequence (6-FAM, 59→39) CGTGTAAATCTTACCATTTA-
GAGGA. Standardswere prepared forBlastocystis according to
the protocol already described for other species.1

Sampleswere run on a ViiA™ 7 Fast Real-Time PCRSystem
(Applied Biosystems, Waltham, MA). For quantification,
plasmids containing target sequences were run in duplicate
according to dilution. An exogenous internal control was used
to investigate the efficiencyofDNAextraction, by spiking stool
samples and measuring cycle threshold.4

Because KK is not suitable for detecting protozoa, qPCR
and KK diagnostic methods were only compared for STH in-
fections. The combined results from KK and qPCR were
considered as the standard of diagnosis (i.e., any positive test
result, regardless of the technique used, was considered a true-
positive result) forA. lumbricoides,T. trichiura, andN.americanus.
Overall, 12 research participants were negative for parasites

(12.6%). Taking into account both diagnostic methods, Blas-
tocystiswas themost commonparasite detected in 68 positive
samples (71.6%), followed by 60 positives for T. trichiura
(63.2%), 38 for G. lamblia (40.0%), 15 for A. lumbricoides
(15.8%), and four for N. americanus (4.2%). No positive sam-
ples were detected for A. duodenale, Cryptosporidium spp.,
S. stercoralis, or E. histolytica (Table 1).
Polyparasitism was frequent among research participants:

22 (23.2%) were positive for one parasite species, 28 (29.5%)
for two, 26 (27.4%) for three, six (6.3%) for four parasites, and
one (1.1%) for five species. Counts are displayed for com-
bined and individual methods in Table 1. The median and
range of the concentration of DNA (fg/μL) from qPCR-positive
samples are also displayed.
Distribution of the intensity (burden) of infection by KK and

qPCR was determined for STHs according to the thresholds
set by WHO for A. lumbricoides (i.e., 1–5,000 light infection;
> 5,000–50,000 moderate infection; and > 50,000, heavy
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infection), T. trichiura (i.e., 1–103 light infection; 103–104: mod-
erate infection; and ³ 104, heavy infection), andN. americanus
(i.e., 1–2,000 light infection; >2,000–4,000moderate infection;
and > 4,000 heavy infection).5 In terms of infection intensity, a
moderate agreement was found between KK and qPCR for
A. lumbricoides (κ = 0.516; 95%CI = 0.364, 0.702; P < 0.001),
whereas for T. trichiura, the agreement was fair (κ = 0.389;
95% CI = 0.242, 0.508; P < 0.001).
Spearman’s rank correlation coefficient (rs) indicated a posi-

tive correlation between age and the amount of Blastocystis
DNA in stool (fg/μL) by qPCR (rs = 0.524, P < 0.001; Figure 1). A
weak positive correlation was noted between age and the
amount of T. trichiura DNA in stool (fg/μL) by qPCR (rs = 0.272,
P = 0.008). No similar correlation was seen for G. lamblia (rs =
0.142, P = 0.169), A. lumbricoides (rs = −0.040, P = 0.701), or
N.americanus (not available). Therewasanassociationbetween
Blastocystis infection and T. trichiura (OR = 4.72; 95%CI = 1.83,
12.20; P < 0.001), but not with the other GI parasites (Table 2).
Blastocystis spp. is gaining attention globally as one of the

most widespread organisms dwelling in the human GI tract,
although its pathogenicity is still in dispute. The amount of
parasiteDNA in stool sampleswasquantifiedusingapreviously
developed multi-parallel qPCR method for A. lumbricoides,
A. duodenale, N. americanus, S. stercoralis, T. trichiura, Cryp-
tosporidium spp., E. histolytica, G. lamblia, and Blastocystis
spp. These data were compared with KK data for three of the
nine species (A. lumbricoides, T. trichiura, and N. americanus).
A high prevalence of Blastocystis (71.6%) was noted in this
population in comparison with other Latin American studies
undertaken in Brazil (21% and 28%), Argentina (25%), and
Colombia (12.6%).6–9

There was a correlation between age and Blastocystis in-
fection (Figure 1). The correlation betweenage andprevalence
of Blastocystis has been both present and absent in other
similar studies.10–12 Some authors have suggested that
Blastocystis is acquired via person-to-person transmission.13

In this case, increasing agewould allowmore opportunities for
exposure. In addition, this organism is known to colonize in-
dividuals for several years,12 further increasing the likelihood
that an older child would be infected if they were previously
exposed. The association between T. trichiura infection and
Blastocystis infection was noteworthy (Table 2). These two
parasites have transmission sources in common, of which,
contaminated soil and untreated water sources have been
emphasized.14,15 Further studies characterizing water sour-
ceswouldbeuseful.Moreover, the fecal–oral route of infection
likely has a major impact on our findings. In the study com-
munity, children likely are continuously reinfected. This is evi-
dent by the high STH prevalence despite regular deworming
treatment. In addition to transmission routes, it is worth men-
tioning the role of the immune system in polyparasitism, par-
ticularly the interplay of STH and protozoa.16

Overall, this study’s main contribution was to assess the
prevalence and burden of Blastocystis, and its association
with other GI parasites in this rural pediatric population in
Honduras, where specific studies on Blastocystis are lack-
ing. Molecular methods of detection for this organism are in
extensive use, and this study adds to the global body of data
for an understudied region in Honduras. Because of the
clinical and evolutionary relevance of the distribution of
subtypes, the next step would be to map these subtypes in
Honduras and other parts of Central America as previous
authors have undertaken in Latin America.9,17 This would
delineate which subtypes are associated with helminth in-
fections, if any, in this region. Understanding the interactions
between common species of the GI tract such as Blasto-
cystis and endemic GI parasites is an essential step for im-
proving human health.

TABLE 1
Combined results from KK and qPCR for five gastrointestinal parasites detected (n = 95)

Parasite
No. positive by

multi-parallel qPCR (%)
No. positive by the
KK method (%)

No. positive by both
methods (%)

DNA concentrations (fg/μL) positive in
stool from qPCR, median (range)

Blastocystis 68 (71.6) – – 1.135 (0.010–200.4)
Helminths
Ascaris lumbricoides 10 (10.5) 15 (15.8) 15 (15.8) 10.7 (0.143–1,797.8)
Necator americanus 2 (2.1) 2 (2.1) 4 (4.2) 0.108 (0.066–0.151)
Trichuris trichiura 43 (45.3) 53 (55.8) 60 (63.2) 0.025 (0.001–0.370)

Protozoa
Giardia lamblia 38 (40.0) – – 18.0 (0.080–4,756.0)
KK = Kato–Katz; qPCR = quantitative PCR.

FIGURE 1. Spearman’s rank correlation between Blastocystis bur-
den and age. There was a correlation between age and the amount
of Blastocystis DNA in stool (fg/μL) by quantitative PCR (rs = 0.524,
P < 0.001).

TABLE 2
Statistical associations between other parasites and Blastocystis

Gastrointestinal parasite
infection

Blastocystis spp.

OR (95% CI) P-value

Protozoa
Giardia lamblia 1.88 (0.72–4.87) 0.194
Helminths
Necator americanus – –

Ascaris lumbricoides 1.71 (0.41, 10.26) 0.544
Trichuris trichiura 4.72 (1.83, 12.20) < 0.001
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In summary, we adapted a previously developed multi-
parallel qPCR assay to determine the prevalence and burden
of various GI parasites with fundamental demographic factors
including gender, age, and infection of other known parasites
of the GI tract. Blastocystiswas the most commonly detected
organism (71.6%). Also, the amount of Blastocystis DNA
positively correlated with age in a single rural location in
Honduras among a pediatric population.
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