Skip to main content
. 2020 May 27;6(22):eaba0768. doi: 10.1126/sciadv.aba0768

Fig. 1. A deep (left) to shallow water (right) lake transect through the D-C boundary in East Greenland.

Fig. 1

As the lower lake flooded (Stensiö Bjerg), spore diversity increased (LN* zone) until recovery was lost in the high-TOC AOM-rich interval. The upper lake contains VI spores of earliest Carboniferous in age. The LN* to VI spore zone correlates the lower lake to the more proximal locations on Celsius Bjerg and Rebild Bakker. At Rebild Bakker, the lower lake contains high numbers of malformed and dark-colored VI zone spores of earliest Carboniferous age. The high Hg content at Stensiö Bjerg is coincident with both a high TOC and AOM content. However, when normalized as Hg/TOC, there is no anomaly characteristic of a large igneous province (LIP) eruption. This level is coincident with the malformed spores at Rebild Bakker, where, in the absence of AOM, Hg content is low again, indicating that there was no LIP. Analytical data are presented in table S1. mdst, mudstone; sndst, sandstone; m, medium sandstone; c, coarse sandstone.