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Abstract

Accurately inferring the genome-wide landscape of recombination rates in natural populations is a central aim in
genomics, as patterns of linkage influence everything from genetic mapping to understanding evolutionary history.
Here, we describe recombination landscape estimation using recurrent neural networks (ReLERNN), a deep learning
method for estimating a genome-wide recombination map that is accurate even with small numbers of pooled or
individually sequenced genomes. Rather than use summaries of linkage disequilibrium as its input, ReLERNN takes
columns from a genotype alignment, which are then modeled as a sequence across the genome using a recurrent neural
network. We demonstrate that ReLERNN improves accuracy and reduces bias relative to existing methods and maintains
high accuracy in the face of demographic model misspecification, missing genotype calls, and genome inaccessibility. We
apply ReLERNN to natural populations of African Drosophila melanogaster and show that genome-wide recombination
landscapes, although largely correlated among populations, exhibit important population-specific differences. Lastly, we
connect the inferred patterns of recombination with the frequencies of major inversions segregating in natural
Drosophila populations.
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Introduction
Recombination plays an essential role in the meiotic produc-
tion of gametes in most sexual species, and is often required
for proper segregation (Nicklas 1974) and pairing of homolo-
gous chromosomes (reviewed in Zickler and Kleckner 2015).
During prophase of meiosis, recombination is initiated by the
formation of double-strand breaks across a wide array of
organisms (Lichten 2001). A subset of these double-strand
breaks will be repaired as crossover events, leading to recipro-
cal exchange between homologs. Those that are not resolved
as crossovers are repaired through a number of mechanisms
included noncrossover gene conversions and nonhomologous
end joining (Do et al. 2014). Recombination not only plays a
central role in meiosis but also has wide-ranging effects on
both evolutionary and population genomics (Lewontin and
Kojima 1960; Hill and Robertson 1966; Ohta and Kimura 1969,
1970; Smith and Haigh 1974).

Indeed, the population recombination rate, q ¼ 4Nr, is a
central parameter in population and statistical genetics
(reviewed in Hahn 2018), as at equilibrium, we expect q to
be proportional to the scale of linkage disequilibrium (LD) in a
given region of the genome (Ohta and Kimura 1969). In
regions of the genome where q is relatively small, we expect
increased levels of LD, and conversely, in genomic compart-
ments with high q, we expect little LD. Deviations from
expected levels of LD given the local recombination rate

can be illustrative of the influence of other evolutionary forces
such as selection or migration. For example, selective sweeps
are expected to dramatically elevate LD near the target of
selection (Parsch et al. 2001; Kim and Nielsen 2004; O’Reilly
et al. 2008).

Structural variation itself is expected to modulate the land-
scape of recombination—herein, the map of per-base recom-
bination rates, r, to genomic positions along the
chromosomes. For example, both crossovers and noncross-
overs are predicated on the alignment of homologous
sequences, and structural rearrangements may directly im-
pact such alignments. Chromosomal inversions, long known
to suppress crossing over along a chromosome (Sturtevant
1921), are one of the best studied examples of such structural
variation. Inversion polymorphisms have been implicated in
diverse evolutionary phenomena including local adaptation
(Dobzhansky 1937; Kirkpatrick and Barton 2006; Ayala et al.
2013), reproductive isolation (White 1977; Noor et al. 2001;
Rieseberg 2001; Ayala et al. 2013), and the maintenance of
meiotic drive complexes (reviewed in Jaenike 2001). As sup-
pressors of recombination, we expect a priori that segregating
inversions should show distinct histories of recombination in
comparison to standard karyotype chromosomes.

Although recombination plays a central role in meiosis and
reproduction, the frequency and distribution of crossovers
along the chromosomes are themselves phenotypes that
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can evolve. Not only is there a long tradition of work dem-
onstrating the conditions under which rates of recombina-
tion might change (Fisher 1930; Muller 1932; Charlesworth
1976; Barton 1995; Otto and Barton 1997) but increasingly
there is good empirical evidence that such changes do indeed
occur in nature (reviewed in Ritz et al. 2017). Importantly,
recombination rate variation exists between species, between
populations, and between sexes of the same species (males
generally having shorter maps than females) (Winckler et al.
2005; Kong et al. 2010; Hinch et al. 2011; Singh et al. 2013). Yet,
although there is abundant variation in the rate of recombi-
nation within and between taxa, methods for accurately mea-
suring this variation have historically involved painstaking
experiments or large pedigrees. Thus, genetics, as a field, seeks
ever-improving tools for directly estimating recombination
rates from sequence data, without relying on pedigree geno-
typing or other ancillary information.

Accordingly, there is a rich history of estimating q in pop-
ulation genetics, including efforts to obtain minimum bounds
on the number of recombination events (Hudson and Kaplan
1985; Wiuf 2002; Myers and Griffiths 2003), method of
moments estimators (Hudson 1987; Wakeley 1997), compos-
ite likelihood estimators (Hudson 2002; McVean et al. 2002;
Chan et al. 2012), and summary likelihood estimators (Wall
2000; Li and Stephens 2003). Recently, supervised machine
learning methods for estimating q have entered the fray (Lin
et al. 2013; Gao et al. 2016) and have proven to be compet-
itive in accuracy with state-of-the-art composite likelihood
methods such as LDhat (McVean et al. 2002) or LDhelmet
(Chan et al. 2012), often with far less computing effort. These
methods, taken en masse, have uncovered interesting biology,
for instance, the characterization of recombination hotspots
(Myers et al. 2005), and are well suited for large samples of
high-quality genome or genotype data.

To this end, we sought to develop a novel method for
inferring rates of recombination directly from a sequence
alignment through the use of deep learning. In recent years,
deep artificial neural networks (ANNs) have produced re-
markable performance gains in computer vision (Krizhevsky
et al. 2012; Szegedy et al. 2015), speech recognition (Hinton
et al. 2012), natural language processing (Sutskever et al.
2014), and data preprocessing tasks such as denoising
(Vincent et al. 2008). Perhaps most illustrative of the potential
of deep learning is the remarkable success of convolutional
neural networks (CNNs; Lecun et al. 1998) on problems in
image analysis. For example, prior to the introduction of
CNNs to the annual ImageNet Large Scale Visual
Recognition Challenge (Krizhevsky et al. 2012), no method
had achieved an error rate of<25% on the ImageNet data set.
In the years that followed, CNNs succeeded in reducing this
error rate<5%, exceeding human accuracy on the same tasks
(Russakovsky et al. 2015).

In this study, we focus our efforts on recurrent neural
networks (RNNs), a promising network architecture for pop-
ulation genomics, which has proven adept for analyzing se-
quential data of arbitrary lengths (Graves et al. 2013). Unlike
other machine learning methods, deep learning approaches
do not require a predefined feature vector. When fed labeled

training data (e.g., a set of genotypes simulated under a
known recombination rate), these methods algorithmically
create their own set of informative statistics that prove
most effective for solving the specified problem. By training
deep learning networks directly on sequence alignments, we
allow the neural network to automatically extract informative
features from the data without human supervision. Learning
directly from a sequence alignment for population genetic
inference has recently been shown to be possible using CNNs
(Chan et al. 2018; Flagel et al. 2019; Torada et al. 2019), and as
we show below, is also true for RNNs. Moreover, supervised
deep learning methods, such as RNNs, can be trained directly
on the types of missing data that often beset researchers
investigating nonmodel organisms using traditional tools.

Here, we introduce recombination landscape estimation
using recurrent neural networks (ReLERNN), an RNN-based
method for estimating the genomic map of recombination
rates directly from a genotype alignment. We find that
ReLERNN is both highly accurate and outperforms competing
methods at small sample sizes. We also show that ReLERNN
retains its high accuracy in the face of demographic model
misspecification, missing genotypes, and genome inaccessibil-
ity. Further, we present an extension to ReLERNN that takes
as input allele frequencies estimated by pooled sequencing
(Pool-seq), making ReLERNN the first software package to
directly infer rates of recombination in Pool-seq data. These
results suggest that ReLERNN has the potential to fill a much-
needed role in the analysis of low-quality or sparse genomic
data. We then apply ReLERNN to population genomic data
from African samples of Drosophila melanogaster. We dem-
onstrate that the landscape of recombination is largely con-
served in this species, yet individual regions of the genome
show marked population-specific differences. Finally, we find
that chromosomal inversion frequencies directly impact the
inferred rate of recombination, and we demonstrate that the
role of inversions in suppressing recombination extends far
beyond the inversion breakpoints themselves.

Results

ReLERNN: An Accurate Method for Estimating the
Genome-Wide Recombination Landscape
We developed ReLERNN, a new deep learning method for
accurately predicting genome-wide per-base recombination
rates from as few as four chromosomes. Briefly, ReLERNN
provides an end-to-end inferential pipeline for estimating a
recombination map from a population sample: it takes as
input either a variant call format (VCF) file or, in the case
of ReLERNN for Pool-seq data, a vector of allele frequencies
and genomic coordinates. ReLERNN then uses the coalescent
simulation program, msprime (Kelleher et al. 2016), to simu-
late training, validation, and test data sets under either con-
stant population size or an inferred population size history.
Importantly, these simulations are parameterized to match
the distribution of Watterson’s estimator, hW, calculated from
the empirical samples. ReLERNN trains a specific type of RNN,
known as a gated recurrent unit (GRU; Cho et al. 2014), to
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predict the per-base recombination rate for these simulations,
using only the raw genotype matrix and a vector of genomic
coordinates for each simulation example (fig. 1 and supple-
mentary figs. S1 and S2, Supplementary Material online). It
then uses this trained network to estimate genome-wide per-
base recombination rates for empirical samples using a
sliding-window approach. ReLERNN can optionally estimate
95% CI around each prediction using a parametric bootstrap-
ping approach, and it uses the predictions generated while
bootstrapping to correct for inherent biases in the training
process (see Materials and Methods; supplementary fig. S3,
Supplementary Material online).

A key feature of ReLERNN’s network architecture is the
bidirectional GRU layer (fig. 1 and supplementary fig. S1,
Supplementary Material online), which allows us to model
genomic sequence alignments as a time series. Although feed-
forward networks use as input a full block of data for each
example, recurrent layers break each genotype alignment into
time steps corresponding to discrete genomic coordinates,
and iterate over the time steps sequentially. At each time
step, the GRUs modulate the flow of information, using reset
and update gates that control how the activation is updated
(Cho et al. 2014; Chung et al. 2014). This process allows the
gradient descent algorithm, known as backpropagation
through time, to share parameters across time steps, as well
as make inferences based on the ordering of SNPs—that is, to
have a spatial memory of allelic associations along the

chromosome. The bidirectional attribute of the GRU layer
simply means that each example is duplicated and reversed,
so the sequence data are analyzed from both directions and
then merged by concatenation. We present a generalized
GRU for analyzing genomic sequence data, along with a
more detailed look at the network architecture parameters
used by ReLERNN in supplementary figure S1, Supplementary
Material online.

Performance on Simulated Chromosomes
To assess our method, we performed coalescent simulations
using msprime (Kelleher et al. 2016), generating whole chro-
mosome samples using a fine-scale genetic map estimated
from crosses of D. melanogaster (Comeron et al. 2012). We
then used ReLERNN to estimate the landscape of recombi-
nation for these simulated examples. ReLERNN is able to
predict the landscape of per-base recombination rates to a
high degree of accuracy across a wide range of realistic pa-
rameter values, assumptions, and sample sizes (R2 � 0:82;
mean absolute error [MAE] � 1:28� 10�8). Importantly,
the accuracy of ReLERNN is only modestly diminished
when comparing predictions based on 20 samples
(R2 ¼ 0:93; MAE ¼ 3:72� 10�9; fig. 2A) to those based
on four samples (R2 ¼ 0:82; MAE ¼ 6:66� 10�9; supple-
mentary fig. S4, Supplementary Material online). We also
show that ReLERNN performs equally well on phased and
unphased genotypes (W¼ 68.5; P¼ 0.17; Mann–Whitney
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FIG. 1. A cartoon depicting a typical workflow using ReLERNN’s four modules (shaded boxes) for (A) individually sequenced genomes or (B) pooled
sequences. ReLERNN can optionally (dotted lines) utilize output from stairwayplot, SMCþþ, and MSMC to simulate under a demographic history
with msprime. Training inlays show the network architectures used, with the GRU inlay in (B) depicting the gated connections within each hidden
unit. Here, r, z, ht, and ~ht are the reset gate, update gate, activation, and candidate activation, respectively (Cho et al. 2014). The genotype matrix
encodes alleles as reference (�1), alternative (1), or padded/missing data (0; not shown). Variant positions are encoded along the real number line
(0–1).
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U test; supplementary fig. S5, Supplementary Material online),
suggesting that any effect of computational phasing error
might be mitigated by treating the inputs as unphased
variants.

Because ReLERNN performed exceedingly well on
unphased genotypes, we speculated that it might be able
to glean crucial information about recombination rates
from a vector of allele frequencies alone. Therefore, we set
out to extend ReLERNN to work with Pool-seq data, where
the only inputs are a vector of allele frequencies and their
corresponding genomic coordinates. Surprisingly, ReLERNN
exhibits modest accuracy on simulated Pool-seq data, despite
simulated sample and read depths as low as n¼ 50 and
coverage ¼ 50� (R2 ¼ 0:54; MAE ¼ 1:59� 10�8; supple-
mentary fig. S6, Supplementary Material online). Increasing
the read depth to a nominal 5�, the sample depth (e.g.,
n¼ 50 and coverage ¼ 250�) produced substantially greater
accuracy (R2 ¼ 0:69; MAE ¼ 1:20� 10�8; supplementary
fig. S7, Supplementary Material online). As a general trend,
we show that prediction error is reduced by increasing the
number of chromosomes sampled in the pool (i.e., increasing
allele frequency resolution) and by increasing the depth of

sequencing (i.e., reducing sampling error) (fig. 2B). Although
there currently exists software for estimating LD in Pool-seq
data (Feder et al. 2012), to our knowledge, ReLERNN is the
first software to directly estimate rates of recombination us-
ing these data.

Although ReLERNN retains accuracy at small sample sizes,
it exhibits somewhat greater sensitivity to both the assumed
genome-wide average mutation rate, �l, and the assumed
maximum value for recombination, qmax. To assess the de-
gree of sensitivity to these assumptions, we ran ReLERNN on
simulated chromosomes assuming �l was both 50% greater
and 50% less than the simulated mutation rate, ltrue. In both
scenarios, ReLERNN predicts crossover rates that are highly
correlated with the true rates (R2 > 0:91). However, in both
scenarios, MAE is inflated but still modest, and the absolute
rates of recombination are underpredicted (R2 ¼ 0:91;
MAE ¼ 1:23� 10�8; supplementary fig. S8, Supplementary
Material online) and slightly overpredicted (R2 ¼ 0:94;
MAE ¼ 1:28� 10�8; supplementary fig. S9, Supplementary
Material online) when assuming �l is less than or greater than
ltrue, respectively. Moreover, underestimating qmax causes
ReLERNN to underpredict rates of recombination roughly
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FIG. 2. (A) Recombination rate predictions for a simulated Drosophila chromosome (black line) using ReLERNN for individually sequenced genomes
(red line). The recombination landscape was simulated for n¼ 20 chromosomes under constant population size using msprime (Kelleher et al. 2016),
with per-base crossover rates taken from D. melanogaster chromosome 2L (Comeron et al. 2012). Gray ribbons represent 95% CI. R2 is reported for the
general linear model of predicted rates on true rates and mean absolute error was calculated across all 100-kb windows. (B) Distribution of raw error
(rpredicted � rtrue) using ReLERNN for Pool-seq data. Pools simulated from the same recombination landscape as above, with n¼ 20 and (C) n¼ 50
chromosomes across a range of simulated read depths (0:5� to 5�; Inf represents infinite simulated sequencing depth). Both the bootstrap-corrected
predictions (red) and the nonbootstrap-corrected (NBSC; white) predictions are shown.
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proportional to the magnitude of the underestimate (supple-
mentary figs. S10 and S11, Supplementary Material online),
whereas overestimating qmax causes only a minor loss in ac-
curacy (R2 ¼ 0:90; MAE ¼ 4:07� 10�9; supplementary fig.
S12, Supplementary Material online). Together, these results
suggest that ReLERNN is in fact learning information about
the ratio of crossovers to mutations, and although ReLERNN
is highly robust to errant assumptions when predicting rela-
tive recombination rates within a genome, caution must be
taken when comparing absolute rates between organisms
with large differences in per-base mutation rate estimates
or for species. One additional limitation to ReLERNN is its
inability to fully resolve narrow recombination rate hotspots
(herein defined as � 10-kb genomic regions with r � 50�
the genome-wide average). We simulated hotspots of differ-
ent lengths [length2f2kb;4kb; 6kb;8kb;10kb g; rbackground

¼ 2:5e�9; rhotspot¼ 1:25e�7] and found that errors at hot-
spots were negatively correlated with hotspot length (sup-
plementary fig. S13, Supplementary Material online),
suggesting that signal for crossovers at hotspots is being
swamped by the background rate within the focal window,
especially for very narrow hotspots relative to the focal
window. This limitation could be of particular importance
when attempting to resolve hotspots in human data, where
lengths are often between 1 and 2kb (Jeffreys et al. 2001;
Jeffreys and May 2004).

ReLERNN Compares Favorably to Competing
Methods, Especially for Small Sample Sizes and under
Model Misspecification
To assess the accuracy of ReLERNN relative to existing meth-
ods, we took a comparative approach, whereby we made
predictions on the same set of simulated test chromosomes
using methods that differ broadly in their approaches.
Specifically, we chose to compare ReLERNN against two types
of machine learning methods—a boosted regression method,
FastEPRR (Gao et al. 2016), and a CNN recently described in
Flagel et al. (2019)—and both LDhat (McVean et al. 2002) and
LDhelmet (Chan et al. 2012), two widely cited approximate-

likelihood methods. We independently simulated 105 chro-
mosomes using msprime (Kelleher et al. 2016) [parameters:
samplesize 2f4;8;16;32;64g; recombinationrate¼Uð0:0;
6:25e�8Þ;mutationrate¼Uð1:875e�8;3:125e�8Þ; length
¼ 3e5]. Half of these were simulated under demographic
equilibrium and half were simulated under a realistic demo-
graphic model (based on the out-of-Africa expansion of
European humans; see Materials and Methods). We show
that ReLERNN outperforms all other methods, exhibiting sig-
nificantly reduced absolute error (jrpredicted� rtruej) under
both the demographic model and under equilibrium assump-
tions (T � �31; P < 10�16; post hoc Welch’s two-sample t-
tests for all comparisons; supplementary figs. S14 and S15,
Supplementary Material online). ReLERNN also exhibited
less bias than likelihood-based methods across a range of
sample sizes (fig. 3), although all methods generally performed
well at the largest sample size tested (n¼64).

We also sought to assess the robustness of ReLERNN to
demographic model misspecification, where different gener-
ative models are used for simulating the training and test
sets—for example, training on assumptions of demographic
equilibrium when the test data were generated by a popula-
tion bottleneck. Methods robust to this type of misspecifica-
tion are crucial, as the true demographic history of a sample is
often unknown and methods used to infer population size
histories can disagree or be unreliable (see supplementary fig.
S21, Supplementary Material online). Moreover, population
size changes alter the landscape of LD across the genome
(Slatkin 1994; Rogers 2014), and thus have the potential to
reduce accuracy or produce biased recombination rate
estimates.

To this end, we trained ReLERNN on examples generated
under equilibrium and made predictions on 5,000 chromo-
somes generated by the human demographic model specified
above (and also carried out the reciprocal experiment; fig. 4).
We compared ReLERNN with the CNN, LDhat, and
LDhelmet, with all methods similarly misspecified (see
Materials and Methods). We found that ReLERNN outper-
forms these methods under nearly all conditions, exhibiting
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FIG. 3. (A) Distribution of raw error (rpredicted � rtrue) for each method across 5,000 simulated chromosomes (1,000 for FastEPRR). Independent
simulations were run under a model of population size expansion or (B) demographic equilibrium. Sampled chromosomes indicate the number of
independent sequences that were sampled from each msprime (Kelleher et al. 2016) coalescent simulation. LDhelmet was not able be used with
n¼ 64 chromosomes and FastEPRR was not able to be used with n¼ 4.
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significantly lower absolute error under both directions of
demographic model misspecification (T � �26; PWTT <
10�16 for all comparisons, with the exception of the compar-
ison to LDhelmet using 16 chromosomes; supplementary figs.
S16 and S17, Supplementary Material online). We show that
the error directly attributed to model misspecification (which
we term marginal error; see Materials and Methods) is occa-
sionally higher in ReLERNN relative to other methods, even
though ReLERNN exhibited the lowest absolute error among
methods. As a prime example of this, we found predictions
from LDhelmet were not affected by our misspecification
regime at all, but these predictions were still, on an average,
less accurate than those made by a misspecified ReLERNN.
Interestingly, marginal error is significantly greater when
ReLERNN was trained on equilibrium simulations and tested
on demographic simulations than under the reciprocal mis-
specification (T¼ 26.3; PWTT < 10�16; supplementary fig.
S18, Supplementary Material online). Although this is true,
it is important to note that mean marginal error for
ReLERNN, in both directions of misspecification and across
all sample sizes, never exceeded 3:90� 10�9, suggesting that
the additional information gleaned from an informative de-
mographic model is limited.

In addition to model misspecification, differences in the
ratio of homologous gene conversion events to crossovers
can also bias the inference of recombination rates, as conver-
sion tracts break down LD within the prediction window
(Przeworski and Wall 2001; Gay et al. 2007). We treated the
effect of gene conversion as another form of model misspe-
cification, by training on examples that lacked gene conver-
sion and testing on examples that included gene conversion.
As ReLERNN uses msprime for all training simulations, and
msprime cannot currently simulate gene conversion, we gen-
erated all test set simulations with ms (Hudson 2002). We
found that including gene conversion in our simulations

biased our predictions, resulting in an overestimate of the
true recombination rate (supplementary fig. S19,
Supplementary Material online). Moreover, the magnitude
of this bias increased with the ratio of gene conversion events
to crossovers, rGC

rCO
. As expected, we also observed a similar

pattern of bias for LDhelmet, although the magnitude of
bias for LDhelmet was less than that exhibited by ReLERNN
for rGC

rCO
> 2 (T> 4.37; PWTT < 1:32� 10�5; supplementary

fig. S19, Supplementary Material online). As errors in geno-
type calls can mimic gene conversion—for example, a het-
erozygous sample being called as a homozygote—filtering
low-quality SNP calls, either by removing the individual ge-
notype or by masking sites, has the potential to mitigate gene
conversion-induced bias. However, missing genotypes and
inaccessible sites have the potential to introduce their own
biases, highlighting an area where deep learning methods may
have a unique advantage over traditional tools.

ReLERNN Retains High Accuracy on Simulated Low-
Quality Genomic Data Sets
Deep learning tools have the potential to perform exception-
ally well on poor-quality genomic data sets, such as those with
low-quality or low-complexity reference genomes, under
sampling regimes where individual samples are at a premium,
or where base- and map-quality scores are suspect. This is in
part because such attributes of genomic quality can be readily
incorporated during training, and deep learning methods can
generalize despite these limitations. To address the potential
for ReLERNN to serve as an asset for researchers working with
low-quality data—for example, those studying nonmodel
organisms—we simulated 1-Mb chromosomes under a ran-
domized fine-scale recombination landscape, and then
masked increasing fractions of both genotypes and sites.
We then trained ReLERNN with both missing genotypes
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and genome inaccessibility, and generated predictions on the
simulated chromosomes.

We show that ReLERNN exhibits high accuracy and low
bias on data sets with missing genotypes, even as the fraction
of missing data increases to half of all genotypes (fig. 5).
Moreover, we found that ReLERNN had reduced bias and
significantly lower absolute error than LDhelmet at 50% miss-
ing genotypes for both n¼ 4 and n¼ 20 (T � �2:8; PWTT

< 0.007 for both comparisons). Here, we define missing gen-
otypes as any genotype call set to a “.” in the VCF, although in
theory, a simple quality threshold to identify missing

genotypes could also be implemented. Additionally, we
tested ReLERNN across increasing levels of genome inacces-
sibility (up to 75% of all sites inaccessible), simulating a sce-
nario where the vast majority of sites cannot be accurately
mapped—for example, in low-complexity genomic regions or
for taxa without reference assemblies. Here, genome inacces-
sibility refers to any site overlapping a window in the acces-
sibility mask, where the entire genotype array at this site is
discarded. Again, ReLERNN exhibited reduced bias in error
across all levels of genome accessibility relative to LDhelmet
(supplementary fig. S20, Supplementary Material online).
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However, levels of absolute error were not significantly differ-
ent between the methods after correcting for multiple tests
(T � �2:1; PWTT � 0:043 for all comparisons). Together,
these results suggest that ReLERNN may be of particular in-
terest to researchers studying nonmodel organisms or for
those without access to high-quality reference assemblies.

Recombination Landscapes Are Largely Concordant
among Populations of African D. melanogaster
Using our method, we characterized the genome-wide re-
combination landscapes of three populations of African
D. melanogaster (sampled from Cameroon, Rwanda, and
Zambia). Each population was derived from the sequencing
of ten haploid embryos (detailed in Pool et al. 2012; Lack et al.
2015), hence these data represent an excellent opportunity to
exploit ReLERNN’s high accuracy on small sample sizes. The
lengths of genomic windows selected by ReLERNN were
roughly consistent among populations, and ranged from
38 kb for chromosomes 2R, 3L, and 3R in Zambia, to 51 kb
for the X chromosome in Cameroon. We show that fine-scale
recombination landscapes are highly correlated among all
three populations of D. melanogaster (genome-wide mean
pairwise Spearman’s q ¼ 0:76; P < 10�16; 100-kb windows;
fig. 6). The genome-wide mean pairwise coefficient of deter-
mination between populations was somewhat lower, R2 ¼
0:63 (P < 10�16; 100-kb windows), suggesting there may be
important population-specific differences in the fine-scale
drivers of allelic association. These differences may also con-
tribute to within-chromosome differences in recombination
rate between populations. Indeed, we estimate that mean
recombination rates are significantly different among popu-
lations for all chromosomes with the exception of chromo-
some 3L (P � 3:78� 10�4; one-way analysis of variance).
Post hoc pairwise comparisons suggest that this difference is
largely driven by an elevated rate of recombination in Zambia,
identified on all chromosomes (P � 8:21� 10�4; Tukey’s
HSD tests) except for 3L (PHSD � 0:15). ReLERNN predicts
the recombination rate in simulated test sets to a high degree
of accuracy for all three populations (R2 � 0:93; P < 10�16;
supplementary fig. S23, Supplementary Material online), sug-
gesting that we have sufficient power to discern fine-scale
differences in per-base recombination rates across the
genome.

When comparing our recombination rate estimates to
those derived from experimental crosses of North American
D. melanogaster (reported in Comeron et al. 2012), we find that
the coefficients of determination averaged over all three pop-
ulations were R2 ¼ 0:46; 0:70; 0:47; 0:08; 0:73 for chromo-
somes 2L, 2R, 3L, 3R, and X, respectively (supplementary fig.
S24, Supplementary Material online; 1-Mb windows). These
results differ from those observed by Chan et al. (2012), who
compared 22 D. melanogaster sampled from the same
Rwandan population with the FlyBase map and found R2 ¼
0:55; 0:63; 0:45; 0:42; 0:41 for the same chromosomes. The
minor differences we observed between methods for chromo-
somes 2L, 2R, 3L, and the X chromosome can likely be attrib-
uted to the fact that we are comparing estimates from two
different methods, using different African flies, to a different

experimentally derived map. However, the larger differences
found between methods for chromosome 3R seem less likely
attributable to methodological differences. Importantly,
African D. melanogaster is known to harbor large polymorphic
inversions often at appreciable frequencies (Lemeunier and
Aulard 1992; Aulard et al. 2002). For example, the inversion
In(3R)K segregates in our Cameroon population at p¼ 0.9.
These differences in inversion frequencies potentially contrib-
ute to the exceptionally weak correlation observed using our
method for chromosome 3R.

An important cause of population-specific differences in
recombination landscapes might be population-specific dif-
ferences in the frequencies of chromosomal inversions, as
recombination is expected to be strongly suppressed between
standard and inversion arrangements. To test for an effect of
inversion frequency inferences made by ReLERNN, we
resampled haploid genomes from Zambia to create artificial
population samples with the cosmopolitan inversion In(2L)t
segregating at varying frequencies, p 2 f0:0; 0:2; 0:6; 1:0g. In
Zambia, In(2L)t arose recently (Corbett-Detig and Hartl 2012)
and segregates at p¼ 0.22 (Lack et al. 2015), suggesting that
recombination within the inversion breakpoints may be
strongly suppressed in individuals with the inverted arrange-
ment relative to those with the standard arrangement. For
these reasons, we predict that the inferred recombination
rate should decrease as the low-frequency inverted arrange-
ment is increasingly overrepresented in the set of sampled
chromosomes (i.e., as more of the samples contain the high-
LD inverted arrangements). As predicted, we found a strong
effect of the sample frequency of In(2L)t on estimated rates of
recombination for chromosome 2L in Zambia (supplemen-
tary fig. S27, Supplementary Material online), demonstrating
that ReLERNN is sensitive to the frequency of recent
inversions.

To further explore population-specific differences in re-
combination landscapes, we took a statistical outlier ap-
proach, whereby we define two types of recombination rate
outliers—global outliers and population-specific outliers (see
Materials and Methods). Global outliers are characterized by
windows with exceptionally high variance in rates of recom-
bination between all three populations (fig. 6; red triangles),
whereas population-specific outliers are those windows
where the rate of recombination in one population is strongly
differentiated from the rates in the other two populations
(fig. 6; population-colored triangles). We find that population-
specific outliers, but not global outliers, are significantly
enriched within inversions (P¼ 0.005; randomization test;
fig. 6; gray boxes). Moreover, this enrichment remains signif-
icant when extending the inversion boundaries by up to
250 kb (Prand � 0:004). However, extending the inversion
boundaries beyond 250 kb, or restricting the overlap to win-
dows surrounding only the breakpoints (250 kb, 500 kb, 1 Mb,
2 Mb), erodes this pattern (Prand � 0:055 for all compari-
sons), suggesting that the role for inversions in generating
population-specific differences in recombination rates is com-
plex, at least for these populations.

Selection is another important factor that may confound
the inference of recombination rates. For instance selective

Predicting the Landscape of Recombination . doi:10.1093/molbev/msaa038 MBE

1797

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa038#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa038#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa038#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa038#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa038#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa038#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa038#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa038#supplementary-data


sweeps generate localized patterns of high LD on either side of
the sweep site (Kim and Nielsen 2004; Schrider et al. 2015);
thus, regions flanking selective sweeps may mimic regions of
reduced recombination. Inasmuch population-specific selec-
tive sweeps are expected to contribute to population-specific
differences in recombination rate estimates. We used diploS/
HIC (Kern and Schrider 2018) to identify hard and soft selec-
tive sweeps in our African D. melanogaster populations, and
we tested for an excess of recombination rate outliers

overlapping with windows classified as sweeps. In total,
diploS/HIC classified 27.4%, 28.1%, and 26.8%, of all genomic
widows as selective sweeps (either “hard” or “soft”) for
Cameroon, Rwanda, and Zambia, respectively, when looking
at 5-kb nonoverlapping windows. The associated false discov-
ery rates (FDR) for calling sweeps in these populations were
appreciable: 33.9%, 33.1%, and 34.7%, respectively (supple-
mentary fig. S26, Supplementary Material online). As
expected, windows classified as sweeps had significantly lower

FIG. 6. (A) Genome-wide recombination landscapes for Drosophila melanogaster populations from Cameroon (teal lines), Rwanda (purple lines),
and Zambia (orange lines). Gray boxes denote the inversion boundaries predicted to be segregating in these samples (Corbett-Detig and Hartl
2012; Pool et al. 2012). Red triangles mark the top 1% of global outlier windows for recombination rate. Blue, purple, and orange triangles mark the
top 1% of population-specific outlier windows for recombination rate, with triangle color indicating the outlier population (see Materials and
Methods). (B) Per-chromosome recombination rates for each population. Spearman’s q and R2 are reported as the mean of pairwise estimates
between populations for each chromosome. **P< 0.01 and ***P< 0.001 are based on Tukey’s HSD tests for all pairwise comparisons.
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rates of recombination relative to neutral windows in all three
populations (PWTT � 10�16 for all comparisons; supplemen-
tary fig. S25, Supplementary Material online). However, we
found that neither global- nor population-specific outliers
were enriched for selective sweeps (Prand � 0:246 for both
comparisons), suggesting that, when treated as a class, recom-
bination rate outliers are not likely driven by sweeps in these
populations. When treated separately (i.e., independent per-
mutation tests for each recombination rate outlier window),
we identified seven outliers enriched for sweeps at the P �
0:05 threshold, corresponding to an expected FDR of 77%.
However, given our FDR for calling sweeps in these popula-
tions, our measure of the enrichment in overlap with recom-
bination rate outliers is likely to be conservative. Two of these
outlier windows may represent potential true positives; an
outlier in Cameroon contains five out of six nonoverlapping
5-kb windows classified as “hard” sweeps, the second from
Rwanda has 10 out of 12 windows classified as “hard” sweeps
(Prand¼ 0.0 for both comparisons). These two recombination
rate outlier windows are potentially ripe for future studies on
selective sweeps in these populations, and suggest that in at
least some instances, selection contributes to observed differ-
ences in estimates of recombination rates between
Drosophila populations.

Discussion
We introduced a new method, ReLERNN, for predicting the
genome-wide map of per-base recombination rates from
polymorphism data, through the use of deep neural net-
works. Importantly, ReLERNN is particularly well suited to
take advantage of emerging small-scale sequencing experi-
ments—for example, those traditionally associated with the
study of nonmodel organisms. Population genomics, as a field,
relies on estimates of recombination rates to understand the
effects of diverse phenomena ranging from the impacts of
natural selection (Elyashiv et al. 2016), to patterns of admix-
ture and introgression (Price et al. 2009; Brandvain et al. 2014;
Schumer et al. 2018), to polygenic associations in genome-
wide association studies (Bulik-Sullivan et al. 2015). As befits
this need, there has been a long tradition of development of
statistical methods for estimating the population recombina-
tion parameter, q ¼ 4Nr (Hudson and Kaplan 1985; Hudson
1987, 2002; Wakeley 1997; Wall 2000; McVean et al. 2002;
Wiuf 2002; Li and Stephens 2003; Myers and Griffiths 2003;
Chan et al. 2012; Lin et al. 2013; Gao et al. 2016).

We sought to harness the power of deep learning, specif-
ically deep recurrent neural networks, to address the problem
of estimating recombination rates, and in so doing, we devel-
oped a workflow that reconstructs the genome-wide recom-
bination landscape to a high degree of accuracy from very
small sample sizes—for example, four haploid chromosomes
or directly from allele frequencies obtained through Pool-seq.
The use of deep learning has recently revolutionized the fields
of computer vision (Krizhevsky et al. 2012; Szegedy et al.
2015), speech recognition (Hinton et al. 2012), and natural
language processing (Sutskever et al. 2014), and although its
use in population genomics has only recently begun, it is

anticipated to be similarly fruitful (Schrider and Kern 2018).
The natural extension of deep learning to population geno-
mic analyses comes as a result of the ways in which ANNs
learn abstract representations of their inputs. In the case of
population genomic analyses, the inputs can be naturally
represented as DNA sequence alignments, eliminating the
need for human oversight (and potentially constraint) in
the form of statistical summaries (i.e., compression) of the
raw data. ANNs can then learn high-dimensional statistical
associations directly from the sequence alignments, and use
these to return highly accurate predictions.

ReLERNN utilizes a variant of an ANN, known as a GRU, as
its primary technology. GRU networks excel at identifying tem-
poral associations (Jozefowicz et al. 2015), and therefore, we
modeled our sequence alignment as a bidirectional time series,
where each ordered SNP represented a new time step along
the chromosome. We also modeled the distance between
SNPs using a separate input tensor, and these two inputs
were concatenated after passing through the initial layers of
the network (see fig. 1 inlay). We demonstrated that ReLERNN
can predict a simulated recombination landscape with a high
degree of accuracy (R2 ¼ 0:93; fig. 2), and that the accuracy of
these predictions remain high, even when using small sample
sizes (R2 ¼ 0:82; supplementary fig. S4, Supplementary
Material online). These predictions compared favorably with
those made by leading composite likelihood methods (LDhat
and LDhelmet; McVean et al. 2002; Chan et al. 2012), as well as
other machine learning methods (the CNN and FastEPRR;
fig. 3).

We also showed that ReLERNN can achieve modest accu-
racy when presented solely with allele frequencies derived
from simulated Pool-seq data, especially when sequenced at
the relatively modest depth of 5� the pool size (supplemen-
tary fig. S7, Supplementary Material online). Moreover,
ReLERNN performed well at estimating recombination rates
in the face of missing genotype calls—exhibiting reduced bias
when compared with LDhelmet, even with 50% of genotypes
missing (fig. 5) or 75% of the genome inaccessible to SNP calls
(supplementary fig. S20, Supplementary Material online).
Together, these results suggest that ReLERNN will be well
suited to the increasing amount of population genomic
data from nonmodel organisms. Although the abstract na-
ture of the data represented in its internal layers constrains
our ability to interpret the exact information ReLERNN relies
on to inform its predictions, our experiments using incorrect
assumed mutation rates (supplementary figs. S8 and S9,
Supplementary Material online) suggest that ReLERNN is po-
tentially learning the relative ratio of recombination rates to
mutation rates. Because the assumed rate of mutation gov-
erns the inherent potential for ReLERNN to resolve recombi-
nation events—that is, recombination events cannot be
detected without informative SNPs—and because simulation
results suggest ReLERNN is more accurate when overestimat-
ing �l relative to underestimating it, we suggest erring on the
side of overestimating �l. For these reasons, however, an extra
caveat is warranted—use caution when interpreting the
results from ReLERNN as absolute measures of the per-base
recombination rate unless precise mutation rate estimates
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are also known. This actually presents an opportunity—we
suspect that ReLERNN (or a related network) has the poten-
tial to infer the joint landscape of recombination and muta-
tion, though this task likely poses an additional set of
unknown challenges.

Demographic model misspecification is another potential
source of error that should affect not only deep learning
methods targeted at estimating q but also likelihood-based
methods. Historical demographic events (e.g., population
bottlenecks and rapid expansions), because they may alter
the structure of LD genome-wide, can bias inference of re-
combination based on genetic variation data. Our simulations
demonstrated that although all the methods we tested had
elevated error in the context of demographic model misspe-
cification, ReLERNN remained the most accurate across all
misspecification scenarios (fig. 4). Although we caution
against generalizing too much from this experiment, the
model misspecification tested here was extreme: we are
replacing a human-like demography of a bottleneck followed
by exponential growth with a model of constant population
size. We suspect that ReLERNN, by using an RNN, is able to
encode higher order allelic associations across the genome, for
instance three-locus or four-locus LD, and in so doing capture
more of the information available than traditional methods
that use composite likelihoods of two-locus LD summaries.
Additionally, there are clear opportunities for future improve-
ments to ReLERNN. For instance, our simulation studies dem-
onstrated that the GRU used by ReLERNN is also sensitive to
gene conversion events (supplementary fig. S19,
Supplementary Material online), thus, the joint estimation
of rates of recombination and gene conversion may be quite
feasible. Ultimately, it remains far from clear what network
architectures will be best suited for population genetic infer-
ence, though we remain optimistic that ANNs will prove
useful for a variety of applications in the field.

A natural application of ReLERNN, due in part to its high
accuracy with small sample sizes, was to characterize and
compare the recombination landscapes for multiple popula-
tions of African D. melanogaster, for which few populations
with large samples sizes are currently available. Previous esti-
mates of genome-wide fine-scale recombination maps in flies
have focused on characterizing recombination in experimen-
tal crosses (Comeron et al. 2012), or by running LDhat (or the
related LDhelmet) on populations with relatively moderate
sample sizes (i.e., � 22 samples) (Chan et al. 2012; Langley
et al. 2012). Here, we applied ReLERNN to three populations
for which at least ten haploid embryos were sequenced:
Cameroon, Rwanda, and Zambia (Pool et al. 2012; Lack
et al. 2015). Generally, recombination landscapes were well
correlated among populations. Mean pairwise coefficients of
determination among all three populations were R2 ¼
0:69; 0:61; 0:77; 0:43; 0:66 for chromosomes 2L, 2R, 3L, 3R,
and X, respectively. These correlations are notably lower than
those observed in humans (Myers et al. 2005) and mice
(Wang et al. 2017), and one potential biological cause for
this large difference could be the cosmopolitan chromosomal
inversions that segregate in African D. melanogaster (Corbett-
Detig and Hartl 2012; Lack et al. 2015).

Our results suggest that recombination suppression
extends well beyond the predicted breakpoints of the inver-
sion (at least 5 Mb beyond in the case of In(2L)t; supplemen-
tary figs. S27 and S28, Supplementary Material online). This
large-scale suppression of recombination due to inversions in
Drosophila has been observed both directly in experimental
crosses (Dobzhansky and Epling 1948; Novitski and Braver
1954; Kulathinal et al. 2009; Miller et al. 2016; Fuller et al.
2018), and indirectly from patterns of variation surrounding
known inversion breakpoints (Corbett-Detig and Hartl 2012;
Langley et al. 2012). Although it is true that the negative
relationship between inversion frequency and recombination
should only exist for inversions segregating at low frequencies
(e.g., crossover suppression is not expected in inversion
homozygotes), we predict a negative relationship to domi-
nate in these populations, as the majority of polymorphic
inversions are young, segregate at low frequencies, and
show elevated LD along their lengths perhaps due to the
actions of natural selection (Corbett-Detig and Hartl 2012;
Lack et al. 2015).

Although polymorphic inversions exert strong effects on
recombination landscapes, support for their role in explaining
the most diverged regions among populations was mixed—
we found that population-specific recombination rate out-
liers, but not global outliers, were significantly enriched within
the inversions known to segregate in these populations
(fig. 6). Moreover, our predictions for the relative rates of
recombination among populations, based on inversion fre-
quencies per chromosome, were largely not met—the inver-
sions In(2L)t, In(2R)NS, and In(3L)Ok segregate at the highest
frequencies in Zambia, yet this population also has the high-
est average recombination rate for these three chromosomes.
One might speculate that such a result could be due to the
reapportioning of crossovers that occurs due to the interchro-
mosomal effect (Schultz and Redfield 1951), although we
have no firm evidence for this. Chromosome 3R, however,
did match these predictions, having inversions segregating at
the highest frequencies of any chromosome (e.g., pInð3RÞK ¼
0:9 in Cameroon) and also both the lowest coefficient of
determination (R2 ¼ 0:43) and the population-specific re-
combination rates ranked in accordance with inversion fre-
quencies (fig. 6).

Given the small impact that demographic model misspe-
cification had on our predictions, we expect at least some
robustness to patterns of linked selection (e.g., background
selection and hitchhiking) that can lead to skews in the site
frequency spectrum, mimicking population size change.
Although we did not directly test for an effect of background
selection on the accuracy of ReLERNN, we did characterize
patterns of recombination near selective sweep regions in
Drosophila. Interestingly, although we identified two individ-
ual outlier regions characterized by numerous selective
sweeps, we did not observe a significant enrichment of
sweeps overlapping either global- or population-specific out-
liers when these outliers were treated as a class of genomic
elements. This is perhaps surprising, given that selective
sweeps are known to create characteristic elevations of LD
(Kim and Nielsen 2004), and perhaps could mimic regions
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with very divergent levels of recombination in a population-
specific way.

A number of other evolutionary forces might explain the
existence of our outlier regions as well. For example, mutation
rate heterogeneity along the chromosomes could, in princi-
ple, generate spurious peaks or troughs in our estimates of
recombination rate, as ReLERNN in effect scales its per-base
recombination rate estimates by a mutation rate that is as-
sumed to be constant along the chromosome (supplemen-
tary figs. S8 and S9, Supplementary Material online).
Moreover, introgression from diverged populations might af-
fect patterns of allelic association in a local way along the
genome (Schrider et al. 2018; Schumer et al. 2018). Taken
together, our results suggest that although both inversions
and selection can influence population-specific differences in
the landscape of recombination, the preponderance of these
differences likely has complex causes.

Although ReLERNN currently stands as a functional end-
to-end pipeline for measuring recombination rates, the mod-
ular design herein presents a number of important opportu-
nities for extension, with the potential to address myriad
questions in population genomics. For example, the RNN
structure we exploit here could be used for inferring the joint
distribution of gene conversion and crossover events, or for
inferring the distribution of selection coefficients and/or mi-
gration rates from natural populations. In addition, ReLERNN
presents an excellent opportunity for the implementation of
transfer learning, whereby ReLERNN could be trained in-
house on an otherwise prohibitively extensive parameter
space, allowing end-users to make accurate predictions by
generating only a small fraction of the current number of
simulations and training epochs presently required. The ap-
plication of machine learning, and deep learning in particular,
to questions in population genomics is ripe with opportunity.
The software tools that we provide with ReLERNN support a
simple foundation on which the population genetics com-
munity might begin this exploration.

Materials and Methods

The ReLERNN Workflow
The ReLERNN workflow proceeds by the use of four python
modules—ReLERNN_SIMULATE, ReLERNN_TRAIN, ReLERNN_
PREDICT, and ReLERNN_BSCORRECT (or alternatively
ReLERNN_SIMULATE_POOL, ReLERNN_TRAIN_POOL,
and ReLERNN_PREDICT_POOL when analyzing Pool-seq
data). The first three modules are mandatory, and include
functions for estimating parameters such as hW and Ne from
the inputs, functions for masking genotypes and inaccessible
regions of the genome, functions for simulating the training,
validation, and test set, functions for training the neural
network, and functions for predicting rates of recombina-
tion along the chromosomes. The fourth module,
ReLERNN_BSCORRECT, can be used with both individually
sequenced data and Pool-seq data. This module is optional
(though recommended) and includes functions for estimat-
ing 95% CI and implementing a correction function to re-
duce bias. The output from ReLERNN is a list of genomic

windows and their corresponding recombination rate pre-
dictions (reported as per-base crossover events), along with
95% CI and corrected predictions through the use of
ReLERNN_BSCORRECT.

Estimation of Simulation Parameters and Coalescent
Simulations
ReLERNN takes as input a VCF file of phased or unphased
biallelic variants. A minimum of four sample chromosomes
must be included, and users should ensure proper quality
control of the input file beforehand—for example, filtering
low-coverage, low-quality, and nonbiallelic sites. ReLERNN for
Pool-seq takes a single file of genomic coordinates and their
corresponding pooled allele frequency estimates (example
files can be found at https://github.com/kern-lab/ReLERNN/
tree/master/examples). ReLERNN then steps along the chro-
mosome in nonoverlapping windows of length l, where l is
the maximum window size for which the number of segre-
gating sites, S, in all windows is � 1; 750. By default, we
require that S � 1; 750, as extensive experimentation during
development showed that S� 1; 750 has the potential to
cause the so-called exploding gradient problem to arise dur-
ing training (see Pascanu et al. 2013). However, the maximum
S allowed per window is a user-configurable parameter
(��maxSites), and can be increased at the expense of po-
tential training failures. The minimum number of sites in a
window is another user-configurable parameter
(��minSites in ReLERNN_PREDICT) and is set to 50 by
default. As a result of independently estimating l for each
chromosome, the output predictions file may return different
window sizes for different chromosomes, depending on SNP
densities.

Once l has been estimated, ReLERNN_SIMULATE uses the
coalescent simulation software, msprime (Kelleher et al.
2016), to independently generate 105 training examples and
103 validation and test examples. By default, these simulations
are generated under assumptions of demographic equilib-
rium using the following parameters in msprime:
[samplesize ¼ n, where n is the number of chromosomes in
the VCF; Ne ¼ Ne, where Ne ¼ hw

4�llmax
and �l is the assumed

genome-wide per-base mutation rate, lmax is the maximum
value for l across all chromosomes, and hw ¼ Smax

an
where Smax

is the genome-wide maximum number of segregating sites
for all windows and an ¼

Pn�1
i¼1

1
i ; mutationrate ¼

Uðllow; lhighÞ, where llow ¼ 2�l
3 and lhigh ¼ �l þ �l

3;
recombinationrate ¼ Uð0:0; rmaxÞ, where rmax ¼ qmax

�l , and
length ¼ lmax]. In addition to simulating under equilibrium,
ReLERNN can also simulate under a population size history
inferred by one of three programs: stairwayplot (Liu and Fu
2015), SMCþþ (Terhorst et al. 2017), or MSMC (Schiffels and
Durbin 2014). This is handled by proving the raw final output
file to ReLERNN_SIMULATE using the�� demographicHistory
option. When a demographic history is supplied to
ReLERNN, the Ne parameter in msprime is substituted
with a history of population size changes through time,
but the mutationrate; recombinationrate, and length param-
eters are the same as when simulating under constant pop-
ulation size. After each simulation is completed, ReLERNN
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writes both the genotype matrix and a vector of SNP coor-
dinates to temporary.npy files, which are later used during
batch generation.

Sequence Batch Generation and Network
Architectures
To reduce the large memory utilization common to the anal-
ysis of genomic sequence data, we took a batch generation
approach using the fit_generator function in Keras—that is,
only small batches (defaulty batchsize ¼ 64) of simulation
examples are called into memory at any one time.
Moreover, both the order of examples within each batch
and the order of individuals within a single training example
are randomly shuffled (i.e., sample 1 is not always at the top of
the genotype matrix). Data normalization and padding occur
when a training batch is called, and the genotype and position
arrays are read into memory. The zeroth axis of the genotype
and positions arrays is then padded with 0 s (padsize ¼ 5) to
maxðSmax; SsimÞ, where Smax is the genome-wide maximum
number of segregating sites for all windows in the samples
and Ssim is the maximum number of segregating sites gener-
ated across all training, validation, and test simulations.
Padding was added only to the right-hand side of the geno-
type and positions matrices for the analyses presented here.
However, padding on both sides (i.e., centering the data) is an
available option.

The targets for each training batch are the per-base recom-
bination rates used by msprime to simulate each example.
These targets are z-score normalized across all training exam-
ples. Genotypes and positions are not normalized, per se.
Rather, the genotype matrix encodes alleles as reference
(�1), alternative (1), or padded/missing data (0), and variant
positions are encoded along the real number line (0� 1). In
the case of ReLERNN for Pool-seq, we convert the simulated
genotypes into allele frequencies by sampling with replace-
ment the vector of alternative and reference alleles for all sites
to the assumed mean read depth of the pool (a user supplied
parameter). We then exclude any site where the sampled
variant is fixed or where p< 0.05, and stack this newly created
allele frequency vector with the vector of positions. Here,
allele frequencies (but not positions) are z-score normalized.
The normalized and padded genotype, position, and allele
frequency arrays form the input tensors to our neural net-
works, and take the shapes defined in supplementary figure
S1, Supplementary Material online.

ReLERNN trains a recurrent neural network with Keras
(Chollet et al. 2015) using a Tensorflow backend (Abadi
et al. 2015). The complete details of our neural architecture
can be found in the python module https://github.com/kern-
lab/ReLERNN/blob/master/ReLERNN/networks.py, and a de-
tailed flow diagram showing the connectivity between layers
as well as network parameters can be found in supplementary
figure S1, Supplementary Material online. Briefly, the
ReLERNN neural network utilizes distinct input layers for
the genotype and position tensors, which are later merged
using a concatenation layer in Keras. The genotype tensor is
first fed to a GRU layer, as implemented with the bidirectional
wrapper in Keras, and the output of this layer is passed to a

dense layer followed by a dropout layer. On the positions side
of the network, the input positions tensor is fed directly to a
dense layer and then to a dropout layer. Dropout (Srivastava
et al. 2014) was used extensively in our network, and accuracy
was significantly improved when employing dropout relative
to networks without dropout. Once concatenated, output
from the dropout layer is passed to a final round of dense
and dropout layers, and the final dense layer returns a single z-
score normalized prediction for each example, which is
unnormalized back to units of crossovers per-base.
ReLERNN implements early stopping to terminate training
(mindelta ¼ 0:01, patience ¼ 100) and uses the “Adam” op-
timizer (Kingma and Ba 2014) and a mean squared error
(MSE) loss function. Our hypertuning trials were completed
via a grid search over the set of parameters: recurrent layer
output dimensions (64, 82, 128), loss function (MSE, MAE),
input merge strategy (concatenate, average), and dense layer
output dimensions (64, 128), optimizing for MSE.

Total runtime estimates are highly dependent on: 1) the
number of epochs needed to train before the early stopping
threshold is met (which can vary extensively) and 2) the
coalescent simulation parameters (most notably recombi-
nation rate and population size). As an example, the total
runtime for ReLERNN_SIMULATE, ReLERNN_TRAIN, and
ReLERNN_PREDICT on a 1-Mb chromosome with 90,290
segregating sites [parameters: n¼ 20, �r ¼ 7:6� 10�9, and
�l ¼ 2:5� 10�8], which trained for 348 epochs before ter-
minating, was 8,527 s (40 cores Intel Xeon, 1 NVIDIA 2070
GPU). Total runtimes are not strongly influenced by genome
size—for example, the time needed for ReLERNN to make
predictions on the 90,290 SNPs in the example above was
<8.2 s.

Parametric Bootstrap Analysis and Prediction
Corrections
ReLERNN includes the option to generate CIs around each
predicted recombination rate and correct for potential
biases generated during training. To accomplish this, we
used parametric bootstrapping, as implemented by
ReLERNN_BSCORRECT in the following way: after the net-
work has been trained and predictions have been generated,
ReLERNN_BSCORRECT simulates 103 test examples for each
of 100 recombination rate bins drawn from the distribution
of recombination rates used to train the network. The param-
eters for each new simulation example are drawn from the
same distribution of parameters used to simulate the original
training set, with the exception of recombinationrate, which is
held constant for each rate bin. Predictions are then
generated for these 105 simulated test examples using the
previously trained network, generating a distribution of
predictions for each respective recombination rate bin.
About 95% CI is calculated for each bin by taking the upper
and lower 2.5% predictions from this distribution of rates.

The distribution of test predictions can potentially be bi-
ased in systematic ways—for example, predictably underesti-
mating rates of recombination for those examples with the
highest simulated crossover events, possibly due to the lim-
ited ability to resolve high recombination rates with a finite
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number of SNPs. From our inferred CIs, we can correct for
inferred bias in the following way. The bias correction func-
tion takes each empirical prediction, rpredicted, and identifies
the nearest median value, ~Y , from the distribution of 105

bootstrap rate predictions (supplementary fig. S3,
Supplementary Material online). Because each ~Y was gener-
ated from a rate bin corresponding to the true recombina-
tion rate, Y, we can apply the correction function,
fðrpredictionÞ ¼ rprediction þ ð~Y � YÞ, to all predictions. This
method has the effect of increasing rpredicted in areas of pa-
rameter space where we are reasonably confident that we
are underestimating rates and reducing rpredicted in areas
where we are likely to be overestimating rates.
ReLERNN_BSCORRECT is provided as an optional module
for this task, as the resimulation of 105 test examples has the
potential to be computationally expensive, and may not be
warranted in all circumstances. However, as stated above,
the extent of the computational expense is highly depen-
dent on the parameters used in the coalescent simulation,
and may not always contribute substantially to total run-
times. For example, ReLERNN_BSCORRECT increased the
total runtime in the example mentioned above by 8.6%
(9,266 s compared with 8,527 s).

Testing the Accuracy of ReLERNN on Simulated
Recombination Landscapes
To test the accuracy of ReLERNN at recapitulating a dynamic
recombination landscape, we ran our complete ReLERNN
workflow on simulation data replicating chromosome 2L of
D. melanogaster. Using crossover rates estimated by Comeron
et al. (2012), we simulated varying numbers of samples of
D. melanogaster chromosome 2L with msprime using the
RecombinationMap class [parameters: n 2 f4; 20; 50g;
�l ¼ 2:8� 10�9; Ne ¼ 2:5� 105]. Simulated samples were
exported to a VCF file using ploidy ¼ 1, and all simulations
were generated under demographic equilibrium. We used
these simulated VCF files as the input to our ReLERNN pipe-
line, where we varied the assumed �l and the assumed ratio of
qmax to h given to ReLERNN. The assumed �l was varied from
50% less than the rate used in simulations (2:8� 10�9) to
50% greater than the true rate. Likewise, the ratio of qmax to h
was either held constant, resulting in the training set contain-
ing on an average higher or lower per-base recombination
rates than the true rate, or was adjusted to correctly reflect
the true maximum per-base recombination rate used—that
is, approximately 1:2� 10�7 crossovers per base. To run
ReLERNN on simulated Pool-seq data, we used the same
VCFs generated above, but converted all variants to allele
frequencies in the following way: for all sites in the VCF, we
resampled the variant haplotypes with replacement to a sim-
ulated read depth of d 2 n

2 ; 1n; 2n; 5n
� �

and then excluded
all sites where the resampled variant was fixed or where
p< 0.05.

Comparative Methods
We chose to compare ReLERNN with three published meth-
ods for estimating recombination rates—FastEPRR (Gao et al.
2016), a 1D CNN recently described in Flagel et al. (2019) and

both LDhat (McVean et al. 2002) and LDhelmet (Chan et al.
2012). We generated a training set (used by ReLERNN and the
CNN) with 105 examples and tested all of the methods on an
identical set of 5� 103 simulation examples. We generated
two classes of simulations, one simulated under demographic
equilibrium and the other using a demographic history de-
rived from European humans (CEU model; Gravel et al. 2011;
Tennessen et al. 2012). Both classes of simulations were gen-
erated for n 2 f4; 8; 16; 32; 64g, where n is the number of
chromosomes sampled from the population. All simulations
were generated in msprime with the common set of param-
eters [recombination�rate¼Uð0:0;6:25e�8Þ;mutation�
rate¼Uð1:875e�8;3:125e�8Þ; length¼3e5].

For both ReLERNN and the CNN, the same training set
consisting of 105 examples was used to train each neural
network, and the same test examples were used to compare
the predictions produced by each method. Comparisons with
LDhat and LDhelmet were made using the above training
examples to parameterize the generation of independent co-
alescent likelihood lookup tables. For each set of examples of
sample size n, we used the known value of qmax from the
simulated training examples, and we then calculated the av-
erage per-base values for h from the simulated test examples
using Watterson’s estimator. These parameter values were
passed to the functions for lookup table generation in
LDhat and LDhelmet [LDhat options: –n, –rhomax, –theta,
and �npts 101; LDhelmet options: –r 0.0 0.1 10.0 1.0 100.0].
For LDhelmet, we also ran the pade function using the
options [–x 12 and�� defectthreshold 40]. The resulting tables
were used to make predictions on our 5� 103 test examples
using the pairwise function for LDhat and maxlk function for
LDhelmet [options:��maxlkstart 0.0 and��maxlkresolution

0.000001]. Comparisons with FastEPRR were made by trans-
forming the genotype matrices resulting from our test simu-
lations into fasta-formated input files, and running the
FastEPRR_ALN function [using format ¼ 1] in R. As LDhat,
LDhelmet, and FastEPRR all predict q, the resulting predic-
tions were transformed to per-base recombination rates for
direct comparison with ReLERNN using the function
r ¼ qpred�ltrue

hW
, where qpred is the prediction output by each

method, and hW and ltrue are Watterson’s estimator and the
true per-base mutation rate used in the simulation example,
respectively. To compare accuracy among methods, we di-
rectly compared the distribution of absolute errors
(jrpredicted � rtruej) for each method for each set of examples
of sample size n.

To test the effects of model misspecification on predic-
tions, we simply directed ReLERNN and the CNN to use a
training set generated under demographic equilibrium for
making predictions on a test set generated under the CEU
model, and vice versa. To test for the effects of model mis-
specification in LDhat and LDhelmet, we generated a lookup
table using parameter values estimated from the misspecified
training set (e.g., the lookup table used for predicting the CEU
model test set was generated by using parameter values di-
rectly inferred from training simulations under equilibrium).
We did not directly test the effect of model misspecification
using FastEPRR, as this method takes as input only a fasta
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sequence file, and therefore, the internal training of the model
was not able to be separated from the input sequences. To
address the effects of model misspecification, we also directly
compared the distribution of absolute errors
(jrpredicted � rtruej). Additionally, we compared the marginal
error directly attributable to model misspecification among
methods. We defined marginal error as �m � �c, where �m

and �c are equal to jrpredicted � rtruej when the model is mis-
specified and correctly specified, respectively. We simulated
gene conversion test sets using ms (Hudson 2002), with a
mean conversion tract length of 352 bp (corresponding to
the mean empirically derived tract length in D. melanogaster;
Hilliker et al. 1994) and simulated a range of gene conversion
to crossover ratios, rGC

rCO
2 0; 1; 2; 4; 8f g.

Training on Missing Genotypes and Inaccessible
Regions of the Genome
Deep neural networks, through their aptitude for pattern
recognition, can be trained to infer information from missing
data. To harness this ability, we took two different
approaches: 1) we infer patterns of recombination when
some fraction of individual genotype calls are absent (missing
genotypes) and 2) we infer these patterns when some fraction
of all sites cannot be sequenced (genome inaccessibility). To
simulate levels of missing genotypes similar to those found in
real data, we first sample the distribution of all missing gen-
otypes from the input VCF. We then generate a missing ge-
notype mask for all windows in the genome and write this
mask as a temporary file to the disk. Simulation proceeds as if
all genotypes are present, however during batch generation,
one random mask is drawn from the genomic distribution of
masks and applied to the generated genotype matrix, setting
some fraction of genotype calls to 0 (the same element used
to pad). This has the effect of training the network to infer
recombination, even where genotype calls are missing in real
data. To infer recombination in the face of genome inacces-
sibility, we take a similar approach. Here, ReLERNN accepts an
empirical accessibility mask similar to that provided by the
1000 Genomes project (1000 Genomes Project Consortium
et al. 2015). This is provided in BED format, which is then
fragmented into smaller arrays corresponding to the window
size used by ReLERNN_SIMULATE. After simulation proceeds
with all sites present, we randomly draw a mask from the
distribution of empirical accessibility masks, and apply it dur-
ing batch generation, removing all sites marked inaccessible
from the array. We then remove the corresponding sites from
the positions array, and train as usual.

To test ReLERNN’s ability to learn recombination rates in
the face of missing genotypes and genome inaccessibility, we
simulated a 1-Mb randomize dynamic recombination land-
scape in msprime. Here, we randomly selected 39 sites along
the chromosome to serve as recombination rate breakpoints,
generating 40 windows of different rates. For each rate mul-
tiplier, m 2 f3; 3; 3; 3; 3; 5; 5; 5; 5; 5; 7; 7; 7; 10; 10; 10g, we
randomly selected a window to have the recombination rate
m�r , where �r ¼ 2:5� 10�9 is the simulated background re-
combination rate. To simulate missing genotypes, we ran-
domly set genotype calls in the simulated VCF to a “.”,

corresponding to a fraction of total genotypes
2 f0:0; 0:10; 0:25; 0:50g. To simulate an empirical accessi-
bility mask, we simply sampled directly from the phase 3 1000
Genomes accessibility masks (1000 Genomes Project
Consortium et al. 2015) and removed sites in the VCF corre-
sponding to a fraction of total genomic sites
2 f0:0; 0:25; 0:50; 0:75g. To directly compare between the
predictions made by ReLERNN and LDhelmet, we then broke
the VCF into windows of the same length (e.g., 22 kb for n¼ 4
and 10 kb for n¼ 20 for the simulations with missing geno-
types). We then ran both ReLERNN and LDhelmet as de-
scribed above, and compared the distribution of absolute
errors (jrpredicted � rtruej) for each method for each set of
examples of sample size n 2 f4; 20g.

Recombination Rate Variation in D. melanogaster
We obtained D. melanogaster population sequence data from
the Drosphila Genome Nexus (https://www.johnpool.net/
genomes.html, last accessed May 5, 2019; Pool et al. 2012;
Lack et al. 2015). We converted Drosphila Genome Nexus
“consensus sequence files” to a simulated VCF format, exclud-
ing all nonbiallelic sites and those containing missing data. We
chose to analyze populations from Cameroon, Rwanda, and
Zambia, as these populations contained at least ten haploid
embryo sequences per population and each population in-
cluded multiple-segregating chromosomal inversions (sup-
plementary table S1, Supplementary Material online). To
ensure roughly equivalent power to compare rates among
populations, we downsampled both Rwanda and Zambia to
ten chromosomes. We selected individual haploid genomes
for each population by requiring that our sampled inversion
frequencies for each of the six segregating inversions—
In(1)Be, In(2L)t, In(2R)NS, In(3L)Ok, In(3R)K, and In(3R)P—
closely approximate their population frequencies as mea-
sured in the complete set of haploid genomes for that pop-
ulation. All sample accessions and their corresponding
inversion frequencies are located in the Supplementary
Material online.

Before running ReLERNN, we first set out to model the
demographic history for each population using each of three
methods: stairwayplot (Liu and Fu 2015), SMCþþ (Terhorst
et al. 2017), and MSMC (Schiffels and Durbin 2014). With the
exception of MSMC, all methods were run using default
parameters. For MSMC, the use of default parameters gener-
ated predictions that were unusable (supplementary fig. S22,
Supplementary Material online). For these reasons, and after
direct communication with MSMC’s authors, we determined
that running MSMC with a sample size of two chromosomes
would be the most appropriate. Using all three methods, we
show that inferred historical population sizes are unreliable
for these populations—no two methods recapitulate the
same history, and the histories generated by MSMC vary
dramatically depending on the number of samples used (sup-
plementary figs. S21 and S22, Supplementary Material online).
For these reasons, and because results from our simulations
suggest that marginal error due to demographic misspecifi-
cation is quite low for our method (supplementary fig. S18,
Supplementary Material online), we decided to simulate our
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training data under the assumptions of demographic
equilibrium [options: �� estimateDemography False ��
assumedMu 3:27e� 9 �� upperRhoThetaRatio 35].

We measured the correlation in recombination rates be-
tween each African D. melanogaster populations by recalcu-
lating the raw rate for 100-kb sliding windows, as ReLERNN
will predict the rates of recombination in slightly different
window sizes, depending on h for each chromosome. The
recombination rate for each 100-kb window was calculated
by taking the average of all raw rate windows predicted by
ReLERNN, weighted by the fraction that each window over-
lapped the larger 100-kb sliding window. Recombination rate
outliers were identified in two ways: global outliers and
population-specific outliers. Global outliers were identified
by first calculating the mean and SD in recombination rates
for all three populations in each 100-kb sliding window. We
then used the top 1% of outliers from the distribution of
residuals, after fitting a linear model to the SD on the
mean. Population-specific outliers were identified by using a
modification of the population branch statistic (herein PBS*;
Yi et al. 2010), whereby we replaced pairwise FST with the
pairwise differences in recombination rates. We then used the
top 1% of all PBS* scores as our population-specific outliers,
with each outlier corresponding to a PBS* score for a single
population.

To test the effect of inversion frequency on predicted re-
combination rates, we resampled ten haploid chromosomes
from the available set of haploid genomes from Zambia to
generate sampled populations containing In(2L)t at varying
frequencies, p 2 f0:0; 0:2; 0:6; 1:0g. We then ran ReLERNN
on chromosome 2L for each of these resampled Zambian
populations. We classified recombination windows by their
overlap with the coordinates of In(2L)t (as defined in Corbett-
Detig and Hartl 2012), defining windows within the break-
points (inside), windows up to 3 Mb outside the breakpoints
(flanking), and windows>3 Mb outside the breakpoints (out-
side). Recombination rates were negatively correlated with
inversion frequency in our sample, not only within the inver-
sion but also in regions 3 Mb outside the inversion (flanking
regions) (qSpearman0s ¼ �1; P¼ 0.04 for both comparisons).
We also saw a similar negative correlation outside the flanking
regions, although this association was weakened relative to
that within or flanking the inversion (supplementary fig. S27,
Supplementary Material online). Importantly, varying the size
of the flanking regions (from 1 to 5 Mb) produced patterns
that were qualitatively identical, suggesting that the effect of
inversions on recombination suppression extends far beyond
the inversion breakpoints themselves (supplementary fig. S28,
Supplementary Material online).

We also expect that rates of recombination should be
correlated with distance to the inversion breakpoint on
smaller spatial scales. Likewise, recombination rates in the
inversion interior (>2 Mb from the breakpoints) are expected
to be higher than in those regions immediately surrounding
the breakpoints. To test this, we looked at the recombination
rates in our African D. melanogaster populations, binned by
distance to the nearest inversion breakpoints segregating in
these populations. We classified windows by their overlap

with inversion interiors (>2 Mb inside the inversion break-
points) and their overlap with windows within 200 kb, 500 kb,
1 Mb, and 2 Mb of inversion breakpoints. We found that re-
combination rates in the flanking regions are positively cor-
related with distance to inversion breakpoints in both
Rwanda and Zambia (qSpearman0s ¼ 1; P¼ 0.04 for both com-
parisons) but not in Cameroon (qSpearman0s ¼ 0:8; P¼ 0.17;
supplementary fig. S25, Supplementary Material online).
However, with the exception of Cameroon (inversion interior
compared with<250 kb from breakpoint; PWTT¼ 0.035), we
did not observe this pattern (PWTT � 0:057; supplementary
fig. S25, Supplementary Material online).

We tested for an enrichment of both global and
population-specific outliers within inversions by randomiza-
tion tests, permuting the labels for outliers 104 times and
counting the overlap with inversions for each permutation
to calculate the empirical P values. We also tested for an effect
of selection on recombination rates in these populations, by
running diploS/HIC (Kern and Schrider 2018) to detect selec-
tive sweeps. We ran diploS/HIC on each population, training
on simulations generated under demographic equilibrium.
For each population, we simulated 2,000 training examples
from each of the five classes of regions required by diploS/HIC
using the coalescent simulation software discoal (Kern and
Schrider 2016). For simulations which included sweeps, we
drew the selection coefficient from a uniform distribution
such that s � Uð0:0001; 0:005Þ, the time of completion of
the sweep from s � Uð0; 0:05Þ, and the frequency at which a
soft sweep first comes under selection as f � Uð0; 0:1Þ. We
drew h from U(65, 654) and we drew q from an exponential
distribution with mean 1,799 and the upper bound truncated
at triple the mean. For the discoal simulations, we simulated
605 kb of data with the goal of classification of the central
most 55-kb window. We looked at the overlap with “sweep”
windows (those classified as either “hard” or “soft”) and those
windows classified as “neutral” by diploS/HIC. Our complete
diploS/HIC pipeline for these samples is available at https://
github.com/kern-lab/ReLERNN/tree/master/manuscript. All
statistical tests were completed in R (R Core Team 2018),
with the exception of empirical randomization tests, which
were completed using Python.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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