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Abstract

We describe a visual computing approach to radiation therapy planning, based on spatial similarity 

within a patient cohort. In radiotherapy for head and neck cancer treatment, dosage to organs at 

risk surrounding a tumor is a large cause of treatment toxicity. Along with the availability of 

patient repositories, this situation has lead to clinician interest in understanding and predicting RT 

outcomes based on previously treated similar patients. To enable this type of analysis, we 

introduce a novel topology-based spatial similarity measure, T-SSIM, and a predictive algorithm 

based on this similarity measure. We couple the algorithm with a visual steering interface that 

intertwines visual encodings for the spatial data and for the statistics-related results, including a 

novel parallel-marker encoding that is spatially aware. We report quantitative results on a cohort of 

165 patients, as well as a qualitative evaluation with domain experts in radiation oncology, data 

management, biostatistics, and medical imaging, who are collaborating remotely.
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1 INTRODUCTION

Modern radiation therapy (RT) has seen large advancements in the application of 

computational approaches for imaging and rendering structural data of a patient. However, 

once this information is extracted, the field requires a high level of human expertise and a 

tremendous amount of effort to create and develop personalized, high-quality treatment 

plans. For example, head and neck radiotherapy plans take as long as a week, which, given 

that aggressive tumors double in 30 days, deteriorates the chances of tumor control and 

patient survival [25]. Furthermore, radiotherapy plans also affect organs located nearby a 

tumor, resulting in significant toxicity (side effects) and loss of quality-of-life. There is no 

current method to predict toxicity before the development of the plan.

With the emergence of large patient RT data repositories, there is growing interest in 

leveraging these repositories to computationally predict the dose distribution and toxicity for 

a patient before the actual RT plan is created. Under a healthcare model termed ”precision 

medicine,” such predictions would be based on outcomes registered for past patients with 

similar characteristics. These characteristics include the location of the tumor relative to the 

nearby organs at risk, which heavily influences the development of radiotherapy plans.

However, due to a lack of computational methodology to handle spatial similarity, radiation 

oncology clinicians rely solely on structural visual information from medical images, prior 

knowledge, and memory to guide the development of radiation plans and to forecast toxicity. 

This approach is not scalable.

In this work, we present a visual computing approach to RT planning, based on spatial 

similarity within a patient cohort. This approach builds on a novel spatial measure based on 

tumor-to-organs distance and organ volume, and its application in a predictive algorithm for 

dose distribution. The resulting algorithms are integrated with visual steering to support the 

algorithm development in a remote collaborative setting, as well as deriving insight into the 

role of spatial information. Specifically, the contributions of this paper are: 1) a novel hybrid 

topological-structural similarity measure for spatial data, inspired by an image fidelity 

technique; 2) the development of a predictive algorithm for RT dose distribution, based on 

this spatial similarity; 3) the design and implementation of an interface to guide the 

development of these algorithms, including a novel parallel-marker visual encoding which is 

spatially-aware; 4) the application of these algorithms and design to the emerging field of 

precision oncology RT planning, along with a description of this novel domain; 5) a 

quantitative and qualitative evaluation with collaborating domain experts.
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2 RELATED WORK

Related work consists of other projects that study spatial similarity measures, visual 

integration of spatial biomedical data with nonspatial data, and visual steering to assist in 

model development.

Spatial Similarity

In general, approaches in bioinformatics, pathology and oncology [12, 29, 47, 50] facilitate 

spatial similarity by encoding spatial relationships through graph-based techniques. Unlike 

in our case, the underlying graphs are often small or constructed manually by clinicians [42, 

51]. A second class of methods, based on 3D shape-based similarity, have been successful in 

shape retrieval applications in computer vision and computer graphics [6, 9]. These methods 

typically experiment with artificial models such as CAD models or 3D scanner output and 

tend to focus on classifying models of very different shapes. These methods fall short of 

distinguishing anatomical objects within the same class unless the objects have easily 

identifiable structures, such as the mandible and outer body contour [32,38]. In our case, 

structures are in the same class and do not have easily identifiable features. A third class of 

methods seeks to apply deep learning to significantly reduced, narrow versions of the 

similarity problem. For example, Nguyen et al. [25] use deep-learning to predict dose 

distribution over a small set of organs in a cohort that had received the same type of RT plan, 

using as input the tumor dosage and masks for organ 3D volumes. However, to date, no 

method has looked at automatically quantifying spatial similarity between patients for a 

large number of organs or a variety of treatments, or at presenting the prediction 

methodology in a way that can be understood by clinicians, as we do.

Visualizing Biomedical Data and Nonspatial Data

Through established surface extraction and rendering algorithms, scientific visualization of 

biomedical data has been able to gradually shift its research focus towards visual computing 

[15], integration of nonspatial data [11], and new technologies. For example, instead of 

rendering magnetic resonance data from scratch, Nunes et al. [27] were able to focus on a 

visual computing problem by linking existing medical imaging software (MITK [49]) with 

statistical views of metabolic data to support delineation of target volumes in RT planning. 

In recent RT plan visualization research, Patel et al. [28] use virtual reality (VR) to visualize 

radiation treatment plans, allowing visualization of 3D structures with hue and opacity, as 

typically done in desktop applications. Ward et al. [44] describe a VR system for radiation 

planning that allows the user to alter beam positions during planning. Although these and 

other works have led to advances in viewing and planning specific radiotherapy plans in 

detail, none of these works seek to compare RT plans between patients or make predictions.

In terms of spatial-nonspatial data integration, two prevailing paradigms for integrating 

spatial and non-spatial features exist: overlays and multiple coordinated views (sometimes 

called linked views) [17]. In biomedical scientific visualization, an overlay approach [4, 36, 

37] is commonly used when the non-spatial feature is scalar. As the non-spatial data 

becomes more complex (connectivity, clusters, dynamic characteristics, other statistics), the 

linked-view paradigm [1, 3, 10] becomes prevalent. Several reports [17, 19, 20] further 
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support the use of coordinated views in collaborative tasks which involve multiple users with 

complementary expertise. Other more recent approaches [16,20,26] use a hybrid approach 

that consists of both overlays and linked views. We follow a similar hybrid approach to 

support the exploration of RT plan data.

Visual Steering for Model Development

Visual steering (or integrated problem-solving environments) is a top problem in scientific 

visualization [11]. Under this research umbrella, visualization tools for predictive model 

development have been developed for domain-specific applications. Naqa et al. [7] 

developed a Matlab-based visualization tool for helping create statistical models for dose-

toxicity outcomes for specific organs at risk, using a combination of statistical views and 

model controls. Unlike in our work, their project assumed that the dose-distribution was 

already known, and was restricted to individual organs. Poco et al. [30] developed a system 

for visualizing and developing similarity measures in environmental data but focused on 

abstracted views for improving the measures without referring to underlying spatial patterns, 

as we do. Kwon et al. [13] provided a generic method for clustering model development and 

used it for the development of patient similarity when diagnosing heart failure, but with no 

spatial data included. Visual steering tools based on multiple coordinated views appear also 

in visual encoding design [21], engineering [31, 45], epidemiology [20], cell signaling [34], 

and artificial intelligence [22]; some of these works emphasize visually adjusting a 

simulation as it progresses, while others couple the steering with off-line processes. These 

methods differ from our goals in the key consideration of the problem space. We are 

interested in developing predictive models using RT medical data, which has unique 

requirements related to spatial and statistical data.

3 METHODS

3.1 Domain Background and Problem

In head and neck cancer treatment, radiation therapy (RT) is often used as a primary or 

secondary treatment for patients. Radiation oncology relies heavily on the use of imaging in 

order to obtain information about the patient’s tumor and surrounding anatomical features. 

Traditionally, data acquisition is accomplished via magnetic resonance imaging (MRI), 

computational tomography (CT), or ultrasound. These techniques provide 2d image slices 

across the target volume, that can then be segmented to identify organs of interest and used 

in diagnostics and radiotherapy planning. Current planning techniques typically use these 

image overlaid with a color map to allow the clinician to ‘paint’ the dose across the organ as 

a way to visualize the outcome of the different radiation plans [40].

In radiation therapy planning, a primary concern is limiting dose to organs at risk near the 

target volume, while maximizing tumor exposure. For example, a head and neck tumor may 

receive 66–72 Gy units of radiation, while nearby organs at risk ideally would receive lower 

amounts. Unfortunately, that is not always possible, and radiotherapy has been linked by 

several studies to organ damage and long-term toxicity (side effects), including xerostomia 

(permanent dry mouth), and swallowing complications [5, 14, 48]. In light of these 

considerations, high-precision methods have been developed that allow for complex, highly 
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conformable radiotherapy plans to be developed and delivered. Intensity-modulated 

radiation therapy (IMRT) is one such method.

IMRT allows for delivering more precise dose distributions by using multiple (5–9) different 

radiation beams, each with tunable intensity distribution shape [14]. The increased 

complexity of these plans comes at the cost of longer planning time and heavy reliance on 

clinician knowledge [24]. IMRT plans are typically created through a mixture of expert 

knowledge and planning software, with repeated trial-and-error rounds and consultation 

between the planner expert and the physician regarding the plan quality and tradeoffs. 

Beams are typically set up at a fixed height, determined by the expert, in order to reduce the 

problem space for the optimization software. Constraints are given on the allowable doses to 

organs of interest, which typically take the form of maximum doses to organs at risk, and 

minimum constraints to the target dose [46]. As a result, the problem space and planning 

time is expensive, and there is keen interest in leveraging computational techniques in order 

to support predicting the outcome of the radiation plan earlier in the process.

At the same time, the high incidence of cancer cases has led to the creation of large 

repositories of patient data, along with their diagnosis scans, their respective RT plans, and 

treatment outcomes. Under the ”precision medicine” healthcare model, practitioners seek to 

leverage these repositories in order to predict for a specific patient the most appropriate 

therapy course, along with the outcomes of that treatment. Unlike in personalized medicine, 

the precision medicine prediction is based on data collected from a cohort of similar patients 

in the repositories [19].

While cohort similarity based on abstract data (e.g., based on genetic sequence profile) is in 

general well researched in the statistics community, there is a general lack of spatial 

similarity methodology. In the domain instantiation discussed in this work, our radiation 

oncology collaborators would like to be able to automatically retrieve, given the diagnostic 

scan of a new patient, a cohort of patients with similar tumor location. Currently, this is done 

based on clinician or institution memory alone, which is clearly not scalable. Should such an 

automated similarity measure become available, the domain experts would then like to 

analyze the patterns in the RT plans of the patients within that cohort. Based on that 

information, they would like to predict the RT dose distribution for the new patient and its 

potential effects, without going through a detailed RT planning process from scratch. 

Because these tasks and activities rely on the visual assessment of spatial similarity and 

prediction in terms of dose distribution over the head and neck organs, the problem stands to 

benefit from a visual computing solution.

We arrived at this domain characterization of precision radiation therapy planning through a 

two-year collaboration with a team of radiation oncologists and statisticians distributed 

throughout multiple geographical sites. During this collaboration, we (four visual computing 

researchers) held weekly remote meetings and quarterly inperson meetings with a group of 

four radiation oncologists, a data management specialist, and a statistician. To characterize 

this novel application domain and design a solution, we followed an Activity-Centered-

Design paradigm (ACD) as described in detail by Marai [18], coupled with team science 

principles for remote collaboration, previously described [19].
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3.2 Design Process

We implemented the theoretical ACD paradigm through an iterative, multi-stage process. 

After identifying and confirming with our collaborators the main activities to be performed, 

the research team met weekly with the domain experts, as the algorithms and application 

were being developed and the design refined, to collect feedback and to verify that evolving 

requirements were being satisfied. In concordance with activity-centered design, we used a 

quantitative methodology to assess the capabilities of the resulting solution, and a qualitative 

evaluation methodology with note-taking to analyze the user activities.

3.3 Data Pre- and Post- Processing

Data for this project is part of a repository of head and neck cancer patients from the MD 

Anderson Cancer Center that had received IMRT. Contrast-enhanced computed tomography 

(CECT) volume imaging data from the initial patient diagnoses were retrieved through 

commercially available contouring software [35]. Contours were manually segmented to 

extract primary (GTVp) and secondary nodal gross tumor volumes (GTVn), as well as 

volumes of interest in the prediction related to organs at risk. Each CECT image was 

512×512 pixels, with a slice thickness of 1.25–5mm, peak kilovoltage of 120–140, and a 

tube current of 100–600 mA. Connected tumor volumes were treated as one volume. After 

segmentation, a custom Matlab script was used to extract a list of structural features for each 

volume of interest, including structure volume, centroid position, and distance between each 

volume of interest, including tumor volumes. Distance was measured as the minimum 

distance between the two volumes, allowing some distances to be negative if they 

overlapped due to concave-convex adjacency and partial volume effects. Dosimetric data on 

the minimum, mean, and maximum dose for each volume of interest was extracted from 

radiation plans. Additional data on each patient’s treatment plan was also provided, which 

included the patient’s tumor laterality, tumor subsite, and prescribed dose. All patient data 

was anonymized; patients were coded using dummy ids.

45 organs of interest were identified as being of interest by our oncology collaborators, in 

addition to the primary and secondary tumor volumes. Of the candidate patients, only those 

with data on all 45 organs, and at least one primary or secondary tumor volumes were 

included. Since segmentation and labeling of the data were done manually for higher 

accuracy, some anomalies in the dataset were found after visual analysis. Patients with organ 

position or mean doses more than 3 standard deviations about the population average were 

flagged and analyzed alongside our collaborators using the visual computing solution, and 

those with likely erroneous radiation plans were also excluded. In total, 165 patients were 

included in the final cohort. Data was further post-processed in order to compute derived 

features used in the visual interface, create dose predictions, and label patients with 

clustering results, as described below.

3.4 T-SSIM Spatial Similarity Algorithm

In constructing a similarity algorithm special considerations need to be made for our 

problem. First, traditional methods of measuring similarity along feature vector 

representations, such as correlation or mean-squared-error, do not take into account the 

original structure inherent in the patient’s anatomy. Second, as discussed in Section 2, 
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neither shape-based techniques or deep-learning techniques are a good match for this 

problem. Third, the large number of organs-at-risk considered and the lack of clinician 

agreement makes infeasible the manual construction of a 3D graph structure based on the 

head and neck data. Fourth, an algorithmically constructed 3D graph-structure would have 

large edge cardinality, as well as variable locations for the tumors, making graph-based 

matching algorithms infeasible. Because of these considerations, we arrived at a hybrid 

solution: 1) algorithmically construct a topological structure based on organ adjacency; this 

structure will be common among all patients; 2) for each patient, generate two copies 

(instances) of the structure with tumor-to-organ distance data and volume data, respectively, 

specific to that patient; 3) define a similarity measure over these patient-specific data 

structures, inspired by image processing. Figure 2 illustrates this process.

Our spatial similarity algorithm is inspired by the Structural Similarity Index (SSIM) [43], 

which is traditionally used to measure signal fidelity when comparing two images. Since the 

SSIM was designed for image processing, it takes advantage of an important assumption 

about the data: that pixel position serves as a direct analogue of spatial position. Because our 

data is already a reduced set of features (organs and tumors), rather than the original CECT 

images, this image-based assumption no longer holds. However, by reformulating the 

problem, we can use the spatial data we have to achieve the same effect, as described below. 

We refer to this reformulation as the Topological Structural Similarity Index, or T-SSIM.

In the original SSIM, a sliding window is used to calculate image similarity between the 

same local regions in two images. This local similarity is computed as:

SSIM(A, B) =
2μ(A)μ(B) + c1 2σ(A, B) + c2

μ(A)2 + μ(B)2 + c1 σ(A, A)2 + σ(B, B)2 + c2

where μ(A) is the mean of matrix A, σ (A; B) is the matrix covariance between two matrices 

A and B, and σ (A; A) is the self-covariance of matrix A; c1 and c2 are small constants that 

are used for numerical stability. One of the reasons we use a local window is because image 

features and distortions are often space-variant. The window serves to isolate pixels within a 

certain distance from each other when making a comparison. The data of interest is localized 

in the pixels, so window size serves as a direct analog for actual distance. In contrast, our 

data is spatially bound to the centroids of each target volume. Thus, we want to find a way to 

encode the distance between the centroids, rather than a pixel distance. While the direct 

equivalent of a sliding window would be constructing a 3D area and sliding through 

different voxels, most of those voxels would be empty. Instead, we construct a topological 

equivalent.

In order to construct a topological equivalent to the image data in SSIM and create an analog 

to the sliding window, we need notation to describe when two volumes are within a window, 

for which we will use the concept of spatial adjacency. Let us define a matrix 

D|O |x |O|, where di, jεD denotes the average distance between organs i and j across the cohort. 

We define two organs as being adjacent when the average distance between them is less than 

a certain distance dmax. Mathematically, we can write this as oj oi∀oj, oiεO|di, j < dmax, 
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where the ~ operator denotes adjacency. If we consider our window to be a 3D sphere 

centered at a point, we can define all organs within the window as all the points adjacent to 

the center of the sphere (Fig. 2A). For efficiency, we will only consider the set of windows 

centered at each organ. Conversely, we can represent this set of windows as an adjacency 

matrix M|O |x |O|:

Mi, j =
1 oi oj
0 else

In other words, the row Mi in our topological structure is a row representing all the organs in 

the data that are within a certain distance from organ i (Fig. 2B). Via simple line search so 

that the whole topological structure is connected, we found the optimal parameter dmax as 

80mm for the window size. The topological structure is common across all patients.

The next element needed for an SSIM approach is an analog for pixel values. In our data, 

each organ is bound to several variables that could be used. Alternatively, we can compute 

similarity over multiple variables, and take a weighted average of them. The downside of 

such an approach would be that not all possible variables have the same amount of influence 

in the final result, so using multiple values would require careful weighing of the values. To 

overcome this problem, we consider the underlying formulation of the SSIM.

The original formulation of the SSIM can alternatively be written as the composition of 

three functions for intensity (luminance), contrast, and structure. These components can be 

written as:

l(x, y) =
2 * μ(x) * μ(y) + c1
μ(x)2 + μ(y)2 + c1

c(x, y) =
2 * σ(x) * σ(y) + c2

σ(x)2 + σ(y)2

s(x, y) =
2 * σ(x, y) + c2

2 * σ(x) * σ(y) + c2

using the same notations as in SSIM. This formulation allows us to combine multiple 

variables. While we found that the distances between the primary tumor and each organ 

provided good matches using the original formulation for the SSIM, we can augment that 

measure further by considering the organ volume as another intensity channel.

For notation, let us consider the set of the organs adjacent to organ i, Mi, and patients A and 

B. Let us instantiate a copy of the topological structure with the matrix of tumor-organ 

distances V |P | , |O| and another copy with the matrix of organ volumes V |P | , |O| (Fig. 2C), 

where Ti,j represents the jth organ of the ith patient. We want to perform calculation over 

subsets of adjacent organs that we encoded in M. We can write each of these local subsets of 

values as Mi ⋅ Tj = Tj
(i)and Mi ⋅ T = V j = V j

(i) . Put simply , Tj
(i) is the set of tumor-organ 

distances for all the organs near organ i, for patient j. With this notation, we can now define 

local similarity as:
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fi(A, B) = l TA
i , TB

i * l V A
i , V B

i * c TA
i , TB

i * s TA
i , TB

i

By summing up the local similarity scores along the entire set of organs we obtain a 

similarity score for patient A and patient B. We can then generate a matrix of similarity 

scores S|P | , |P |, where each entry is:

SA, B =
∑i = 0

O fi(A, B)
O

After computing similarity scores between all patients, scores are normalized across the 

dataset to be between 0 and 1. In Fig. 1 right, note how this measure successfully retrieves 

patients with similar tumor location.

3.5 Prediction and Statistical Analysis

To predict a patient’s dose distribution, we use a weighted k nearest neighbors algorithm, 

which is a common method of prediction in similarity-based health models [33]. 

Specifically, the dose distribution prediction was calculated as the per-organ dose average of 

the k most similar patients. This calculation can be written as:

Radi, j
predicted =

∑nεNiSn, j * Radn, j
∑nεNiSn, j

where Rad|P |x |O| is a matrix of radiation doses across the cohort, Radi,j denotes the radiation 

dose to the jth organ for the ith patient, and Ni is the set of the k most similar patients to 

patient i.

Even before applying a clustering algorithm to this similarity matrix, we started noticing, 

through visual steering, unusual groups of patients forming based on this similarity measure, 

with specific patterns of radiation distribution. An immediate goal became to perform 

clustering and statistical analysis using this spatial measure and incorporate the resulting 

information into visual steering: each patient was labeled with a cluster computed separately 

from the similarity measure, as discussed in Section 4. In addition, to allow for the 

dosimetric and tumor-organ distance data to be viewed across the whole dataset, principal 

component analysis (PCA) [8] was done on the matrix of radiation doses Rad and tumor-

organ distance T. When making a prediction, only patients within the same cluster were 

considered. When analyzing the optimal number of matches for our prediction (Section 4), 

we found that the number varied with the size of the cluster, and making the parameter 

tunable for different clusters helped improve performance. Via simple line search, we found 

that a good number of matches to use as the square-root of the cluster size.

All data processing, calculations for similarity, predicted dose, and PCA were computed 

offline, and all necessary information was exported as a JSON file for use in visual steering.
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3.6 Visual Steering Design

The visual steering component of this application (Fig. 1) followed multiple design 

iterations, aligned with the similarity algorithm and prediction algorithm development. The 

final prototype design was designed to support the following activities, derived from the 

domain characterization: (1) analyze the result of data clustering and similarity measures in 

the context of the entire cohort, and of spatial and dosimetric data, (2) analyze the inherently 

spatial dosimetric data extracted from the patients’ scans and radiation therapy plans in a 

way that is visually intuitive to the domain experts, (3) compare those similar patients used 

in dose predictions, (4) analyze the result of our T-SSIM patient similarity measure, and (5) 

analyze the results of the dose prediction algorithm.

The final prototype comprises several linked views. We chose to use linked views because 

they allow visual scaffolding from familiar visual representations to less familiar encodings 

[17]. Unlike public health research, which is focused on cohorts, precision medicine is about 

the treatment of a specific patient, so the entry point to the application is a search box for a 

specific patient within the cohort (the default is the first patient). Because radiation 

oncologists are familiar with RT plan renderings, a stylized view of the radiation plan of the 

selected patient is placed centrally on the screen. Additional RT views for the most similar 

patients put the patient in a more local context, and allow the user to assess how the 

prediction algorithm is being used concretely. To support analysis within the cohort context, 

and allow for clustering studies, a scatterplot shows the clustering data among different 

dimensions that can be explored. Finally, we provide a novel encoding that allows for the 

local dose distribution for each organ of interest to be understood within the context of the k 

most similar patients. By linking the views, we provide a way of allowing specific plans to 

be understood within context, and we support a variety of workflows for exploring the data. 

We describe each component in detail below.

3.6.1 Stylized Radiation Plan Renderings—Centrally in the visual interface is a 

stylized rendering of the radiation plan for the selected patient (Fig. 3). Organs of interest 

are represented as circles drawn at the organs’ centroids. In order to reduce issues with 

segmentation and allow the visualization to be rendered without requiring information on the 

entire 3D contours from the CECT scans, the organ shapes are represented for context using 

transparent, generic 3D VTK models, centered at the centroids of the target volumes. A 

slider changes the opacity level of the organ models in the radiation plan, as well as the 

color-scale to the right of the radiation plans. By combining centroid data and generalized 

models instead of full 3D contours, we effectively reduce the computational requirements of 

the system and minimize visual occlusion while still showing a recognizable 3D structure of 

the patient anatomy. We encode dose to each organ distance based on the luminance of the 

respective centroid node and model; we encode larger doses with darker values. Gross 

Tumor Volumes (GTVs) are shown only as nodes located at the tumor centroids, as there are 

no corresponding 3D contours for these regions. To better distinguish the GTVs, they are 

drawn in black with a radiation-dose luminance border. Additionally, when both a primary 

tumor (GTVp) and secondary (GTVn) are present, a line segment is drawn between these 

nodes, to further emphasize their spatial relationship. These stylized 3D views, as well as a 

miniature cube with orientation labels (scene bottom-right corner), can be rotated in sync by 
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direct manipulation to allow the user to more easily see specific areas, while still being able 

to recall the current orientation quickly. Additional marks, labels, and details on demand 

help correlate information across the views, respectively display information about organ 

names, dosage, volume, and tumor location. This stylized rendering was the result of several 

design iterations, ranging from highly stylized node-link renderings of the organs to fully-

fledged volume renderings, and a variety of markers and labels to indicate current 

orientation and details.

Because one of the goals is to be able to analyze the result of the prediction algorithm, tabs 

above the radiation plan allow the user to change the view to the predicted plan, and to the 

prediction error in the plan. We encode the prediction error using a blue color scheme in 

order to distinguish which information is currently shown.

A separate, scrollable panel (Fig. 1 right) shows similar stylized 3D views for the nearest-

neighbors of the selected patient, sorted by descending similarity. Allowing the user to 

control the matched radiation plans separately supports the placement of those plans near the 

selected patient plan for easier comparison. For these nearest radiation plans, the similarity 

score between the given patient and the currently selected patient is shown in the top-right 

corner. Two color scales, automatically populated to encode the upper bounds of the doses 

found in the dataset, serve as a visual reference for colormaps, as well as inform the user of 

the minimum and maximum mean dose and prediction error in the data.

3.6.2 Scatterplot View—A main activity of interest to our collaborators was being able 

to analyze clustering results in the data. Additionally, during algorithm development we 

wanted a way to find correlations across the dataset, to help identify where the largest 

prediction errors were occurring. Since the main data of interest was the relationship 

between spatial information and the radiation plan, followed by dose prediction, we selected 

the distances between the GTV and the 45 organs of interest and the dose information, 

respectively, as two of the feature spaces that could be viewed. For these feature spaces, 

PCA was done to project the 45 data dimensions to two. After several visual computing 

iterations and further discussion with collaborators (described in the Evaluation section), it 

was determined that tumor volume was also an important factor, and so it was included as an 

additional space. Since tumor volumes are usually categorized in 3–4 discrete stages, we 

used both the GTVp and GTVn volumes as proxy values to allow for better discrimination 

among the cohort.

Patients in the scatterplot are color-coded according to cluster labels. The number of clusters 

shown was decided also through several iterations of visual computing, described in Section 

4. In order to allow for easier perception of outliers, an envelope is drawn around each 

cluster. Animated transitions when changing the axis variables in the scatterplot allow for a 

visual understanding of how the different clusters are distributed across multiple dimensions 

(Fig. 4). Tooltips on the scatterplot allow the user to view the name, size, mean dose, and 

mean prediction error for the entire cluster.

Markers in the scatterplot are sized by the error in the radiation therapy prediction for each 

patient, in order to allow easy identification of patterns in prediction error and to find 
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outliers in the data. By default, patients are represented as semi-transparent circular markers, 

while a different shape is used for the patient in focus (a cross) so they can be more easily 

identified via pre-attentive cues. In an application of Tufte’s layering and separation 

principle [39], patients used as matches for the selected patient are given a higher opacity 

and larger border so that they can be identified among the rest of the cohort. Additional 

tooltips allow the user to view the patient id, position, mean dose, prediction error, cluster, 

and current position in the scatterplot.

3.6.3 Parallel-Marker Plot for Organ Doses—While rendering the radiation plans in 

3D provides an intuitive understanding of the relationship between the anatomical structure 

of the patient and the radiation plans, it proved insufficient for understanding the details of 

how the dose prediction was generated for each organ. Often, the dose distribution will vary 

significantly in a few organs across the cluster, while others, such as the brainstem and eyes, 

show little variance. In addition, a small number of matches means that a single outlier can 

strongly skew the distribution for certain organ predictions.

As a result, we wanted a way to explore and analyze the dose distribution across the matches 

used for the prediction, while keeping track of spatially-collocated organs. Because 

predictions are based on a small number of patients at a time, traditional statistical plots such 

as box plots or violin plots are not appropriate for this task, as a single outlier would skew 

them in the data. Likewise, encodings that rely on size to encode distribution density require 

excessive screen real-estate to be visually discernible, which is infeasible when visualizing a 

large number (45 organs) of distributions.

Instead, we introduce a spatially-aware parallel marker encoding to fit our goals (Fig. 1 

bottom). The encoding uses a parallel coordinate system, where the x-axis is divided into 

equal-length bins, each corresponding to one organ of interest in the radiation plan, not 

including GTVs. To encode spatial organization of anatomical marks, we started by 

grouping the 45 organs into 6 different categories (Throat, Oral Cavity and Jaw, Salivary 

Glands, Eyes, Brainstem & Spinal Cord, and Misc), which were determined after discussion 

with our radiation oncology collaborators at MD Anderson Cancer Center, and we laid out 

organs within each category contiguously along the x-axis. A vertical line is extended up the 

center of each bin to provide a visual reference. The order of the axes is fixed and based on 

the anatomical groups. The y-axis encodes dose, scaled based on the minimum and 

maximum dose found in the entire dataset. Moving the mouse into a bin highlights the 

vertical line for that bin, and brings up a tooltip giving the name of the organ, the predicted 

organ dose, and the actual organ dose for the currently active patient.

Within each bin, the dose to the specific organ is encoded by a marker for each patient 

considered for the current prediction. We chose to plot each patient point individually, given 

the relatively small number of points in each bin. By making makers semi-translucent, 

regions where several points overlap appear as more opaque, giving a visual indicator of 

density. The current patient is denoted by a different shape (cross), while matches are shown 

as dots and colored based on their clusters, maintaining consistency in color and shape with 

the encodings in the scatterplot. The predicted dose is also denoted by a cross marker, 

colored in blue. The size of dot markers is based on the computed similarity with the given 
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patient. This encoding serves as a visual metaphor, as larger dots carry more ‘weight’ in the 

prediction, and the predicted dose is effectively at the center-of-mass of the dots in each bin. 

We converged to this composite encoding after experimenting with and discarding parallel 

plot coordinate plots, as well as a variety of other axis encodings, markers, and channels.

The different views are linked through color, marker shapes, and brushing and linking. For 

example, when the user hovers over the encoding of another patient, all other encodings 

related to the same patient are highlighted in white (Fig. 1). Additionally, the user can select 

a patient to bring into focus by clicking on a point in the scatterplot or clicking on the patient 

ID label above their radiation plan. The data processing and algorithm for our system was 

implemented in python, using the NumPY library [41] for doing numerical computations, 

and Pandas [23] for data-processing. The front-end visualization was implemented as a web-

based tool using HTML, CSS, and Javascript, with the three.js and d3.js libraries.

4 EVALUATION AND RESULTS

Because of the visual computing nature of this project, we use a hybrid quantitative and 

qualitative evaluation methodology shaped along two case studies. We first present a case 

study of how visual analysis was used in conjunction with our similarity measure to help 

develop and improve the prediction algorithm. Along with this discussion, we present 

quantitative data about the prediction performance. In the second case study, we present a 

qualitative evaluation done with four senior domain experts in data mining, biostatistics, 

cancer medicine, and medical imaging.

4.1 Case Study: Algorithm Development

One of the topics of interest to our collaborators was understanding the importance of 

structural similarity in predicting radiation plans. However, traditional prediction methods 

are complicated by the fact that radiation plans can vary widely based on subjective planning 

factors that can be patient-case, clinician, or institution specific. In this first analysis, we 

discuss the development and performance of our prediction algorithm in conjunction with 

this goal, demonstrate how insight from the visual computing tool was leveraged to help 

improve the prediction algorithm, and how visualization can be used to convey the results to 

clinicians to allow for better expert feedback in the algorithm design process.

We begin by first describing our metric for quantitatively assessing the success of the 

prediction algorithm. Given that for each patient in the cohort we have access to the actual 

RT plan for that patient, the accuracy of prediction across the cohort can be computed via 

leave-one-out validation, as follows: 1) for each patient in the cohort, use the tumor-to-organ 

distances and organ volumes to determine the most similar patients in the cohort via the T-

SSIM similarity measure; 2) use the set of similar patients’ RT plans to predict the dose 

distribution per organ (i.e. the RT plan) of the current patient; 3) compute and report the 

prediction error as the difference between the predicted RT plan and the actual RT plan for 

that patient; 4) report the mean error across the cohort. In assessing error, we chose to 

compute the total absolute error for each patient. We decided on this metric over root mean 

squared error (RMSE), since the RMSE is typically done to more strongly punish outliers.
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Using the similarity measure and prediction algorithm without dividing the cohort into 

clusters, we initially found a mean prediction error of 16.68%, or 6.15 Gray units (Gy), with 

a standard deviation of 9.31%. We compared this method to the naive method, where the 

predicted dose distribution is simply the average of the entire cohort. Using this naive 

method, we get a mean error of 20.62%, or 7.48 Gy with a standard deviation of 14.0%, 

which was suspiciously close to the performance of our initial prediction.

To better understand these results, the data and outliers were inspected using the visual 

steering tool. For each outlier prediction in the dataset, we inspected the k nearest neighbors 

selected for the prediction in the RT panel adjacent to the outlier patient. Where visual 

inspection did not pick up on subtle cues, the dose distribution plot was particularly useful in 

helping identify suspicious neighbor matches. Using the RT views, RT outliers were found 

to belong in three distinct pattern classes. Patients in these classes had larger errors, 

suggesting that they had peculiarities in their dose distribution that were not being captured 

by our similarity measure alone. Radiation plans for the patients in the 3 classes were 

analyzed and discussed with our radiation oncology collaborators and contrasted with 

patients with good predictions. In this manner, we identified four distinct patterns in how the 

radiation plans were distributed (Fig. 5). This finding was subsequently confirmed in the 

scatterplot panel. The first, largest group was the ‘standard’ plan, recognized by our 

collaborators as most common for the cohort. Another group comprised a subset of the 

patients that received additional radiation to their lower throat, near the larynx. While 

surprised by this finding, our collaborators found this second RT plan type consistent with 

results reported by Amdur et al. [2]. Amdur et al. discussed the choice of delivering 

additional irradiation to the larynx in patients and compared it to other methods of 

irradiation that largely avoid irradiating the larynx at all, leading to two potentially highly 

different dose distributions based on subjective planning choices made by the physician. The 

remaining two plan types were groups that appeared to have received highly unilateral 

radiation to only a specific side of their head, with the two groups corresponding to the two 

sides of the head. The radiation oncologists were enthusiastic and surprised by the power of 

the measure in making these findings possible. It was determined after discussion with our 

collaborators that the differences between the four plan types were likely due to radiation 

planning methods related to several other factors than tumor location, including the health of 

the patient, the tumor staging, and whether a biopsy had previously been done on the 

primary or secondary tumor.

Given this insight, we investigated introducing four clusters into the prediction, based on the 

different radiation plan archetypes found. This time, by only considering similar patients 

within the same cluster, our prediction error improved dropped to 12.3%, or 4.71 Gy, with a 

standard deviation of 4.43%. When normalized by prescribed dose, the total prediction error 

is 6.87% across the four clusters and for the 45 organs considered. Beyond the ability of the 

measure to identify the four RT classes, this prediction power was considered remarkable by 

our medical collaborators.
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4.2 Case Study: Toxicity and Clustering Outlier

Because our project aims to support expert researchers in a specialized domain, we 

performed a remote qualitative evaluation with four senior domain experts, who are co-

authors on this paper (GC, DV, BE, GM). The experts have extensive backgrounds in data 

mining, biostatistics, radiation oncology, and medical imaging, respectively. All participants 

were familiar with the visual computing application throughout its development stages. 

Because of the experts’ participation in the design process, the lack of an alternative existing 

system to solve the same problem, and in further accordance with the ACD paradigm, the 

evaluation was focused on the functionality of the application with respect to the target 

problem. Participants were given a briefing on the different components and basic 

functionality of the visual interface and were encouraged to ask questions to guide the 

exploration of the data and algorithm results. The first author navigated the application with 

direct guidance from the participants, who were shown the same screen and were able to 

communicate with each other.

The main goal was to investigate whether our similarity measure can predict whether a 

patient will develop a particular toxicity (side-effect) after RT treatment, such as requiring 

the insertion of a feeding tube (FT). There are no current algorithms that can accomplish this 

type of prediction. The starting point of this investigation was a subset of 92 patients in the 

cohort for whom toxicity data was readily available. Collaborator GC had generated a 

clustering of this subset using our similarity measure, with the aim of correlating the tumor-

locations and RT plans with the toxicity data. The clustering had yielded three clusters, one 

of which was statistically correlated with the feeding tube toxicity.

The investigation (Fig. 6) started with the group examining the resulting clustering. The 

clustering had been done on the patient similarity scores provided by our similarity measure, 

and no expert (including GC) had seen the labeled results before in the context of the patient 

spatial information. The analysis started with the scatterplot visualizing the clusters, with 

targeted questions about the three PCA tabs. In the organ-dose plot, a collaborator noted that 

the clustering visibly divided the patients into separated groups. This was exciting to the 

group, given that the clustering had been done over the spatial similarity only, independent 

of dose. One of the visual computing researchers pointed out the cluster that was statistically 

correlated with the feeding tube outcome (cyan cluster in Fig. 6.A).

Upon further inspection, the group noted that some of the matches within a different cluster 

(magenta cluster in Fig. 6.A) were far apart in the organ-dose plot while being close when 

plotted against the principal components of the tumor-organ distance. The group asked why 

that was the case, and proceeded to examine the RT views of that patient (Fig. 6.B), and then 

the prediction made by the algorithm for that patient. Upon noticing spatially-localized 

higher prediction errors (Fig. 6.C), the group proceeded to examine the RT views of the 

nearest neighbors used to compute the prediction. By correlating the view of each neighbor 

with the corresponding highlighted mark in the organ-dose scatterplot, the group was able to 

determine a suspicious neighbor match: while the tumor location in the neighbor was very 

similar to one in the patient under consideration, the two patients were apart in the dose-

distribution plot (Fig. 6.D). A detailed investigation of the two patients and their match 

followed, using this time the parallel-marker plot (Fig. 6.E). One of the experts noted a 
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localized difference in a contiguous subset of organs in the marker plot (last quartile of x-

axis), and as the group circled back to the RT view of the match, they noticed that the 

neighbor RT featured a low dose to half of their head (Fig. 6.F). The expert in radiation 

oncology explained that the way the radiation plan was done could have been affected by a 

number of factors, such as if a biopsy had been performed on the patient’s lymph node. This 

led to a group discussion of the earlier case study and the usefulness of including a fourth 

cluster in the analysis, then to potential ways to incorporate more patients, followed by 

future plans to predict other toxicity outcomes based on the RT prediction.

An interesting result of this evaluation was the ability of the different domain experts to 

guide parts of the visualization and ask questions to each other. The collaborator with a 

background in data mining understood in detail principal component analysis, and was able 

to immediately explain the plot tabs to another expert. Instead of stopping the investigation 

with a convenient p-value finding, the group continued to examine the clustering that had 

generated that outcome, and were able to spot outliers and suggest improvements to the 

clustering. The medical imaging expert caught on the spatial dose pattern and explained it to 

the other specialists. When analyzing why two patients were being matched despite having 

notably different dose profiles with the clustering, the expert in radiation oncology provided 

the rest of the group with a clinical rationale for that fact. The statistician picked up on that 

interpretation, and suggested additional data collection. The group was able to efficiently use 

the whole system in order to make an important observation. Overall, we believe that this 

evaluation highlights a potential for visual computing methods such as these to support 

interdisciplinary collaboration more effectively.

5 DISCUSSION AND CONCLUSION

This work introduces a hybrid topological-image fidelity approach to creating an RT spatial 

similarity measure. Our results show that the resulting measure can successfully retrieve 

patients with similar tumor location. The similarity measure was then be successfully used 

to make a valid prediction of RT dose distributions in a new head and neck cancer patient. 

The development of this measure and prediction algorithm was made possible through a 

visual steering approach, where a visual interface coupled with the spatial algorithms 

enabled us to identify and analyze situations where early algorithm versions were failing. 

The same approach enabled us to identify four specific RT patterns in the data, and, in 

conjunction with the spatial similarity measure, to improve prediction. When evaluated on a 

dataset of 165 patients, the prediction had good accuracy: 4.71 Gy, compared to doses per 

organ as high as 70–90 Gy. We also observed low 4.43% standard deviation in the computed 

error, suggesting high certainty in our prediction. This type of certainty is particularly 

important when dealing with life-affecting patient outcomes. In conjunction with clustering, 

the spatial measure enabled detecting correlation between patient groups and a specific 

toxicity, paving the way towards precision medicine that leverages spatial information in 

patient data repositories.

Another result of this integrated approach is the ability to visually assess outliers and 

problems in the data. Since our data relies on segmentation of complex CECT images, 

problems in the data are to be expected. The high-dimensional nature of this data, combined 
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with a relatively small dataset, makes outlier detection using traditional methods difficult. 

Additionally, automatic outlier detection methods are insufficient, since the presence of 

different clusters in the radiation plans means that new data could appear to be outliers, 

when in fact they are valid, but uncommon, RT plans, and that bad data can insidiously look 

‘normal’. However, by visualizing outliers in the data, we were able to consult with experts 

in order to determine if the resulting anatomies and radiation plans are plausibly valid, or 

can be removed. For example, two patients in the cohort, upon inspection, had several 

organs, including their eyes, positioned near the base of their throat. While these 

configurations are physiologically impossible, they were not detected in standard outlier 

detection, and even showed high similarity scores with each other.

Our qualitative evaluation also shows that a visual computing approach grounded in the 

ACD paradigm and visual scaffolding principles can lead to a satisfactory outcome for a 

difficult scientific problem. Using this approach, collaborators with a variety of 

complementary expertise were able to work together in order to gain insight into the 

relationship between spatial information and RT plans. A coordinated-views paradigm 

furthermore allowed us to leverage visual representations familiar to some of the experts, in 

order to expose those experts to novel or unfamiliar encodings. For example, oncologists 

were able to build from RT volume renderings to the cluster and parallel-marker encodings. 

In the same vein, we note that our parallel-marker plot builds on familiar statistical plots 

while accommodating fewer samples and spatial contiguity. Because these visual encodings 

were developed through participatory design, we do not explicitly report feedback, which 

was enthusiastic, from our collaborators.

While our approach and spatial algorithms are generalizable to other problems in medicine 

and elsewhere, we note that there are limitations as well. First, details of an RT plan can 

change based on factors specific to the clinician and institution. For example, we have seen 

in our data that there are many cases where two patients are similar in terms of tumor 

location, but only one patient has highly-unilateral dosing. When generalizing a prediction 

method, we have to consider that other clusters could arise due to differences in the data, as 

well as technological and methodological differences between institutions. As a result, being 

able to inspect the data and leverage clinical knowledge is an essential function that can be 

accomplished through the use of visual computing.

Furthermore, while our current measure can encapsulate volumetric and spatial information, 

higher-level information on the structure of the organs, such as oblateness and orientation, 

could be relevant and could also be included. Additionally, computing the similarity scores 

takes O(n2) with the size of the patient cohort and so it is done offline, while more 

sophisticated clustering methods are run off-site. This means that currently, online analysis 

can take place only once the results are generated. Given the importance of the scientific 

problem, our collaborators deem off-line processing perfectly acceptable. In addition, our 

parallel-marker plot, which works well for 45 organs, has limited scalability to thousands of 

measurements. Finally, while our approach does not rely on learned parameters, we need to 

specify two meta-parameters: window size for computing organ adjacency, and an optimal 

number of matches to use in the prediction. In our study, we found the optimal parameters 

via a simple line search.
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In conclusion, in this work we present a visual computing approach to support the 

development of a predictive algorithm to estimate radiotherapy plans in head and neck 

cancer patients. We present a novel hybrid way of measuring anatomical similarity based on 

topology and traditional measures of image fidelity. This similarity measure is then used in 

the emerging field of precision oncology, to retrieve patients in a cohort who are likely to 

have similar radiation plans and outcomes. By tightly coupling a visual analysis interface 

and a novel encoding with our algorithms, we derived valuable insight into the role that 

spatial information plays in radiation therapy planning. We were able to drive the 

development of the predictive algorithm. This visual steering approach is supported by 

employing coordinated views of spatial and nonspatial, statistical data. These views allowed 

domain experts in radiation oncology, statistics, data management and medical imaging to 

explore the data from different perspectives. Ultimately, the visual computing methodology 

presented in this paper enables calculations and insights over medical data that were 

otherwise not possible.
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Fig. 1. 
Visual computing for cohort-based radiation therapy prediction. A stylized view of the 

predicted radiation plan of the current patient is placed centrally; top pale markers (front and 

back of eyes) receive the least radiation; tumors in black receive the most. Additional RT 

views show the most similar patients under our novel T-SSIM metric, who contribute to the 

prediction; the most similar patient is currently selected for comparison. A scatterplot (left) 

shows 4 clusters generated through the T-SSIM metric, with the current (cross) and 

comparison patient highlighted. A parallel-marker encoding (bottom) shows the predicted 

(blue cross) per-organ dose distribution within the context of the most similar patients; 

spatially collocated organs are in contiguous sections of the x-axis.
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Fig. 2. 
Construction of the spatial similarity measure. (A) A sliding window (a sphere, illustrated in 

2D here) steps through the centroids of the organs to identify nearby organs. (B) Each step in 

the sliding window is used to constructed a variable-length vector using the set of nearby 

organs (e.g., 2 organs in Step 1, 3 in Step 2, 4 in the n step). (C) Two sets of vectors 

populated with tumor-organ distances and volumes, respectively, for each patient are 

created. These vectors are used as inputs into a similarity function (T-SSIM) to compare two 

patients. The vectors can be represented in matrix form, as described in Subsection 3.4.
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Fig. 3. 
Three stylized renderings of the 3D radiation plan for Patient 152 showing the actual (left), 

the predicted (center), and the prediction error (right, in blue) in the radiation plan. Circular 

markers indicate the location of organs at risk, and black markers indicate the tumors. Red 

luminance is mapped to the radiation dose (higher dose mapped to darker shades) and blue 

luminance is mapped to error size, respectively. Transparent organ models are shown for 

context. The pale markers at the top correspond to the eyes, and the lowest marker is located 

down the spine.

Wentzel et al. Page 23

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Two configurations of the scatterplot. The data can be plotted across the principal 

components of the radiation doses (top), primary and secondary tumor volumes (bottom), 

and principal components of the distances between each organ and the primary tumor 

volume (see Fig. 1) top left.
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Fig. 5. 
Example radiation plans for the 4 different patterns identified in the data. Top left: a plan 

with a higher dose to the lower-anterior throat. Top right: a plan with a ‘standard’ dose 

distribution, where radiation is lower in the throat and distributed to both the left and right 

sides of the head. Bottom right: a plan with dosing primarily to the right side of the head. 

Bottom left: a plan with dosing primarily to the left side of the head.
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Fig. 6. 
Snapshots of key moments during the qualitative evaluation. (A) Picture of the dose-PCA 

scatterplot on the reduced cohort using the clustering provided by GC. Clusters visibly 

divide the feature space despite being done without dose information. (B) RT plan for the 

patient being inspected (shown in (A) as the cross magenta marker). (C) RT prediction error 

for the patient. Error rates are highest on the left side of the head. (D) Close up of the dose-

distribution. One of the matches (highlighted) is significantly further from the other matches. 

(E) Parallel-marker dose plot of the patient and its matches. Doses from the suspicious 

match (highlighted) are significantly lower for several adjacent areas. (F) Radiation plan of 

the suspect patient, who received almost no radiation to the left side of their head.
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