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Abstract Background: In the past decade, lateral lumbar
interbody fusion (LLIF) has gained in popularity. A pro-
posed advantage is the achievement of indirect neural de-
compression. However, evidence of the effectiveness of
LLIF in neural decompression in lumbar degenerative con-
ditions remains unclear. Questions/Purposes: We sought to
extrapolate clinical and radiological results and consequent-
ly the potential benefits and limitations of LLIF in indirect
neural decompression in degenerative lumbar diseases.
Methods: We conducted a systematic review of the literature
in English using the 2009 Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines and checklist. Scores on the Oswestry Disability Index
(ODI) and visual analog scale (VAS) for back and leg pain
were extracted, as were data on the following radiological
measurements: disc height (DH), foraminal height (FH),
foraminal area (FA), central canal area (CA). Results: In
the 42 articles included, data on 2445 patients (3779 levels
treated) with a mean follow-up of 14.8 ± 5.9 months were
analyzed. Mean improvements in VAS back, VAS leg, and

ODI scale scores were 4.1 ± 2.5, 3.9 ± 2.2, and 21.9 ± 7.2,
respectively. Post-operative DH, FH, FA, and CA measure-
ments increased by 68.6%, 21.9%, 37.7%, and 29.3%, re-
spectively. Conclusion: Clinical results indicate LLIF as an
efficient technique in indirect neural decompression. Analysis
of radiological data demonstrates the effectiveness of symmet-
rical foraminal decompression. Data regarding indirect decom-
pression of central canal and lateral recess are inconclusive and
contradictory. Bony stenosis appears as an absolute contraindi-
cation. The role of facet joint degeneration is unclear. This
systematic review provides a reference for surgeons to define
the potential and limitations of LLIF in indirect neural elements
decompression.
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Introduction

In the USA, the volume of lumbar fusion increased by
62.3% between 2004 and 2015, and a 177% increase was
registered in total hospital costs over a 12-year period,
exceeding $10 billion in 2015 [34].

In the last decade, lateral lumbar interbody fusion (LLIF)
has gained in popularity. The technique was described by
Ozgur et al. in 2006 and represents a minimally invasive
surgical procedure on the lumbar disc space via a retroper-
itoneal transpsoas approach [42]. The following advantages
of LLIF have been reported: (1) indirect neural decompres-
sion and solid bone fusion with a large interbody cage that
rests on both lateral sides of the vertebral end-plate epiphy-
seal ring, minimizing incidence of cage subsidence, nerve
root lesions, post-operative radiculitis, and durotomies, and
(2) a better restoration of sagittal and coronal patient profile
compared with posterior techniques. The mechanism of
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indirect decompression relies on the recovery of disc height
with consequent increase of foraminal height and stretching
of the ligamentum flavum and posterior longitudinal liga-
ment with restoration of central canal area [1, 5, 7, 9, 13, 15,
21, 32, 36, 37, 39, 45, 55, 56]. However, evidence of the
effectiveness, advantages, and limitations of LLIF in neural
decompression in different lumbar degenerative conditions
remains unclear, perhaps negatively affecting the patient-
selection process. The aim of this study was to systemati-
cally review the literature in order to extrapolate clinical and
radiological results and, consequently, the potential benefits
and limitations of LLIF in indirect neural decompression in
lumbar degenerative diseases.

Materials and Methods

A systematic review of the literature was performed in com-
pliance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA). We searched
Medline through PubMed, Google Scholar, Embase, and the
Cochrane Central Register of Controlled Trials. The following
key words and MeSH terms were used in the search: “lateral
lumbar interbody fusion,” “extreme lateral interbody fusion,”
“LLIF,” “XLIF,” “ELIF,” and “indirect decompression.”

The inclusion criteria were retrospective or prospective
studies, including randomized controlled trials, non-
randomized trials, cohort studies, case–control studies, and
case series providing clinical and radiological results of
LLIF in indirect neural decompression in lumbar degenera-
tive diseases. Studies in English without any restriction on
publication date were also included. All non-English arti-
cles, cadaveric studies, case reports, literature reviews, tech-
nical notes, and editorial letters were excluded.

One reviewer applied the foregoing criteria to select
potentially relevant studies. Articles were initially identified
based on titles and abstracts; the full-text version of the
relevant trials was then obtained and evaluated. References
of the identified articles were checked in order not to leave
any relevant article unexplored.

The following data, when available, were extracted from
the articles: number of patients, number of treated levels,
mean age of the population (years), body mass index (BMI),
mean follow-up (years), indications for surgery, data on
surgical strategy (stand-alone LLIF, LLIF plus lateral instru-
mentation, LLIF plus posterior instrumentation), cage height
and width, cage geometry (parallel or lordotic), sagittal cage
position in disc space, radiological parameters (disc height
(DH), foraminal height (FH), foraminal area (FA), central
canal area (CA), clinical results (Oswestry Disability Index
[ODI] and visual analog scale [VAS] of leg and back pain),
and failed indirect decompression needing surgical revision.
In the analysis of foramen height and area, a distinction
between left and right side was performed, when possible.
The studies that did not declare a specific datum were
excluded by the global evaluation of that parameter.

The level of evidence of the studies was assigned based
on the 2011 Oxford Centre for Evidence-based Medicine
Levels of Evidence [35].

Statistical Analysis

Categorical variables were expressed as the number of
cases or percentage. Continuous variables were reported
as mean ± standard deviation (SD). The heterogeneity in
population demographic features was assessed using the
Pearson χ2 and analysis of variance (ANOVA) tests.
Correlations between variables were assessed with the
coefficient regression test. All analyses were performed
with Stata Software, version 14.2 (StataCorp, College
Station, TX, USA).

Results

A total of 42 articles were eventually included in our sys-
tematic review [1, 3–5, 7–9, 11, 13–15, 17, 19–25, 27–30,
32, 33, 36–41, 43–46, 49, 51, 52, 55, 56, 59, 60]. Two
studies were level II evidence [19, 52], seven were level III
evidence [11, 24, 32, 46, 49, 56, 59], and the remaining were
level IV evidence (Fig. 1).

Pooled data available in the included studies indicated
2445 patients (mean age, 64.2 ± 3.4 years; mean BMI, 28.4
± 2.1 kg/m2) underwent LLIF. The population analyzed
appeared homogeneous for available demographic data:
male/female ratio (Pearson’s χ2 test, p > 0.05) and average
age (ANOVA test, p > 0.05). The mean follow-up time was
14.8 ± 5.9 months. A total of 3779 intervertebral disc spaces
were operated on; surgical data were available only for 2639
levels. The most frequently treated levels were L4–L5
(43.3%), L3–L4 (31.4%), and L2–L3 (17.5%). Almost all
of the interventions were performed in the lumbar region,
with the exception of 41 surgeries involving thoracic discs.
The main surgical indications were spondylolisthesis, de-
generative disc disease, adult degenerative scoliosis, central
canal stenosis, adjacent segment disease, post-laminectomy
syndrome, disc hernia, and foraminal stenosis. Table 1 pro-
vides a summary of the demographic data extracted from the
included studies.

The height of the implanted cages was available for 705
levels: 64 were 8 mm (9.1%), 229 were 10 mm (32.4%), 277
were 12 mm (39.2%), 121 were 14 mm (17.1%), and only
14 were 16 mm (2.0%) [6, 9, 12, 18–20, 31, 40]. For 1030
levels, the type of cage was described: 861 were lordotic (6
to 10°) and 169 were parallel cages [6, 9, 12, 13, 17–20, 22–
24, 40]. Five authors reported the sagittal cage position in
disc space, dividing the vertebral plate into anterior, middle,
and posterior thirds; data were available for 379 cages: 134
were included in the anterior third (35.4%), 207 in the
middle third (54.6%), and only 38 in the posterior third
(10.0%) [24, 25, 27, 37, 43].

Twenty-eight authors (2686 procedures) reported that the
stand-alone option was chosen in 582 cases (21.7%), 1875
procedures (69.8%) were completed with a posterior instru-
mentation, and in 229 cases (8.5%), a lateral instrumentation
was implanted [3–5, 7–9, 11, 13, 15, 17, 19, 21–25, 28, 29,
35, 38, 40, 41, 43, 45, 46, 49, 55, 56].

Finally, information regarding the width of the implanted
cage was available for a total of 1009 levels. In 677 cases, a
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cage of 18 mm in width was implanted (67.1%), 283 were
22 mm (28%), and 49 were 26 mm in width (4.8%) [4, 7, 9,
11, 19, 25, 27, 32, 36, 37, 40, 56]. Table 2 provides a
summary of the available surgical data extracted from the
included studies.

The authors reported clinical status with different out-
come scales, the most common being the ODI score and the
VAS score for back and leg pain. The level of disability was
evaluated with ODI in 26 studies, with a mean improvement
of 21.86 ± 7.22 points (95% CI, 18.8–24.9) [4–8, 10–14, 18,
20–24, 29–32, 34, 36, 37, 39, 41, 43]. The mean ODI
variation extrapolated from the included studies was 47.6
± 10.3% (range, 33–72), which was superior to the reported
minimum clinically important difference of ODI (11%) after
adult spinal deformity surgery [61].

Twenty authors reported a mean improvement of back
and leg pain with VAS score reduction of 4.1 ± 2.5 (95%
CI, 3.6–4.6) and 3.9 ± 2.2 (95% CI, 3.4–4.4), respectively
[3–5, 13–15, 20–22, 27–30, 33, 35, 37, 38, 45, 56, 60].
Table 3 provides a summary of the clinical outcomes
reported by the included studies. Radiological outcomes
were analyzed by 27 authors on the basis of plain radio-
graphs, computed tomographic (CT) scans, and magnetic
resonance imaging (MRI).

The increase in disc height (DH), pre- to post-oper-
atively, was reported by 23 authors, with a mean rise of
67.2% (3.8 ± 1.5 mm; 95% CI, 3.2–4.5) [3–5, 9, 13, 15,
19, 20, 22–25, 27, 35–37, 40, 43, 44, 46, 49, 55, 59].
Fourteen authors described a mean improvement of fo-
raminal height (FH) of 3.5 ± 1.2 mm (95% CI, 2.4–4.6;
21.9% of mean increase) [4, 5, 8, 13, 22, 25, 30, 35,
36, 40, 44, 55, 56, 59]. In three case series, a distinction
between the two foraminal sides could be performed:
3.1 ± 1.2 mm left FH versus 3.0 ± 1.4 mm right FH
[30, 36, 55]. Twelve papers reported variations in both
DH (X) and FH (Y) [4, 5, 8, 13, 22, 25, 35, 36, 40, 44,
55, 59]. The outcome of the corresponding regression
analysis was the equation Y = 0.82X − 0.03; the estimated
slope was 0.82 ± 0.46.

The FA was analyzed in ten studies. The mean
variation in FA was 43.6 ± 30.9 mm2 (95% CI, 21.5–
65.7; mean increase, 37.7%) [9, 20, 23, 27, 30, 37, 40,
43, 55, 59]. In seven case series, a distinction between
the two foraminal sides could be performed: 37.7 ±
31.6 mm2 left FA versus 37.2 ± 36.3 mm2 right FA [9,
20, 23, 27, 30, 37, 55]. Nine papers reported variations
in both DH (X) and FA (Y) [9, 20, 23, 27, 37, 40, 43,
55, 59]. The outcome of the corresponding regression

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart for the search and inclusion strategy.
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analysis was the equation Y = 4.94X + 25.30; the
estimated slope was 4.94 ± 7.67.

The canal area (CA) was evaluated by ten authors [9,
14, 19, 20, 37, 40, 43, 55, 59, 60]. The mean CA
increase was estimated at 36.4 ± 26.3 mm2 (95% CI,
18.1–54.7; mean increase, 29.3%). Eight papers reported
variations in both DH (X) and CA (Y) [9, 19, 20, 37, 40,
43, 55, 59]. The outcome of the corresponding regression
analysis was the equation Y = 3.94X + 12.31; the
estimated slope was 3.94 ± 3.30.

The reoperation rate was extrapolated in seven studies
[5, 17, 23, 29, 35, 38, 40]; 38 patients out of 385 (9.9%)
needed a direct decompression because of persistent radic-
ular or axial pain. The main reasons reported were severe
pre-operat ive canal stenosis , cage mobil izat ion,
spondylolisthesis with facet instability, and bony lateral
recess stenosis. Table 4 describes the available radiological
results extrapolated by the included studies.

Discussion

LLIF has gained in popularity in the treatment of degener-
ative lumbar spinal conditions in the past decade. The liter-
ature reports the following advantages of LLIF: (1)
improved indirect neural decompression and (2) improved
restoration of sagittal and coronal patient profile, compared
with posterior techniques [6, 19, 52]. Moreover, some au-
thors also suggest that lateral access in revisions offers a new
surgical avenue to the spine, avoiding the scar tissue created
by the previous posterior and anterior approaches and thus
reducing surgical time, blood loss, and surgical complica-
tions [16, 48]. Several authors have focused their attention
on the specific complications related to this surgical ap-
proach [2, 11, 12, 18, 46, 47, 50, 58, 62, 63]. However,
evidence on the effectiveness, potential benefits, and limita-
tions of LLIF in neural decompression in different lumbar
degenerative conditions is still lacking. The supposed

Table 1 Demographic data extracted from the included studies. BMI body mass index, FU follow-up, LLIF lateral lumbar interbody fusion, LoE
level of evidence

Author LoE No. of patients No. of LLIF Mean age (years) Mean BMI (kg/m2) Mean FU (months)

Ahmadian et al. 2015 [1] 4 59 96 60 – 14.6
Aichmair et al. 2017 [3] 4 52 52 61.9 29.3 16.1
Alimi et al. 2014 [4] 4 90 145 64 27.6 12.6
Alimi et al. 2015 [5] 4 23 23 66 – 11
Campbell et al. 2018 [7] 4 18 20 64 34.1 6.2
Caputo et al. 2013 [8] 4 30 127 65.9 28.8 14.3
Castellvi et al. 2014 [9] 4 60 161 66 29.2 –
Dakwar et al. 2010 [11] 3 25 76 62.5 – 11
Dominguez et al. 2016 [13] 4 97 138 68 – 12
Elowitz et al. 2011 [14] 4 25 31 61 – 6
Formica et al. 2014 [15] 4 39 41 58 – 16
Gabel et al. 2015 [17] 4 28 – 66.3 14
Janssen et al. 2017 [20] 4 18 22 70 – –
Kepler et al. 2012 [21] 4 29 67 70 – 19.8
Khajavi et al. 2015 [22] 4 160 197 61 28.9 18.5
Khajavi et al. 2015 [23] 4 60 71 67.7 29.1 20.3
Kotwal et al. 2012 [24] 3 118 237 62.1 27.6 27.5
Lang et al. 2017 [25] 4 21 28 70 – 6.6
Lee et al. 2014 [27] 4 90 116 65.5 – 8.5
Malham et al. 2014 [29] 4 52 79 66.4 25.2 –
Malham et al. 2015 [30] 4 122 169 62.9 27.3 22.7
Malham et al. 2017 [28] 4 40 54 64 26.8 12
Marchi et al. 2012 [33] 4 52 52 67 27.4 24
Marchi et al. 2013 [32] 3 74 98 56.7 24.7 12
Na et al. 2012 [35] 4 30 45 62 – 6
Navarro-Ramirez et al. 2017 [37] 4 37 74 68 – 6
Navarro-Ramirez et al. 2017 [36] 4 7 9 70 – –
Nemani et al. 2014 [38] 4 117 239 63.6 27.4 15.6
Oliveira et al. 2010 [40] 4 21 43 67.6 25.6 –
Ozgur et al. 2010 [41] 4 62 113 63.8 – 24
Park et al. 2017 [43] 4 41 94 64 – 17.2
Pawar et al. 2015 [44] 4 39 48 59 29.6 16.1
Pereira et al. 2016 [45] 4 23 42 61 – 12
Rodgers BW et al. 2010 [47] 3 66 88 62.2 30.4 12
Rodgers JA et al. 2013 [46] 3 283 383 62.5 31.1 24
Segawa et al. 2017 [51] 4 96 111 61 – 18
Sembrano/Isaacs et al. 2016 [19, 52] 2 29 36 63 30.1 24
Tessitore et al. 2016 [55] 4 20 22 67.5 27.7 9.8
Tohmeh et al. 2014 [56] 3 140 223 60.7 29.1 15.5
Wang et al. 2017 [59] 3 45 101 65 – –
Yang et al. 2017 [60] 4 7 8 63 – –
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mechanisms of indirect decompression are the recovery of
disc height with consequent ligamentotaxis of the
ligamentum flavum and posterior longitudinal ligament,
the reduction of slippage in the case of spondylolisthesis,
and the correction of coronally asymmetrical disc spaces in
adult scoliosis [6, 33, 44].

Empiric evidence of the effectiveness of LLIF on clinical
symptoms (disability expressed with ODI scores and back
and leg pain with VAS scores) is demonstrated by all au-
thors. Nevertheless, evidence based on direct linear correla-
tion between improvement of clinical symptoms (expressed
as numerical scores) and variations of radiological parame-
ters (FH, FA, and CA) is lacking and characterized by huge
variability.

Conversely, evidence of the effectiveness of LLIF in
indirect decompression of neural elements based exclusively
on radiological parameters is suggested.

In pooling the data, we calculated a mean DH recovery
of 3.8 ± 1.5 mm. Foraminal height and area are the most
commonly evaluated parameters for assessing foraminal
decompression. A mean increase of 21.9% of FH was
reported. The mean rise of FA was 37.7%. No significant
variations were recorded when analyzing the difference of
FH in relation to foramen side (3.1 ± 1.2 mm left vs. 3.0 ±
1.4 mm right). Similar results were observed also for FA
(37.7 ± 31.6 mm2 left vs. 37.2 ± 36.3 mm2 right). A careful
bilateral annulus release and large footprint interbody cages
were reported as key points of the surgical technique to
guarantee symmetrical foraminal decompression [6].
Nevertheless, a global analysis of influence of access side
and of pre-operative diagnosis, mainly in adult scoliosis
(convex vs. concave side), cannot be performed. Only one
author referred to the access side reporting a 60% increase
of FA at the surgical approach side versus 48% at the other
side [27].

The correlation between DH increase (X) and foraminal
decompression, expressed as FH rise (Y), is easily assess-
able: 3.8 ± 1.5 mm versus 3.5 ± 1.2 mm. The outcome of the
corresponding regression analysis was the equation Y =
0.82X − 0.03; the estimated slope was 0.82 ± 0.46. Con-
versely, the correlation between DH increase (X) and foram-
inal decompression, expressed as FA rise (Y), appears more
arduous to interpret (3.8 ± 1.5 mm vs. 43.6 ± 30.9 mm2),
with a high variability of data in the included studies. The
outcome of the corresponding regression analysis was the
equation Y = 4.94X + 25.30; the estimated slope was 4.94 ±
7.67. The observed discrepancy between DH–FH and DH–
FA correlation is probably due to the fewer FA data available
in the included studies.

LLIF seems to be an efficient technique for indirect
foramen decompression according to radiological parame-
ters (FH, FA). Some authors have hypothesized the role of
this technique in treating adult spinal degenerative patholo-
gies [19, 52, 57]. Unfortunately, it is not possible to establish
a careful and global analysis of the relation of pre-operative
diagnosis, approach side (especially in lumbar scoliosis:
convex vs. concave side), additional instrumentation, cage
geometry (parallel/lordotic), dimension (height and width),
and position (anterior/medium/posterior third of disc space),

with DH restoration and consecutively with effectiveness of
foraminal indirect decompression (FH and FA); this thus
represents an intrinsic study limitation.

Kepler et al. [23] used 10° lordotic cages positioned for
65% of the levels in the middle third, 20% in the anterior,
and 15% in the posterior portion; they observed no differ-
ences in post-operative FA, regardless of cage position.
However, Lee et al. [27] reported that cage position affected
the entity of segmental lordosis restoration: anterior third
position guarantees an increase of lordosis of 3.8 ± 5.5°
versus 0.3 ± 5.5° for the middle third position. Similarly,
Park et al. [43] demonstrated that positioning the cage in
the anterior part of the vertebral end plate led to a better
segmental lordosis restoration without compromising LLIF
effectiveness in increasing CA and FA. Cage subsidence is
one of the critical points reported in the literature regarding
the potential benefits and limitations of indirect foraminal
decompression in LLIF [4, 26, 56]. Cage subsidence can
occur during surgical procedure in disc space preparation or
in the post-operative period. Risk factors referred by several
authors are age, sex, bone quality, aggressive end-plate
preparation, and cage insertion [32]. Nevertheless, Tohmeh
et al. [56] reported a constant foraminal height regardless
67% of cage subsidence at 1-year follow-up. Large cage
footprint is referred to as a protective factor for subsidence
[48]. Lang et al. [25] observed a linear reduction in cage
subsidence with the increase of cage width and consequently
maintaining indirect decompression.

The efficacy of LLIF in restoring the CA was described
by ten authors reporting data about 303 patients with a mean
increase, pre- to post-operatively, of 36.4 ± 26.4 mm2 (95%
CI, 18.08–54.73; mean increase, 29.3%). The correlation
between DH increase (X) and central canal decompression,
expressed as CA rise (Y), is challenging to analyze. The
outcome of the corresponding regression analysis was the
equation Y = 3.94X + 12.31; the estimated slope was 3.94 ±
3.30. High variability between the results of the studies
included can be detected. Elowitz et al. [14] reported an
increase in dural sac area of 77%. Other groups have not
observed this. Castellvi et al. [9] detected a 17%
improvement in CA at 1-year follow-up. The evaluation of
central canal area was performed with CT scan in three
studies (pre-operative mean CA, 122.8 ± 52.5 mm2; post-
operative mean CA, 174.2 ± 42.9 mm2) [9, 20, 60] and
MRI in four studies (pre-operative mean CA, 124.9 ±
44.6 mm2; post-operative mean CA, 171.8 ± 48.7 mm2)
[40, 43, 59], and three used both imaging techniques (pre-
operative mean CA, 117.7 ± 16.4 mm2; post-operative mean
CA 136.6 ± 17.2 mm2) [36, 52, 55]. The authors who
performed measurements with both modalities did not
specify the method to extrapolate the declared CA.

Analysis of the available demographic data resulted in
homogeneous findings for gender (Pearson’s χ2 test, p =
0.227) and age (ANOVA test, p = 0.685). However, other
demographic data such as race, height, and body mass index
were not available.

Data on indirect decompression of the central canal are
inconclusive and contradictory. Moreover, it is not possible
to analyze the relationship of pre-operative diagnosis,
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additional instrumentation, cage geometry (parallel/lordot-
ic), dimension (height and width), and position (anterior/
medium/posterior third of disc space) with DH restoration
and consecutively with the effectiveness of central canal
indirect decompression. This represents another intrinsic
limitation to the study.

Seven authors have reported incidence of second-stage
direct decompression surgery. The main causes reported were
severe pre-operative central canal stenosis, spondylolisthesis
with facet instability, and bony lateral recess stenosis; those
diagnoses might be assumed as contraindications to this sur-
gical procedure [5, 17, 23, 29, 35, 38, 40].

Congenital short pedicles, calcified discs, severe facet
hypertrophy, synovial cysts, osteophytes arising from the pos-
terior endplates, severe central canal stenosis, and uncontained
disc herniations were reported as risk factors for canal decom-
pression failure [40, 48, 59]. Two authors excluded a correla-
tion with facet degeneration [30, 37]; nevertheless, a
systematic evaluation of the degree of arthropathy was not
performed in a majority of the included studies.

Severe central canal stenosis is seen as a relative contrain-
dication for indirect decompression [26, 40]. Unfortunately, no
well-defined and unambiguous radiological criteria to define
and characterize lumbar spinal stenosis are established in liter-
ature; consequently, it is not possible to extrapolate clear guide-
lines in terms of potential benefits and limitations of indirect
canal decompression [10, 31, 54]. The adoption of a consensus
regarding morphological and quantitative parameters could per-
mit to the standardization of central spinal stenosis grading in
the future, thus allowing for homogenization of results and
reliable decision-making for indirect decompression.

With reference to lateral recess stenosis, the evidence is
poorly investigated. Severe facet hypertrophy, synovial cysts,
and osteophytes arising from the posterior endplates were
reported as risk factors for lateral recess decompression failure
[26, 40, 59]. Only one study analyzed this aspect and reported
that bony stenosis is an independent predictor of failure for
indirect neural decompression of the lateral recess [59].

A lumbarized sacrum (L5–L6) is another contraindica-
tion for indirect decompression via the transpsoas approach,
as described by Smith et al. in 2012 [53].

This study has limitations. The lack of standardized
imaging modalities and radiological parameters for the as-
sessment of indirect decompression in the literature resulted
in heterogeneous data that were difficult to analyze. Our
analysis on radiological parameters was based on data orig-
inally declared by the authors in the included studies. How-
ever, different imaging modalities were used, and the
specific method of radiographic measurements was not ac-
curately described by the different authors. This represents
an evident limitation of the study. The lack of standardized
morphological and/or quantitative classification systems of
central, foraminal, and lateral recess stenosis is the main
barrier to extrapolating evidence about the potentials and
limitations of LLIF in indirectly decompressing neural ele-
ments. Moreover, the population analyzed appeared homo-
geneous for age and gender, but some potentially relevant
demographic data were lacking, such as race, height, and
body mass index. Most of the studies included were based

on retrospective data with low levels of evidence, including
highly heterogeneous study populations in terms of indica-
tions and surgical strategy (cage dimension/geometry/posi-
tion and additional instrumentation).

In conclusion, this review supports the clinical effective-
ness of LLIF in indirect neural decompression in degenera-
tive lumbar diseases. Radiological results’ analysis
recommends LLIF as an efficient technique in symmetrical
decompression of foraminal stenosis, particularly in restor-
ing foramen height and area. Data on indirect decompression
of the central canal are inconclusive and contradictory. The
evidence on decompression of lateral recess stenosis via
LLIF is low. The analysis of the influence of pre-operative
diagnosis, additional instrumentation, and cage geometry/
dimension/position on effectiveness of indirect decompres-
sion cannot be established. Large cage footprint is seen as a
key factor to avoid subsidence and consequently potential
decompression failure. Severe central canal stenosis and
facet joint degeneration appear to be contraindications to
indirect decompression. This systematic review provides a
reference for surgeons to define the potential benefits and
limitations of LLIF in indirect neural element decompres-
sion. Further high-quality studies will better clarify the cor-
rect indications of this promising technique.
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