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Since its initial discovery in mouse and human cells as nuclear
protein 95 (Np95; [1]) and inverted CCAAT box-binding protein
90 (ICBP90; [2]), respectively, ubiquitin-like PHD and RING
finger domain-containing protein 1 (UHRF1) has quickly risen
to current prominence as a key epigenetic regulator in diverse
cellular and developmental processes (reviewed in [3]). A recent
in vivo study further revealed a critical role of UHRF1 during mouse
spermatogenesis [4].

Much like the famed Swiss Army knife, the multidomain UHRF1
protein functions through its five arms, including from N-terminus
to C-terminus, a ubiquitin-like (UBL) domain, a tandem Tudor
domain (TTD), a plant homeodomain (PHD), a SET- and RING-
associated (SRA) domain, and a really interesting new gene (RING)
domain (Figure 1A). Initial studies focused on the characterization
of individual domains and their interacting partners in vitro and ex
vivo. Later studies uncovered the incredible amount of coordination
and crosstalk among these domains, as UHRF1 carries out its mul-
tifaceted functions through precise interactions with DNA, histones,
and other effector proteins.

UHRF1 is best known for its function in DNA methylation
maintenance. It is a critical partner for the maintenance DNA
methyltransferase DNMT1, which methylates the newly synthe-
sized daughter strand following semi-conservative DNA replication.
UHRF1 preferentially binds to hemi-methylated DNA through its
SRA domain [5–7]. The SRA domain also interacts directly with
DNMT1’s replication focus targeting sequence (RFTS) [7, 8], thus
tethering DNMT1 to newly replicated DNA. The physical inter-
action between UHRF1 and DNMT1 increases the activity and
specificity of DNMT1 for methylating hemi-methylated CG sites [9,
10]. In addition, UHRF1 may regulate do novo DNA methylation
through interactions with DNMT3A and DNMT3B under specific
cellular contexts [11].

Hemi-methylated DNA is not the only cue that UHRF1 takes
from the genome. To guide DNMT1 to the right spot in the nucleus,
UHRF1 also understands the highly complex language of chromatin
and employs its other domains to decipher the combinatorial state

of post-translational histone modifications (i.e., the histone code).
Its TTD domain preferentially binds to a single histone H3 N-
terminal tail with di- or tri-methylated lysine 9 (H3K9me2/3) and
unmethylated lysine 4 (H3K4me0) [12–15]. The importance of this
interaction has been shown in human HeLa cells [15] and mouse
embryonic stem cells (ESCs) [16]. There is also evidence that UHRF1
interacts with G9a, one of the histone methyltransferases respon-
sible for H3K9me2 [17]. There are additional layers of crosstalk
among the domains. The PHD domain, which has an affinity to
unmodified arginine 2 on the H3 tail (H3R2me0) [14, 18–20],
facilitates the interaction between TTD and H3K9me3 [21]. Impor-
tantly, structural studies illustrate that the full-length UHRF1 protein
adopts a closed conformation due to intramolecular interactions
in the absence of ligands. Binding to H3K9me3 is blocked by an
intramolecular interaction of TTD with a polybasic region (PBR)
between the SRA and RING domains [22, 23]. Meanwhile, binding
to H3R2me0 is inhibited by an intramolecular interaction of the
PHD domain with the SRA domain [22]. Binding to hemi-methylated
DNA shifts UHRF1 to an open state, which promotes H3K9me3
recognition by UHRF1 [22, 23]. Thus, UHRF1 integrates the two
major epigenetic silencing pathways by its dynamic interactions with
hemi-methylated DNA and H3K9me2/3.

UHRF1’s role in maintenance DNA methylation is also depen-
dent on two other domains: the RING finger domain and the UBL
domain. Its RING finger domain has E3 ubiquitin ligase activity
toward histone H3 [24], DNMT1 [25, 26], and UHRF1 itself [27].
UHRF1-dependent H3 ubiquitination is a prerequisite for DNMT1
binding to DNA replication sites [28]. Hemi-methylated DNA stimu-
lates UHRF1 ubiquitin ligase activity on H3 by directing TTD-PHD-
bound H3 substrate to the active site of E2 ubiquitin ligase [29].
The tandem monoubiquitin marks on H3 are recognized by DNMT1
via a ubiquitin interaction motif (part of the RFTS binding module)
[30, 31], which enhances DNMT1 recruitment and high-fidelity
maintenance of DNA methylation. Indeed, it has been demonstrated
that UHRF1’s E3 ubiquitin ligase activity is required for mainte-
nance DNA methylation at retrotransposons and satellite repeats
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Figure 1. UHRF1 regulates multiple epigenetic pathways during spermatogenesis. (A) Mouse UHRF1 domains and interacting partners. Domain boundaries are

labeled above the domain structure as amino acid coordinates per UniProt (https://www.uniprot.org/uniprot/Q8VDF2). Drawn to scale. Six domains/regions are

labeled below the domain structure: UBL, ubiquitin like; TTD, tandem Tudor domain; PHD, plant homeodomain; SRA, SET- and RING-associated; PBR, polybasic

region; and RING, really interesting new gene. Domains and corresponding interactions (down arrows) are color coded. Interactions with DNMT3A/3B and G9a

have not been mapped to defined domains, thus in gray arrows. Ball-headed lines indicate enzymatic modifications. Crosstalk is annotated as either stimulatory

(arrow) or inhibitory (T-end dashed lines for intramolecular interactions between TTD and PBR, and between PHD and SRA). hmDNA, hemi-methylated DNA. E2-

ub, E2 ubiquitin conjugating enzyme. (B) Model for UHRF1-mediated epigenetic silencing of L1 during spermatogenesis. In postnatal testes, L1 retrotransposons

are transcriptionally silenced by DNA methylation and H3K9me2/3, and post-transcriptionally by the pachytene piRNA pathway. In the light of the recent work by

Dong and colleagues [4], UHRF1 has emerged as the master regulator of these epigenetic pathways. Newly reported interactions of UHRF1 with PIWI proteins

and PRMT5 are highlighted (in red). The conditional loss of UHRF1 function causes meiotic catastrophe and germ cell death. Many changes are observed at

molecular levels (↑, upregulation; ↓, downregulation). In particular, L1s are de-repressed at both RNA and protein levels. However, whether there is an increase

in L1 insertion and to which degree L1 retrotransposition contributes to genomic instability in Uhrf1-deficient germ cells remain unknown.

[28, 31]. In contrast, the ubiquitination of DNMT1 by UHRF1 reg-
ulates DNMT1 stability and promotes its degradation [25, 26]. The
role of the UBL domain was only recently revealed. It is required for
H3 ubiquitination by UHRF1 RING E3 ligase in stabilizing the E2-
E3-chromatin complex, and also for maintenance DNA methylation
on retrotransposons [32, 33].

So far, only a few studies have explored UHRF1’s function in vivo,
in sharp contrast to aforementioned numerous in vitro and ex vivo
studies that helped to illuminate UHRF1’s biochemical and cellular
functions. UHRF1 is essential for early development. Global loss of
function causes early developmental arrest shortly after gastrulation
in mice [6, 34]. Thus, conditional knockout (cKO) strategies have
been adopted to investigate the role of UHRF1 in other stages
of development, including during the proliferation and maturation
of colonic regulatory T cells [35], chondrocyte differentiation and
limb growth [36], neuronal differentiation and survival [37], oocyte
growth [38], and, most recently, spermatogenesis [4].

DNA methylation in the germline of mammalian genomes is
not static. Globally, the germline genome undergoes two rounds
of DNA methylation reprogramming during development. The
first round occurs in preimplantation embryos and the second in

migrating/post-migratory primordial germ cells (PGCs). Recent
data indicate the erasure of global methylation in PGCs is largely
due to replication-coupled passive DNA demethylation (reviewed
in [39]). In rapidly proliferating PGCs between embryonic day
(E) 9.5 and E11.5, both UHRF1 and de novo methyltransferases
DNMT3A/3B are downregulated and become undetectable [40,
41]. Later, in the female germline, an oocyte-specific methylation
pattern is established in growing oocytes (GOs) and completed in
fully grown oocytes (FGOs) via de novo DNA methyltransferases
DNMT3a/DNMT3L [42, 43]. To study the role of UHRF1 in oocyte
and preimplantation embryonic development, the Zp3-Cre line was
used, which is expressed exclusively in GOs [38]. In Uhrf1 cKO
females, oogenesis is unaffected. At the molecular level, there is 20%
reduction in global CG methylation and 15% reduction in global
non-CG methylation in FGOs. As oocyte growth does not involve
maintenance DNA methylation (no DNA replication in meiotic
prophase I), these data suggest that UHRF1 participates in de novo
CG and non-CG methylation in oogenesis. Importantly, in vitro
fertilization of Uhrf1 cKO oocytes with wild-type sperm leads to the
developmental arrest in 80% of the embryos [38]. Thus, the mater-
nally derived UHRF1 protein is also required for preimplantation

https://www.uniprot.org/uniprot/Q8VDF2
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embryonic development. The loss of maternal UHRF1 leads to a
global reduction in CG methylation, encompassing genic, intergenic,
tandem repeats, retrotransposons (L1, B1, and IAP), and imprinted
sequences, suggesting maternal UHRF1 is required for maintenance
CG methylation in preimplantation embryos. However, its impact
on retrotransposon expression was not assessed by the study [38].

DNA methylation is an important mechanism of controlling
the proliferation and differentiation of stem cells, not only ESCs
but also adult stem cells. Indeed, in the mouse brain, UHRF1 is
expressed specifically in fetal and adult neural stem cells (NSCs) [37,
44]. To investigate whether early epigenetic mechanisms impact the
long-term behavior of NSCs and derivatives, a recent study used
Emx1-Cre to specifically abolish UHRF1 function in the dorsal
telencephalon [37]. The Emx1 promoter is expressed exclusively
in the dorsal telencephalon from embryo to adulthood. The con-
ditional deletion of UHRF1 starts as early as E10 in the NSCs of
the developing cerebral cortex. However, no gross morphological
defect is observed during the embryonic development. The first
morphological phenotype becomes detectable at postnatal day (P)
7 as the thickness of the cerebral cortex is reduced. The delayed
neurodegeneration appears to be the result of increased cell death at
the onset of embryonic neurogenesis and the subsequent escalated
cell death during the neuronal maturation at postnatal stages. At
the molecular level, reflecting an essential role of UHRF1 in main-
taining DNA methylation, global DNA methylation, is significantly
reduced, including 35% loss on L1, B1, and IAP retrotransposons.
Surprisingly, there is little change in transcription of L1, B1, and
annotated genes. The only exception is for IAP retrotransposons,
more specifically from the IAPEz family, which shows ∼130-fold
increase in the cKO cortices. The extraordinary magnitude of change
contrasts sharply with more modest alterations in Uhrf1 KO ESCs
(2-fold) and embryos (4∼8-fold) [6, 45]. These results indicate that
UHRF1 is critical for IAP repression during neurogenesis [37].

Until recently, the physiological role of UHRF1 in spermatoge-
nesis has not been explored. The testis boasts the highest level of
UHRF1 RNA expression among a panel of mouse tissues when
examined by northern blot [1]. Indeed, UHRF1 protein is present
not only in proliferating spermatogonia but also in meiotic sperma-
tocytes and differentiating spermatids [46], implicating a potential
function during spermatogenesis. In a landmark paper, Dong and
colleagues conditionally abrogated UHRF1 in the differentiating
spermatogonia and spermatocytes of postnatal testes using a Stra8-
Cre mouse line [4]. UHRF1 protein abundance and subcellular local-
ization during male germ cell development were thoroughly ana-
lyzed. Interestingly, wild-type UHRF1 protein is detected in nearly
all developmental stages, encompassing fetal, neonatal, and adult
stages, from prospermatogonia to early round spermatids. Notably,
there is a dynamic change in subcellular localization, beginning as
mainly cytoplasmic in fetal prospermatogonia, nuclear in mitotic
spermatogonia, back to cytoplasmic at the onset of meiosis (prelep-
totene, leptotene, zygotene, and early pachytene spermatocytes), and
then nuclear again (late pachytene and round spermatids), although
the regulation and significance of the cytoplasmic/nuclear shuttling
remain unclear (see later discussions in the context of UHRF1’s
interactions with PIWI proteins and PRMT5).

Phenotypically, the conditional deletion of UHRF1 in differ-
entiating spermatogonia leads to a spermatogenic arrest at the
pachytene spermatocyte stage and ultimately male infertility [4]. At
the histological level, abnormality in seminiferous tubules becomes
apparent as early as P14, when the first cohort of pachytene
spermatocytes is formed. Cell marker analyses indicate that both

spermatogonial differentiation and meiotic initiation are unaffected
in cKO testes. However, staining of phosphorylated histone H2A.X
(γ -H2A.X), a chromatin marker for adjacent DNA double-strand
breaks (DSBs), shows an unusual nucleus-wide distribution in cKO
pachytene spermatocytes, instead of being confined to the XY body.
Such a pattern is indicative of a systemic failure in DNA damage
repair and the persistence of genome-wide unrepaired DSBs. Many
meiotic mouse mutants are accompanied with extensive asynapsis
and failure in meiotic sex chromosome inactivation (MSCI), which
is thought to trigger germ cell apoptosis at the mid-pachytene stage
[47]. However, despite widespread γ -H2A.X signals, the autosomal
synapsis appears to be complete in the residual Uhrf1 cKO pachytene
spermatocytes. Additionally, the number of RPA2 foci is reduced
in the Uhrf1 cKO spermatocytes, indicating a defect in meiotic
recombination in meiotic prophase I. Regardless of the checkpoint
pathways, the developmental defect in Uhrf1 cKO spermatocytes
can be attributed to elevated apoptosis (approximately 3-fold higher
than the wild-type control at P14), which persisted until at least
P35 [4].

Given the role of UHRF1 in DNA methylation, Dong and col-
leagues first examined methylation levels by immunostaining of
methylated cytosines (5mCs) [4]. DNA methylation in the Uhrf1
cKO appears normal at P10 but reduced globally in P14 testes.
No apparent change is found in differentiating spermatogonia but
5mC signals become nearly undetectable in leptotene, zygotene, and
pachytene spermatocytes. Bisulfite sequencing shows a substantial
reduction in DNA methylation in the L1 5’UTR promoter region
from 86 to 45% at P18, which is comparable to that seen in Uhrf1
KO embryos (85 to 40%) [6]. DNA methylation is also reduced from
90 to 70% at IAP elements, although the magnitude is much less
than that in Uhrf1 KO embryos (95 to 20%) [6]. Mild reduction in
methylation is observed in the typically paternally methylated inter-
genic differentially methylated region (DMR) between the imprinted
genes Dlk1 and Gtl2 (93 to 68%). These data suggest that UHRF1
is required for DNA methylation maintenance during the postnatal
male germ cell development. The current study did not examine
methylation for other genes or heterochromatic regions, such as
major or minor microsatellites. The magnitude of methylation loss
in germ cells might have been substantially underestimated due to
the presence of testicular somatic cells. To fully understand the
role of UHRF1-mediated methylation in postnatal germ cells, it
is imperative to pinpoint the precise timing of the methylation
loss as well as to identify the genomic regions that are affected,
preferably using a methylomics approach on stage-specific germ cell
populations.

Following DNA methylation reprogramming in PGCs, in the
postnatal testis, the male germline genome undergoes at least two
additional episodes of dynamic DNA methylation. The first episode
occurs as spermatogonia transition from undifferentiated (Kit−) to
differentiating (Kit+) spermatogonia [48, 49]. Among the reported
DMRs from whole-genome bisulfite sequencing analyses, more
genomic regions lose methylation than gain methylation at this
transition. Only 40 genomic regions gain >30% CG methylation,
while 1352 regions lose >30% CG methylation [49]. The second
wave is at the onset of meiosis, which features a transient reduction
in DNA methylation (TRDM), equivalent to a genome-wide 12%
of CG methylation loss, primarily in preleptotene spermatocytes
[50]. The TRDM is thought to occur via DNA replication-
dependent DNA demethylation due to a delay in maintenance DNA
methylation. The global loss in CG methylation is fully regained in
pachytene spermatocytes [50].
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UHRF1 has been shown to play a role in spermatogonial dif-
ferentiation in a Uhrf1 inducible KO (iKO) model [51]. In this iKO
model, no Kit+ cells are identified, suggesting the loss of UHRF1
completely blocks spermatogonial differentiation and/or required for
the survival of differentiating spermatogonia. The phenotype in the
iKO model is much more severe than that observed in the cKO
model by Dong and colleagues. However, the interpretation of the
iKO results may be confounded by an unexpected adverse effect of
tamoxifen itself on spermatogenesis [52]. In the paper of Dong and
colleagues, Stra8-Cre is used to ablate Uhrf1 function genetically.
Endogenous STRA8 protein is expressed only in differentiating sper-
matogonia through leptotene spermatocytes [53, 54]. However, the
Stra8-Cre clearly functions in a subset of undifferentiated spermato-
gonia in the transgenic mice [55], potentially due to the lack of some
endogenous regulatory elements in the promoter sequence used in the
transgene. Thus, it is reasonable to suspect that Stra8-Cre-mediated
deletion of UHRF1 may occur prior to the type A to A1 transition,
which marks the beginning of spermatogonial differentiation [56].
Therefore, the impact from a loss of UHRF1, in the current model,
points to a role of maintenance DNA methylation in differentiat-
ing spermatogonia as well as in meiotic prophase. Again, further
analysis of DNA methylation changes is warranted to dissect the
differential contribution of UHRF1 during these two developmental
stages.

What is the impact of reduced methylation on gene expression?
To this end, the authors examined the effects on gene expression by
RNA-seq [4]. Few genes show deregulation at P9, but 200 genes are
upregulated by >2-fold at P12. Additionally, many retrotransposon
families are upregulated. The upregulation of L1 and IAP is also
confirmed by qPCR, ranging from 3–7-fold in P18 and P56 testes.
As retrotransposon expression is regulated in germ cells by the
PIWI-interacting RNA (piRNA) pathway (reviewed by [57, 58]), the
authors checked PIWI protein abundance and piRNA production
[4]. Unexpectedly, both MILI and MIWI, two PIWI proteins that
are expressed in spermatocytes, are downregulated in Uhrf1 cKO
spermatocytes. In addition, the piRNA biogenesis is compromised.
How does UHRF1 crosstalk with the piRNA pathway? In this
regard, the authors offered novel evidence for the physical interac-
tions of UHRF1 with MILI and MIWI [4]. Therefore, it is likely
that such interactions in normal germ cells help to stabilize MILI
and MIWI and facilitate the generation of pachytene piRNAs. What
process might mediate this stabilization? Based on the involvement
of PRMT5 (see below), the data support a model in which the
stabilization of MILI and MIWI by UHRF1 is mediated via its
recruitment of PRMT5 and subsequent symmetric dimethylation of
these PIWI proteins (Figure 1B).

Indeed, the authors presented compelling evidence for an inter-
action between UHRF1’s TTD domain and PRMT5’s SAM domain
[4]. In wild-type leptotene and zygotene spermatocytes, both PRMT5
and UHRF1 are enriched in the cytoplasm. In pachytene spermato-
cytes, PRMT5 and UHRF1 colocalize in the nucleus. In P18 Uhrf1
cKO testes, both Prmt5 mRNA and protein are downregulated,
so are the PRMT5-mediated symmetrically dimethylated H3R2me2
and H4R3me2 marks. The impact of altered histone modifications
in the Uhrf1 cKO testis is unclear. Interestingly, Prmt5 cKO, medi-
ated by Stra8-Cre, phenocopies the Uhrf1 cKO, showing a similar
meiotic arrest [59]. At P10, loss of PRMT5 has no impact on
H3R2me2, although H4R2me2 is lost. L1 and IAP expression are
also unaffected at P10. The authors of the Prmt5 cKO study did not
examine PRMT5-mediated histone modifications and retrotrans-
poson expression at later stages [59]. Therefore, it is still unclear

whether the downregulation of PRMT5 in developing germ cells
directly contributes to derepression of retrotransposons. It is also
noteworthy that UHRF1 has a preference for unmethylated H3R2
[14, 18–20]. Both symmetrically and asymmetrically dimethylated
H3R2s impede the interaction between UHRF1 and H3 tail in vitro
[19]. In addition, H3R2me2 is only present in the cytoplasm of
wild-type spermatocytes [4], suggesting H3R2 is not a substrate
for PRMT5 in these cells. Taken together, it is more likely that the
reduction of PRMT5 impacts substrates other than H3, including
PIWI proteins and spliceosomal Sm proteins [60, 61]. The proposed
model further predicts that the symmetrical dimethylation of MILI
and MIWI is compromised in the Uhrf1 cKO spermatocytes, which
should be experimentally validated in future studies (Figure 1B).

In summary, the recent study by Dong and colleagues [4] adds
to our knowledge about the essential roles that UHRF1 plays in
vivo. Already recognized as a jack of all trades, this study establishes
UHRF1 as a master regulator of multiple epigenetic pathways during
male germ cell development. Importantly, the observed infertility
phenotype is highly relevant to human male reproduction as genetic
polymorphisms in the human UHRF1 gene have been associated
with oligospermia [62]. As discussed above, there remain many
unanswered questions. In particular, the role of retrotransposon
activation in the Uhrf1 cKO model awaits further elaboration.
Deregulation of L1 retrotransposons can potentially impact germ
cell well-being at three discrete stages of the L1 life cycle: tran-
scription, translation, and retrotransposition [63] (Figure 1B). Pre-
vious studies have identified illegitimate meiotic recombination in
Dnmt3l KO spermatocytes [64] and an increase in retrotranspo-
sition in Mov10l1 KO spermatocytes [63]. Thus, it will be infor-
mative to examine levels of retrotransposition by either NextGen
sequencing approaches or the new L1 reporter mouse [63, 65].
In parallel, many domain-specific Uhrf1 mutants have been char-
acterized in vitro and ex vivo. At least two knock-in (KI) mouse
models have been established, including the SRA KI [45] and TTD
KI [66]. Interestingly, the Uhrf1 TTD KI (Y191A/P192A) mouse
model displays no overt phenotype, despite a failure in binding to
H3K9me2/3 by the mutant UHRF1 protein, suggesting the bind-
ing of UHRF1 to H3K9me2/3 is not essential for animal devel-
opment and reproduction [66]. Nevertheless, there is a modest
global reduction in DNA methylation in several somatic tissues
examined, including retrotransposons [66]. These and additional
new KI models should allow the molecular dissection of the func-
tion of UHRF1’s individual domain module(s) during mammalian
reproduction.
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