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a b s t r a c t 

This work aims to model, simulate and provide insights into the dynamics and control of COVID-19 in- 

fection rates. Using an established epidemiological model augmented with a time-varying disease trans- 

mission rate allows daily model calibration using COVID-19 case data from countries around the world. 

This hybrid model provides predictive forecasts of the cumulative number of infected cases. It also re- 

veals the dynamics associated with disease suppression, demonstrating the time to reduce the effective, 

time-dependent, reproduction number. Model simulations provide insights into the outcomes of disease 

suppression measures and the predicted duration of the pandemic. Visualisation of reported data pro- 

vides up-to-date condition monitoring, while daily model calibration allows for a continued and updated 

forecast of the current state of the pandemic. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since the emergence of SARS-CoV-2, more commonly known

s coronavirus, the related disease (COVID-19) has quickly spread

round the world. On the 11 th of March 2020, the WHO de-

lared it a pandemic. Numerous features of COVID-19 make con-

rol of the pandemic challenging. The virus is new, its dynam-

cs are therefore uncertain, and there are no effective cures or

accines. Besides, data is incomplete, with the potential of a sig-

ificant number of unknown (recovered and active) cases and

n uncertain incubation period. Current suggestions are that 40

50%, with up to 81% of cases only present only mild symp-

oms, see discussions in [1] . However, a substantial number of

nown infected individuals eventually develop severe pneumonia,

hich requires treatment in intensive care units. Without effec-

ive measures to control the disease, the number of probable se-

ere cases would disrupt public health systems leaving patients

ithout crucial life support, potentially exacerbating fatality rates

2] . 
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.1. Non-pharmaceutical interventions 

As of 16 th May 2020, 4.65 million cases, with 1.7 million re-

overed patients and 30 0,0 0 0 deaths due COVID-19 have been re-

orted in 213 countries worldwide [3] . All over the world, gov-

rnments have issued recommendations such as intensified hand

ygiene and have taken measures such as closing borders, enforc-

ng lockdowns, etc. These non-pharmaceutical interventions (NPIs)

educe infection rates, keeping the number of severe cases below

ospital capacity limit. A strategy popularly referred to as ‘flatten-

ng the curve’. Estimates of the effect various types of NPIs have on

he reduction of the effective reproduction number are provided in

2] where it is reported that lockdown leads to an average reduc-

ion of the transmission of the disease by 50%, school closure, 20%

nd other measures around 10% (there are relatively large confi-

ence bounds around these figures). 

Because of stringent lockdown measures, the disease appears

o have been contained in Wuhan, China. Following a lockdown,

ithin a relatively short period (around ten days), the actual num-

er of cases stopped increasing and began to drop exponentially.

hile China adopted an aggressive strategy of almost total lock-

own, the measures adopted in other counties typically have been

ess “draconian”. However, the containment strategies do appear to

e working, with a number of countries, including Germany, Italy

https://doi.org/10.1016/j.chaos.2020.109937
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109937&domain=pdf
mailto:mark.willis@ncl.ac.uk
https://doi.org/10.1016/j.chaos.2020.109937
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and South Korea, having passed the peak of cumulative infectious

cases. 

1.2. Effective management of the reproduction number 

In the absence of a proven vaccine, effective management of

the long-term return to normality is required. This should con-

sider both the minimisation of death rates and economic impact.

Key parameters used by epidemiologists to quantify contagion are

the basic and effective reproduction numbers. These dimensionless

numbers describe the average number of expected secondary in-

fections generated by each infected person for a completely sus-

ceptible population in the absence and presence of controlled in-

terventions, respectively. Epidemiologists track the effective repro-

duction number through verification of the number of secondary

infected arising from confirmed infected cases. This is difficult to

estimate accurately; it requires a robust regime of contact trac-

ing and the capacity to perform large numbers of tests to confirm

whether individuals are infected. 

Current opinion suggests that the COVID-19 has a basic repro-

duction number 1 ∼ 2 − 3 . NPIs slow the spread of the virus, and

as a result, there is a reduction in the effective reproduction num-

ber over time. If it is possible to maintain this number below one,

then the pandemic will eventually die out. Keeping the effective

reproduction number either close to, or below one, will require

careful adjustment of NPIs 2 . 

1.3. Hybrid modelling and predictive simulation 

In this work, hybrid models of the dynamics of COVID-19 infec-

tion rates are developed 

3 . The hybrid model must capture essen-

tial system dynamics for calibration, predictive modelling and sim-

ulation studies to be meaningful. These are an initial exponential

growth in active cases, slowing as the NPIs influence disease trans-

mission. After a peak in the number of cumulative cases, there will

typically be a slow decline in active cases, provided the NPIs are

not excessively relaxed. 

Several effort s around the world are attempting to forecast the

behaviour of COVID-19 transmission rates. The methods used in-

clude mechanistic transmission models [4] , statistical models [ 5 ,

6 ], deterministic epidemiological models [7–9] and a statistical dy-

namical growth model [10] . In this work, a novel hybrid model is

developed that may be used for forecasting and monitoring the

effective reproductive number which several countries are using

as an indicator to measure the effectiveness of NPIs. As an es-

tablished backbone of fundamental knowledge, we use a suscep-

tible – infected – removed (SIR)compartmental ordinary differen-

tial equations model [11–13] . The equations are augmented with a

differential equation that models an exponential decline in the dis-

ease transmission rate, and hence the effective reproduction num-

ber. Daily monitoring and model calibration (through a customized

model parameter estimation) allows classification of the potential
1 Although a recent review [22] compared 12 studies published from the 1st of 

January to the 7th of February 2020 have estimated the basic reproduction number 

for COVID- 19, finding a range of values between 1.5 and 6.68. 
2 The media have discussed Germany’s use of this number to determine its exit 

strategy frequently. Apparently, Chancellor Angela Merkel uses a daily estimate to 

track how the gradual easing of social distancing measures and freeing up parts of 

the German economy. 
3 A hybrid semi-parametric (hybrid) model combines fundamental, often referred 

to as mechanistic, models with data-driven or heuristic-driven models. These mod- 

els make use of fundamental knowledge and complement the description, where 

necessary, with nonparametric approaches. The attractive traits of hybrid models 

are their good extrapolation capabilities, low data requirements and the transparent 

structure, which helps to develop process understanding [23] . A SIR model provides 

a fundamental backbone representing overall behaviour of an epidemic, augmented 

with a data driven component to improve predictive performance. 
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nd severity of the outbreak and an assessment of the effectiveness

f current NPIs. Model simulation allows predictions to be made

f the expected time course of the epidemic, which is conditional

pon known current and past reported data. 

. Methods 

Up-to-date daily information regarding the number of active,

ecovered and fatal cases for most countries around the world is

vailable from [3] . Retrieving this information allows daily calibra-

ion of the hybrid model, on a country-by-country basis, as well as

he monitoring of the status of the pandemic. 

.1. Mathematical modelling 

Defining S ( t ) as the number of susceptible, I ( t ) the number of

nfected and R ( t ) the number of removed (recovered and deceased)

ndividuals, from a constant population N at time t the differential

quations of the Susceptible – Infectious - Removed ( SIR ) model

re, 

dS ( t ) 

dt 
= −β( t ) 

N 

· S ( t ) I ( t ) (1)

dI ( t ) 

dt 
= 

β( t ) 

N 

· S ( t ) I ( t ) − γ · I ( t ) (2)

dR ( t ) 

dt 
= x · γ · I ( t ) (3)

In these equations, β( t ) represents the transmission rate of the

irus ( da y −1 ) while γ ( da y −1 ) is the removal rate of reported in-

ectious individuals, both of which can be time-dependent param-

ters. The transmission rate varies because of NPIs and the data-

riven component of the hybrid model captures the dynamics of

isease suppression. Here, a constant removal rate is used. How-

ver, it can also change with respect to time: as normally, the

hance of recovery in a particular time interval is initially small.

hat chance of recovery then increases over time [see discussions

n, e.g. [14] ]. 

The additional parameter x is included within the equations to

ccount for under-reporting of removed individuals from the in-

ectious class. Emphasis around the world has focused on the re-

orting of infectious cases (typically hospital admissions) and the

ubsequent death rates of these patients. A relatively recent report

15] assessed the extent of under-reporting of symptomatic COVID-

9 cases globally, and their results indicated significant under-

eporting by a large number of countries. Furthermore, this num-

er can be highly variable as case data can be missing, incom-

lete, incorrect, based on different definitions, or dated (or a com-

ination of all of these) 4 . The reported fraction x and an under-

eported fraction ( 1 − x ) maintain the conservation relationship in-

erent within the SIR model. 

Using the model, provided the number of infected cases is rela-

ively small compared to the total population size, so that, S ( t ) ≈ N ,

he effective reproduction number at time t is given by, 

 E ( t ) = 

β( t ) 

γ
(4)

.2. Capturing the variation in disease transmission rate 

Social distancing and lockdown measures reduce the transmis-

ion of the virus and the number of active infected cases. In terms

f the SIR model, this translates into a reduction in the value of
4 As an extreme example, the UK government currently do not publish cumula- 

tive recovered cases. 
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( t ). Using a first-order linear ordinary differential equation (ODE)

o capture the variation in disease transmission rates, models any

eduction as an exponential decay, 

· dβ ′ ( t ) 
dt 

+ β ′ ( t ) = −k ̄u ( t ) , β ′ ( 0 ) = 0 , ū ( 0 ) = 0 

′ ( t ) ≥ 0 , ∀ t 

( t ) = βI + β ′ ( t ) (5) 

The time-dependent variable ū (t) models the effect of NPIs.

his has a range between zero and one. A value of ū (0) = 0 im-

lies no NPIs and a constant disease transmission rate, i.e. β(t) =
I . A value of ū ( t ≥ t c ) = 1 represents the maximum control ef-

ort/policies applied in any particular country because of the cu-

ulative effect of NPIs initially introduced to reduce disease trans-

ission. The time t c is the time when the maximum control mea-

ures are introduced. In the differential equation, the time constant

defines the rate of exponential decrease after the introduction of

PIs, and the gain parameter k is the magnitude of the final re-

uction in disease transmission rate, β( t ). As a country relaxes (or

trengthens again) the applied NPIs, the value of ū (t) may be al-

ered to account of any change. Defining a time t ri an estimate can

e made of the reduced control effort, ū ( t ≥ t ri ) = ˆ u ri . This provides

 quantitative measure of the relative relaxation of the NPIs in any

articular country and updated predictions of the dynamics of the

umber of cumulative infected individuals. 

.3. Model calibration 

To quantify the discrepancy between model response and re-

orted case data, the sum of the squared error between the nor-

alized reported cumulative infected individuals I R ( t ) and the

odel prediction I ( t ) as well as the reported removed individuals,

 R ( t − t d ) and the model prediction R ( t ) is calculated as, 

 = 

t 2 ∑ 

t= t 1 

(
I R ( t ) − I ( t ) 

I Rmax 

)2 

+ 

t 2 ∑ 

t= t 1 

(
R R ( t − t d ) − R ( t ) 

R Rmax 

)2 

(6) 

The sum is over the time-period t 1 (the initial outbreak reach-

ng exponential growth) and t 2 (current time), I Rmax is the maxi-

um of the reported infected individuals and R Rmax the maximum

eported removed individuals. The parameter t d represents a time

elay associated with the reporting of recovered / deceased indi-

iduals. This delay accounts for the time it takes for confirmation

f deaths, recoveries, or the validation of data from tests. 

To calibrate the hybrid model, a gradient-based optimisation

lgorithm, lsqnonlin 5 , minimises (6) by adjusting unknown model

arameters. This involves repeated numerical solution of the ODEs,

oded in Simulink to accommodate the time delay term and inte-

rated using MATLAB’s built-in routine ode15s for efficient integra-

ion of stiff ODEs. The use of lsqnonlin allows the additional MAT-

AB function nlparci 6 to calculate the 95% confidence intervals on

he model parameters. 

Using a constant value for the removal rate 7 , γ = 

1 
8 da y −1 

16] successful minimisation of (6) using reported case data, pro-
5 This is a nonlinear least squares algorithm based on trust-region-reflective 

ethod (default) that handles bound constrained optimization, available within 

ATLAB’s optimisation toolbox 
6 Function available in MATLAB’s statistics toolbox. Calculation of the parameter 

onfidence intervals is based on the covariance matrix and t-student test for normal 

istribution. 
7 The simultaneous estimation of unique numerical values for the model parame- 

ers β I and γ is not possible. Consider equation (2) , with β(t) = βI and S ≈ N . This 

mplies, dI 
dt 

≈ ( βI − γ ) I. Therefore, it is only possible to identify the relative differ- 

nce between the two parameters. Monte Carlo simulations verified this. Randomly 

djusting γ , around the mean value of γ = 

1 
8 

da y −1 and identifying the remaining 

o  

fi  

t  

r

m

m

t

w

a

i

ides an estimate of the numerical values of the hybrid model pa-

ameters, β I , τ , k, x , the time delay, t d and their associated con-

dence bounds. For countries where NPI relaxations are being in-

roduced, given the timing of these relaxations, t ri , an estimate can

lso be made of the reduced control effort, ū ( t ≥ t ri ) = ˆ u ri during

odel calibration. 

.4. Data screening for model calibration 

As discussed in [17] initially, prior to an outbreak becoming

ully established, daily new case numbers are relatively low and

he cumulative number of infectious cases typically grows at a

ub-exponential rate [18] . However, an established outbreak driven

ainly by community transmission is more likely after around one

undred reported cumulative cases [19] . Following [17] , it is as-

umed that the initial time of the outbreak as the day when there

re (as close as possible) one hundred reported cumulative cases

n a particular country. This provides the start-time for data visu-

lisation as well as the initial conditions for the ODEs. 

For each country, the timing of the introduction of the most

evere NPI’s defines the control time t c and hence, ū ( t ≥ t c ) = 1 .

hile most countries introduced NPIs in a staged manner, e.g. sug-

esting improved hygiene regimes, closing entertainment venues,

losing schools, to full lockdown measures, we assume that the

peed of introduction of these measures was generally rapid such

hat the subtleties of any fast ramp in interventions would not be

iscernible from the inaccuracies in the data. However, we note

hat recent work [20] quantify the effect of staged interventions

n Germany, where large events were cancelled, followed by the

losing of schools and many shops prior to a final intervention on

arch 23 rd 2020. 

. Results 

To demonstrate and discuss our predictive modelling, we use

eported case data from Spain, Germany, Sweden and South Korea.

redictions for a selection of other countries are in the supplemen-

ary material. These selected countries have a reasonable COVID-

9 testing capacity (test coverage per thousand residents is over

5), which would imply reasonably robust data. As with any data-

riven approach, it will only be possible to have representative and

eliable results if the data is also reliable. 

Fig. 1 presents the actual cumulative numbers of active cases as

ell as the hybrid model prediction for Spain using data up to 16 th 

ay 2020. Around three weeks ago, Spain ‘flattened the curve’, and

ince then the number of cumulative cases has been decreasing. 

At the peak, Spain had around 10 0,0 0 0 cumulative infected

ases, and the hybrid model predicts it will take a significant time

o reduce the number of active cases. The red line shows the

odel prediction of cumulative active cases ( R squared = 99 . 2% ). Cur-

ently, this indicates that this will not reach a lower threshold of

00 cases (our chosen threshold) until between 10 th November

020 and the 19 th December 2020. Note that this assumes that

here is no relaxation in current NPIs 8 . At this stage, and as may

e expected, the prediction of the time to reach the chosen thresh-

ld of cases is not particularly accurate with a wide range in the

nal forecast because of the model confidence bounds. However,

hrough continuous monitoring of case data and continual model

e-calibration, we will obtain improved predictions. 
odel parameters altered the value of β I whereas the other model parameters re- 

aining relatively constant. Moreover, this random variation in γ had no detrimen- 

al effect on the minimum value of the cost function (6) . 
8 Spain started tentatively relaxing some NPIs around the 4 th May 2020 although 

e have not accounted for this in our model. We initially ran a model allowing the 

djustment of the level of, u , from the 4 th May 2020 and the confidence bounds 

ndicated that this term was not significantly different from zero. 
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Fig. 1. The cumulative number of active infected cases as a function of time (Spain). 

The red line is the prediction of the actual number of cumulative active cases (blue) 

using our dynamic model. The black line is an estimate of the effective reproduction 

number. The dotted lines show the predictor confidence intervals. Simulation of our 

dynamic model allows for a prediction of the time when the cumulative infected 

cases is lower than a threshold; this threshold was set at 100 cases. The current 

estimate is that the number of cases will be lower than this threshold around 10 th 

November 2020 – 19 th December 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The cumulative number of active infected cases as a function of time (Ger- 

many). The red line is the prediction of the actual number of cumulative active 

cases (blue) using our dynamic model. The black line is an estimate of the effective 

reproduction number. Simulation of our dynamic model allows for a prediction of 

the time when the cumulative infected cases is lower than a threshold; this thresh- 

old was set at 100 cases. The current estimate is that the number of cases will be 

lower than this threshold around the 22 nd – 30 th August 2020. 

Fig. 3. The cumulative number of active infected cases as a function of time (Swe- 

den). The red line is the prediction of the actual number of cumulative active cases 

(blue) using our dynamic model. The black line is an estimate of the effective re- 

production number. The confidence bounds are large, as is the estimation of the 

effective reproduction number and the time to achieve a lower threshold of 100 

cases. The current estimate is that the number of cases will be lower than this 

threshold around December 2020 – mid February 2021. 
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d  

c  
The current calibrated model constants obtained using the

Spanish data are, 

βI k τ x (%) t d 

0 . 460 ± 0 . 004 0 . 368 ± 0 . 002 15 . 74 ± 1 . 12 41 . 62 ± 1 . 12 1 . 215 ± 0 . 822 

These provide an estimate of the basic reproduction number,

R 0 = 3 . 68 ± 0 . 03 and a current effective reproduction number 9 of,

R E = 0 . 74 ± 0 . 01 . The model calibrations would also indicate a sig-

nificant under-reporting of removed individuals. While this num-

ber is not required to predict the number of active cumulative

cases, it is necessary for model calibration to the reported number

of recovered patients. Note also that the estimated time constant

of the disease suppression dynamics is relatively large at around 2

weeks. 

Fig. 2 shows the cumulative active cases and a predictive sim-

ulation for Germany. As may be observed, the curve of cumulative

active cases has passed their initial peak and has been declining

for a significant number of days. Indeed, Germany first began to

relax NPIs around April 20 th 2020. Therefore, to calibrate the hy-

brid model, as well as estimating the unknown model parameters

an estimate is also made of the relative reduction in NPIs using,

ū ( t ≥ t ri ) = ˆ u ri . Assuming t ri is April 20 th 2020 gives the following

calibrated model constants, 

βI k τ x (%) t d � ˆ u ri 

0 . 395 ±0 . 002 0 . 358 ±0 . 006 17 . 62 ±0 . 90 53 . 14 ±0 . 69 5 . 05 ±0 . 837 −0 . 11 ±0 . 03 

These provide an estimate of the basic reproduction number,

R 0 = 3 . 16 ± 0 . 1 and a current effective reproduction number 10 of,

R E = 0 . 61 ± 0 . 03 . Note, again that the model calibrations would

also indicate a significant under-reporting of removed individuals. 

Fig. 2 also shows the model predictions ( R squared = 99 . 4% ), with

associated confidence bounds; indicating that the cumulative num-

ber of active cases would reach a lower threshold of 100 around

the 22 nd – 30 th August 2020. The estimate of the relative NPI re-

laxation since April 20 th 2020 is around 11 %. To obtain this figure,
9 Currently, [4] report this value as 0.88 (0.75 – 1.06) 
10 Current media reports place it closer to one. Currently [4] report this value as 

0.76 (0.53 – 1.07). 

m  

v  

a  

o  

a

e calibrate the model initially assuming that ū ( t ≥ t c ) = 1 and es-

imate the reduction from this number as, � ˆ u ri giving, ū ( t ≥ t ri ) =
 + � ˆ u ri . Model calibration is relatively insensitive to a change in

he assumed day that the NPIs were relaxed. Model calibration was

till possible when t ri was varied by five days on either side of

pril 20 th 2020. However, this does affect the predicted time to

et to the lower threshold of 100 active cumulative cases. 

Fig. 3 presents the cumulative active cases as well as their pre-

iction for Sweden ( R squared = 99 . 4% ). Sweden is the only European

ountry not to implement full lockdown measures. They did imple-

ent NPIs, where the measures in Sweden include closing of uni-

ersities and high schools and asking older and at-risk residents to

void social contact while keeping restaurants and primary schools

pen. As may be observed from the figure, the curve of cumulative

ctive cases may peak in the coming days. 
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Fig. 4. The cumulative number of active infected cases as a function of time (South Korea). The red line is the prediction of the actual number of cumulative active cases 

(blue and cyan) using our dynamic model. Model calibration using the blue data (data up to the 19 th April 2020). Comparison of model simulations to the assumed ‘unknown’ 

reported case data (cyan). The black line is an estimate of the effective reproduction number. 
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In terms of model calibration, there are relatively large confi-

ence bounds associated with the parameter estimates, 

βI k τ x (%) t d 

0 . 341 ± 0 . 018 0 . 234 ± 0 . 007 30 . 28 ± 8 . 70 17 . 20 ± 2 . 05 9 . 92 ± 2 . 43 

In turn, this leads to large bounds in the estimate of the cumu-

ative number of effective cases, the effective reproduction number

nd the time to reach a lower threshold of 100 cumulative active

ases. In the fullness of time, these issues will be resolved. Once

he reported number of cases have passed the peak and they con-

inue to decline, it will be possible to obtain a significantly more

obust estimation of the model parameters and improved model

redictions. Currently, the hybrid model parameters indicate the

asic reproduction number, R 0 = 2 . 73 ± 0 . 15 and a current effec-

ive reproduction number close to one. 
.1. Long-range forecasts are always uncertain 

If there were a first law of forecasting, it would be that

ong-range forecasts are always uncertain. In the present context,

his may arise because of future changes in NPIs, which, when

nown to occur have to be accommodated in future predictions.

o demonstrate the forecasting accuracy of the hybrid model, we

se reported case data from South Korea and Germany. South Ko-

ea have successfully ‘flattened the curve’; they acted rapidly and

ecisively to suppress the disease through contact tracing using

obile phones and a rigorous testing regime, and have far fewer

ases and deaths than the majority of countries around the world

21] . 

Fig. 4 shows a prediction of the number of cumulative active

ases (red curve) and the effective reproduction number (black

urve) of the disease. 
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Fig. 5. The cumulative number of active infected cases as a function of time (Ger- 

many). The red line is the prediction of the actual number of cumulative active 

cases (blue and cyan) using our dynamic model. Model calibration using the blue 

data (data up to the 19 th April 2020). Comparison of model simulations to the as- 

sumed ‘unknown’ reported case data (cyan). The black line is an estimate of the 

effective reproduction number. Observe that inaccurate model predictions as the 

forecast does not account for the relaxation of NPIs, which have a clear and observ- 

able effect on the dynamics of the number of active cases. 
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The hybrid model was calibrated using reported case data up

to one week (top figure) then two weeks (bottom figure) after the

flattening of the peak. Observe the accuracy of the model predic-

tions. Model calibration using data up to one week after the turn-

ing point produces an inaccurate forecast of the number of ac-

tive cases although the dynamics show a similar trend. However,

with the additional data, the calibrated model provides a much-

improved forecast of the actual number of infected cases. 

The hybrid model provides predictions of the disease suppres-

sion dynamics and time to reach a low threshold of cases within

the bounds of ~30 and ~50 days, using data for model calibration

up to one and two weeks after the turning point in the cumula-

tive number of active cases. The estimated times being 7 th – 27th

August 2020 (using data up to one week after the peak) and with

the use of additional data (two weeks after the peak), this esti-

mate changes to 28 th June – 7 th July 2020. After, recalibration of

the hybrid model using data up to the 19 th May 2020 the current

estimate is the 13 – 19 th July 2020. 

Fig. 5 shows the results of a model calibration for Germany

using reported case data up-to the 19 th April 2020 (before relax-

ation of NPIs). While the future forecast captures the qualitative

behaviour of the response, the predicted number of cases are inac-

curate (compare the prediction to the subsequently reported actual

data). The model predicts that the number of cases will reduce at

a faster rate, but because of NPI relaxation, this rate has actually

slowed. However, as demonstrated in Fig. 2 daily re-calibration of

the hybrid model can account for any observable changes, caused,

for example, through relaxation of current NPIs. This allows an up

to date forecast to be made of the future decline in cumulative ac-

tive cases. 

4. Discussion and conclusions 

We describe a hybrid model of the dynamics of cumulative ac-

tive cases because of COVID-19 and a methodology for the model

calibration. Model simulation allows predictions to be made of the

expected time course of the epidemic, which is conditional upon

available current and past reported data. We have highlighted the

trend in the cumulative number of active cases in Spain, Ger-
any, Sweden and South Korea. In the supplementary material,

e provide additional figures demonstrating the status of the pan-

emic in a selection of other countries (Italy, France, Switzerland,

urkey, USA and Colombia). Our results would indicate that the

ata-driven component of our hybrid model accurately captures an

xponential decline in disease transmission. 

We elected to keep our hybrid model comparatively simple us-

ng the established SIR model as a fundamental backbone to a data

riven component that modelled an exponential decline in disease

ransmission rate. We find that this exponential decline adequately

epresented by a first order linear ordinary differential equation.

odel calibration using reported case data requires the determi-

ation of four model parameters ( β I , k, τ , x ) as well as a time

elay associated with the reporting of removed cases, t d . As NPIs

re relaxed we can introduce additional model terms that may be

sed to quantify the relative relaxation of NPIs. Defining a time t ri 

hat an NPI relaxation occurs then an estimate can be made of the

educed control effort, ū ( t ≥ t ri ) = ˆ u ri . We demonstrated how this

ffects future predictions of the number of active cases using re-

orted case data from Germany. As more case data becomes avail-

ble, we will rigorously test the viability of including phased NPI

hanges as part of the hybrid model calibration. 

Regarding alternative work that considers forecasting the dy-

amics of the reduction in the number of active cases of COVID-19,

e note that [9] has adopted a similar approach to the estimation

f the time it would take to achieve a lower threshold of active

ases. However, calibration of their SIR model only considers daily

ases with respect to time, recovered data is not considered and

he method does not explicitly account for a varying transmission

ate in the model equations or the tracking of, R E ( t ). 

In conclusion, our hybrid modelling approach allows the predic-

ion of future infected case number scenarios as well as providing

 measure of the effect of the relaxation of government interven-

ions. Using a linear ODE, we capture the dynamics associated with

isease suppression. For the countries we consider, the estimated

ime constant, τ , associated with the disease suppression dynam-

cs is large (over 2 weeks for both Spain and Germany). In making

 change to a dynamic system, the time constant provides an indi-

ation of the speed of the response and it takes approximately 3 –

 time constants to move from the original to the final state. This

ould suggest that the easing of lockdown measures would be a

ifficult task requiring patience and careful planning. 
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