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Abstract: To better describe its constitutive relation, we need a new constitutive equation for an
important nonlinear elastic material, Mn-Cu damping alloy. In this work, we studied the nonlinear
and hysteretic characteristics of the stress-strain curve of the M2052 alloy with the uniaxial cyclic
tensile test with constant strain rate. The strain rate and amplitude correlations of M2052 resembled
those of nonlinear viscoelastic material. Therefore, we created a new constitutive equation for the
M2052 damping alloy by modifying the fractional Maxwell model, and we used the genetic algorithm
to carry out numerical fitting with MATLAB. By comparing with the experimental data, we confirmed
that the new constitutive equation could accurately depict the nonlinear constitutive relation and
hysteretic property of the damping alloy. Taken together, this new constitutive equation for Mn-Cu
damping alloy based on the fractional Maxwell model can serve as an effective tool for further studies
of the constitutive relation of the Mn-Cu damping alloys.
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1. Introduction

Mn-Cu damping alloy is a typical twin-damping alloy. In the 1940s, Zener [1] first developed
Mn-20Cu alloy. The Sonoston alloy (Mn–36.2Cu–3.49Al–3.04Fe–1.17Ni wt. %) was developed in the
UK for submarine propellers, which effectively reduced the noise of the propeller [2]. International
Copper Research Association (INCRA) developed the Incramute alloy (Mn–48.1Cu–1.55Al–0.27Si wt.
%), which is mainly used in machines and pedestals [3]. Russia also developed the ABPOPA alloy
(Mn-Cu-Al-Fe-Ni-Zn) in 1975 and achieved a good performance in the field of precision machinery
manufacturing and ship equipment [4]. However, the machinability and applicable temperature
range of the above Mn-Cu alloys were relatively low, until the M2052 (Mn-20Cu-5Ni-2Fe) alloy was
developed by Kawahara et al. [5], who added Ni, Fe, Co, Ti and other elements to Mn-20Cu alloy. M2052
alloy has strong stiffness and machinability. Especially, it has high damping at room temperature,
which broadens its application range.

At present, M2052 alloy has been widely used in many industries. Xin [6] preliminarily explored
the application of M2052 damping alloy on cradle of remote control weapon station. Wang [7] applied
M2052 damping alloy to the motor support and fan housing. Baochang Liu et al. [8] added the powder
of Mn-Cu damping alloy into the diamond drill, and found that the 40% Mn-Cu damping alloy drill
had the same performance as the original one, but the vibration performance was reduce by 4.3%,
and the drilling process was more stable. Komatsu et al. [9] described how apply the M2052 alloy as
structural material in spacecraft vibration reduction. Yan, Shan et al. [10] mainly analyzed various
characteristics of Mn-Cu damping alloy, and designed a turbine containing this alloy, which was
proved to be effective in vibration reduction through experiments.
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All real materials will dissipate a certain degree of energy in the process of cyclic deformation.
This dissipation degree of some materials are small, such as steel, so it can be considered as a linear
elastomer, and the generalized Hooke’s law can be used to describe its constitutive relationship.
However, for some strict high-damping alloys, their dissipation degree of energy is much more,
also with an elliptic hysteretic period and a more complex nonlinear damping. The nonlinear damping
includes some viscoelastic damping, static hysteresis damping, and anelastic damping. Therefore,
the high-damping alloys need to be described by a special constitutive model.

Hongzhao Liu et al. [11] regarded the aluminum-based damping alloy as a general viscoelastic
material. Based on the measured data of energy storage modulus and loss factor of the damping
alloy in the frequency domain, they developed a three-parameter constitutive relation model of the
damping alloy. Guoqing Wang et al. [12] used the parabolic curve function to fit the loss factor and
strain change rule of Zn-based damping alloy, and derived the nonlinear damping constitutive relation
of Zn-based damping alloy from the equivalent viscosity theory. Sun [13] treated the constitutive
relation of Fe-Mn damping alloy as a viscoelastic material, extended the constitutive model of linear
viscoelastic damping to the three-dimensional by using tensor theory, and obtained the constitutive
relation model of Fe-Mn damping alloy in the form of time increment. Haghdoust [14] et al. used
the improved Masing criterion to simulate the nonlinear damping behavior of martensitic shape
memory alloy, and realized the simulation verification in the user subroutine of the finite element
program Abaqus. Since the existing model of Shape Memory Alloy (SMA) do not consider the internal
circulation phenomenon of the stress-strain curve, Zbiciak et al. [15] proposed an explicit constitutive
equation to represent the martensitic transformation by using the two-phase plastic body based on the
rheological model of Grzes and Zbiciak [16]. The hysteretic curve has proved effective by ABAQUS.

There are no reports about the constitutive relationship of Mn-Cu damping alloys in previous
papers. Most of them are about other damping alloys or SMA shape memory alloys. Although Mn-Cu
damping alloy and SMA are twin damping alloys, but the first one do not have the shape memory
effect and superelastic effect of the second one, so their constitutive relations are different.

However, it can be seen from literature [11–13] that the constitutive relationship of damping
alloy can be well described by treating the damping alloy as a viscoelastic material. In other words,
the damping alloy can regard as a viscous solid or a fluid with high stiffness. Maxwell model is
one of the simplest model to describe the linear viscoelastic [17,18]. With the concept of fractional
order derivative being developed, the fractional Maxwell model improved on its shortage of the
nonlinear viscoelastic behavior description. The fractional Maxwell model can describe the nonlinear
damping properties of materials within a wide frequency. It has been proven that it can better
simulate the nonlinear viscoelastic material properties [19,20]. Zhao [21] established the fractional
Maxwell fluid model of pipeline flow, studied the heat transfer of viscoelastic fluid in rectangular
pipeline, and obtained the analytical solution of the model by using the method of separating variables.
Hayat et al. [22] used Fourier transform method to solve the fraction Maxwell model of viscoelastic
fluid under the condition of periodic oscillating plate. Zhiqian Wang et al. [23] proposed a fractional
Maxwell model with quasi-state characteristic parameters to study the starting flow of viscoelastic
colloids in the damping buffer. Jaishankar [24] constructed a fractional Maxwell model of shear
deformation with quasi-state characteristics. By comparing with experimental data, it shows that the
long-term power-law response predicted by the model is in good agreement with experimental data
within a certain time scale. Stankiewicz [25] built a fractional Maxwell model (FMM), and deduced the
expression of relaxation modulus. The curve of experiment relaxation modulus was used to determine
the coefficients of FMM by piecewise curve-fitting method. Through the relaxation test of carrot root,
the good fitting effect of FMM to real biological material was verified.

In order to study the nonlinear constitutive relation of Mn-Cu damping alloy, this paper takes
M2052 alloy as the analysis object, through the uniaxial cyclic tensile test with constant strain rate
to analysis the nonlinear and hysteresis of its stress strain curve. Then this study based on the
fractional Maxwell model deduced a modified fractional Maxwell model for M2052 damping alloy,
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and combined with the damping mechanism of Mn-Cu damping alloy to build the governing equation.
At last, we simulated the nonlinear constitutive relationship of damping alloy and compared with
experimental curves.

2. Uniaxial Cyclic Tensile Test with Constant Strain Rate

Firstly, in order to study the nonlinear constitutive relationship of Mn-Cu damping alloy,
the uniaxial cyclic tensile test at constant strain rate was be used on the damping alloy by MTS
universal testing machine. Then the hysteresis stress-strain curve of the material at different strain
rates and strain amplitude values can be obtained, and will provide data for the model simulation
and verification.

2.1. Test Materials and Equipment

The composition of M2052 alloy used in the test is Mn-22.1Cu-5.24Ni-1.93Fe (mass%), and the
main performance indexes are shown in the following Table 1.

Table 1. Natural properties of M2052 damping alloy.

Name Tensile
Strength

Young’s
Modulus Poisson’s Ratio Yield Strength Density

Value 540 MPa 68.5 GPa 0.338 205 MPa 7.25 g/cm3

On M2052 steel plate after heat treatment, the required 150 mm × 20 mm × 2 mm tensile samples
were cut by wire electrical discharge machining, and the detailed size are shown in Figure 1.
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Figure 1. Schematic diagram of uniaxial tensile sample.

The test equipment choose the MTS-Landmark 810 universal testing machine produced by USA
MTS Company (Minneapolis, MN, USA), as shown in Figure 2. The bearing capacity range is 0–100 kN,
the test sample frequency is 10 Hz, the length of the extensometer is 50 mm, and the installation details
are shown in Figure 3.

2.2. Experiment Scheme and Result Analysis

Due to the high strength and damping capacity of M2052 alloy, it is often used in industry as
anti-vibration structural parts. It should not produce plastic deformation, so the cyclic strain amplitude
of test should not exceed 0.2%. Three types of uniaxial cyclic tensile tests were carried out. Type 1:
A constant strain rate of 0.0025%/s was performed on the first tensile sample, with three different cycle
strain amplitudes of 0.05%, 0.1% and 0.15%. Type 2: A constant strain rate of 0.005%/s was performed
on the second tensile sample, with three different cycle strain amplitudes of 0.05%, 0.1% and 0.15%.
Type 3: A constant strain rate of 0.01%/s was performed on the third tensile sample, with three different
cycle strain amplitudes of 0.05%, 0.1% and 0.15%. All tests’ initial preload was 0.8 kN, and the loading
and unloading process was controlled by computer program, at last outputting the stress-strain curve.
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Figure 3. Specimen installation diagram.

The tests were carried out only under strain control. In each type test, the strain rate was fixed.
Firstly, stretching the sample to 0.05% strain amplitude, and then unloading it. After returning to the
initial value, stretching it to 0.1% strain amplitude, and then unloading it. Finally, stretching the sample
to 0.15% strain amplitude and then unloading it. The schematic diagram of test loading-unloading
process is in Figure 4.
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The raw data contained some noise, which led hardly to show the characteristics of hysteresis
curves with different conditions. Therefore, this work used the wavelet filtering method to filter
and smooth the experimental data of uniaxial cyclic tensile tests. The result is shown in Figures 5–7.
In addition, the results of the original test data were put into the supplementary material (Figures
S1–S3 and Tables S1 and S2).
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Figures 5–7 are hysteresis curves with the same strain rate but different strain amplitude. It can be
seen from Tables 2 and 3 that at the same strain rate, the hysteretic area increased with strain amplitude,
and the slope of the curve decreased with strain amplitude. The hysteretic area represents the damping
performance of the damping alloy. This indicates that the damping capacity is positively correlated
with the amplitude within the elastic range, which has been proved by the literature [26]. However, it
is found from Figures 5–7 that the strain amplitude of hysteresis curve was generally not equal to the
set strain value, which is due to the error caused by the response gain of the hydraulic servo valve, but
it would not affect trend analysis. The strain amplitude error between the set value and the measured
value of each cycle is listed as shown in Table 4.

Table 2. Hysteresis area under different strain rates and strain amplitudes (unit: 10 kJ/m3).

Strain Amplitudes 0.05% 0.1% 0.15%

Strain
Rates

0.0025%/s 0.041872 0.147943 0.503593
0.005%/s 0.036426 0.180372 0.3791682
0.01%/s 0.071483 0.319285 0.653956

Table 3. The slope of curve under different strain rates and strain amplitudes.

Strain Amplitudes 0.05% 0.1% 0.15%

Strain
Rates

0.0025%/s 730.61979 687.76791 669.23966
0.005%/s 724.0259 694.45375 680.06215
0.01%/s 703.77106 689.28956 681.57759

Table 4. The strain amplitude error between the set value and the measured value.

Number
.
ε(%/s) εset(%) εmeasured(%) Error (%) The Relative Error (%)

1
0.0025

0.05% 0.04748 0.00437 0.0504
2 0.1% 0.09132 0.00797 0.0868
3 0.15% 0.14239 0.00681 0.05073

4
0.005

0.05% 0.04332 0.00372 0.1336
5 0.1% 0.09123 0.00696 0.0877
6 0.15% 0.14132 0.00779 0.05787

7
0.01

0.05% 0.05668 −0.01243 −0.1336
8 0.1% 0.11754 −0.01848 −0.1754
9 0.15% 0.1558 −0.01686 −0.03867
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From Table 4, we can see the measured value of strain amplitude was not equal to the set value.
The error value between the measured and the set value was not the same, but all little. The relative
error ranged between 0.039% and 0.175%. The measured strain amplitude at the strain rate of 0.0025%/s
and 0.005%/s were less than the set value, and it was greater than the set value at the strain rate of
0.01%/s. Because the error caused by response gain of hydraulic servo valve was small, the measured
strain amplitude at the strain rate of 0.0025%/s and 0.005%/s were also close. However, for the measured
strain amplitude at the strain rate of 0.01%/s, the error caused by response gain of the hydraulic servo
valve was large. Although the measured value of strain amplitude is inconsistent with the set value,
the measured strain amplitude at each cycle with the same strain rate was still monotonically increasing.
It can be concluded from Tables 2 and 3 that with the increase of strain amplitude, the hysteresis area
increased correspondingly and the slope decreased correspondingly. Therefore, the inconsistency
between measured and set value will not influence the trend analysis of hysteresis curve versus
strain amplitude.

Since the strain amplitudes of all tests are different, it is usually impossible to analyse the effect of
the strain rate change on the hysteretic curve. However, the measured strain amplitudes at the strain
rates of 0.0025%/s and 0.005%/s are close to each other, so their measured strain amplitudes can be
approximately equal. It can be seen from the data in Tables 2 and 3 that the strain rate has a certain
influence on the hysteretic curve, but the specific law still needs further experimental study.

Because the error between the measured strain amplitude and the set value can be neglected,
the original set value of strain amplitude is still used to describe the problem easily. Moreover, the use
of measured data does not affect the fitting of the numerical model, but can avoid the loss of useful
data points due to operations such as filtering and smoothing. Therefore, this paper only uses the
measured data after smoothing to analyze the results of test, and the measured data without filtering is
still used in the subsequent research.

3. Fractional Maxwell Model

3.1. Establishment of Fractional Maxwell Model

The basic component of the fractional-order viscoelastic model is the spring-pot element, which is
a fractional-order model between the spring that represent pure elasticity and the Newton’s viscoelastic
model that represent pure viscosity. Its constitutive relation can be written as [20]:

σ = κDα
t ε (1)

where, κ is the quasi-property [27], whose unit is Pa · sα, and its expression is Equation (2) [28].

κ= E
(
ηα

Eα

)
(2)

This τ = η
E is called relaxation time, η is the viscosity and E is the spring stiffness [29].

Quasi-property is the numerical measurement of a dynamic process, that it is not a simple material
property. It relates with the elastic modulus, stress, time, viscosity and other physical quantities, and
also associated with mathematical quantities such as fractional index (α). As shown in Figure 8, if α = 0,
the spring-pot element can be simplified as a spring element (σ = Eε, κ= E). If α = 1, the spring-pot
element simplified to a dashpot element (σ = η

.
ε, κ = η). It can be seen that the quasi-property makes

the model parameters more closely to the actual research object.
One spring-pot mechanism element (σ1, ε1) in series with one spring element (σ2, ε2) form

the fractional Maxwell model of M2052 damping alloy (as shown in Figure 9). κ represents the
quasi-property of spring-pot. α is the fractional order and 0 ≤ α ≤ 1. E represent the Young’s modulus
of M2052 alloy. σ1 is the stress of spring-pot. ε1 is the strain of spring-pot. σ2 is the stress of spring. ε2
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is the strain of spring. σ is the stress of M2052 alloy. ε is the strain of M2052 alloy. It can be obtained by
Maxwell model relation:

σ1 = σ2 = σ (3)

ε1 + ε2 = ε (4)
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Figure 9. Fractional Maxwell model of M2052 damping alloy.

Substitute Equation (1) into Equation (3) and Equation (4) to get:

κDα
t (ε− ε2) = Eε2 (5)

The constitutive equation of fractional Maxwell model is:

σ+
κ
E

Dα
t σ = κDα

t ε (6)

3.2. The Reduces Vibration Mechanism of Mn-Cu Damping Alloy

In order to establish the governing equation of M2052 damping alloy according to the law
of energy conservation, the mechanism of energy consumption of M2052 damping alloy must be
understood. The high damping characteristics of Mn-Cu alloy are derived from the fact that in the
process of melting cooling at high temperature, paramagnetism turns to anti-ferromagnetism after
Neel point, and anti-ferromagnetic martensite twins are generated. The relaxation process of the twin
boundary leads to the consumption of external energy. The parent phase of Mn-Cu damping alloy is



Materials 2020, 13, 2020 9 of 36

austenite, which contains martensite twins at room temperature, so it has high damping characteristics
at room temperature.

The microstructure of twin type damping alloy under external force as shown in Figure 10,
from 20-micron scale under the electron microscope figure can see a horse twin throughout the
austenite grain size. The 1-micron scale of damping alloy under the electron microscope can see its
internal grain subdivide to many fine twins, the twins stayed parallel and cross state, when under stress.
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Figure 10. Microstructure of twins. (a) Schematic diagram of twin microstructure; (b) Electron
micrograph of twin structure.

Figure 11 is a schematic diagram of the movement of twins under stress [30]. Figure 11a is the
lattice structure of the alloy without stress, and the points in the figure represent the metal atoms. When
the shear stress was applied, the lattice structure began to deform, as shown in Figure 11b. When the
stress reached a certain degree, twins began to generate, as shown in Figure 11c. As the stress increased,
the twin band also began to increase and became a large twin crystal, as shown in Figure 11d. The
deformed part and the undeformed part of the lattice formed a symmetrical relationship on the twin
boundary, and the lattice direction of the twin band all changed, as shown in Figure 11f. Moreover,
just because of this lattice redirection way, the energy could be absorbed. As the stress continued
to increase, the large twin crystal began to differentiate into several small twin crystal, as shown in
Figure 11e.
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M2052 alloy contains martensite twins and austenite at room temperature, and the austenite is the
parent phase. When the alloy is subjected to stress at room temperature, the stress-induced martensitic
transformation will occur. This new martensite is called the stress-induced martensite. Since the
martensitic transformation, there will be friction between the martensitic phase and austenitic phase,
also between the original martensitic phase and new martensitic phase, which is also a reason for
the high damping of M2052 alloy. The martensitic phase transformation includes two types: stress
induced martensitic transformation and strain induced martensitic transformation. The relationship
between them is shown in Figure 12.Materials 2020, 13, x FOR PEER REVIEW 11 of 39 
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Figure 12. The relation of stress-induced martensite and strain-induced martensite. (σ is stress. σB is
the critical stress of stress-induced martensite. σC is the nominal stress of stress-induced martensite at
T2. σF is the stress of strain-induced martensite at T2. σD is the stress required for the transformation of
austenite. T is temperature. Ms is the start temperature of the martensitic transformation. Md is the
end temperature of the martensitic transformation. T1 is the room temperature.).

As shown in Figure 12. When MS < T < MS1 and 0 < σ < σB, the martensitic phase transformation
is mainly induced by stress (AB), and the stress and temperature show a linear relationship in the
elastic range. When MS1 < T < Md and σB < σ, for the stress exceeding the yield strength of austenite,
the plastic deformation will occur. The martensitic transformation generated by the deformation
is called strain-induced martensite (BF). In addition, as the temperature increases, some martensite
will begin to transform into austenite (BD). When the temperature is greater than Md, the martensite
will no longer be produced, and all phase will become austenite. Since M2052 alloy works at room
temperature and plastic deformation is not allowed, stress-induced martensitic transformation will
occur under the stress.

3.3. Governing Equation

Therefore, from the perspective of conservation of energy, under the condition of constant
temperature and thermal insulation, the work done by external force all into strain energy and it should
be equal to the elastic potential energy and internal energy. Moreover, the internal energy is due to the
twin’s relaxation movement and the interface slip between stress-induced martensite and austenite
phase [31]. At present, it is generally considered that the friction energy between martensite and
austenite, martensite and martensite is small and can be ignored for the time being, so it is assumed
that the strain energy is the sum of elastic potential energy and twin energy. The expression is shown
in Equation (7).

WS = WE + WT (7)
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where WS is the strain energy per unit volume, WE is the elastic potential energy per unit volume,
and WT is the twin energy per unit volume.

The schematic diagram of energy conversion was shown in Figure 13. σloading is the stress of
loading stage. σunloading is the stress of unloading stage. σe is elastic stress. σt is the stress of twin.
Each energy density is the area, which is surround by each curve and x-axis. The area between σloading

and σunloading is the loss of energy per unit volume. The strain energy per unit volume is equal to the
σe surrounding area and σt surrounding area combined.Materials 2020, 13, x FOR PEER REVIEW 12 of 39 
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t

0
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1

𝑘
∫ σ𝐷𝑡

1−𝛼𝜎
t

0

𝑑𝑡 (9) 
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According to the J2 deformation theory, Hooke’s law and Equations (1)–(4), we can obtain blow
equations [32] under the unit volume:

WS =

∫ t

0
σ

.
εdt, WE =

1
2

E(ε2)
2, WT =

∫ t

0
σ1

.
ε1dt. (8)

Then taking Equation (8) into Equation (7) we can receive Equation (9).∫ t

0
σ

.
εdt =

1
2

E(ε−
1
k

D−αt σ)
2
+

1
k

∫ t

0
σD1−α

t σdt (9)

The formula can convert into Equation (10):∫ t

0
σ

.
εdt =

1
2
σ2

E
+

1
k

∫ t

0
σD1−α

t σdt (10)

The above equation is the governing equation of fractional Maxwell model of M2052 damping alloy.
In the governing equation, when t ≤ 0, then σ(t) = 0, ε(t) = 0 ; when t > 0, σ(t) and ε(t) is

monotonically increasing in the loading segment and monotonically decreasing in the unloading
segment. Therefore, the initial value and boundary conditions of the governing equation are shown in
Equation (11): 

σ(0) = 0, t > 0
ε(0) = 0, t > 0
E = 68.5GPa

σ(ti+1) > σ(ti),
.
ε > 0

σ(ti+1) < σ(ti),
.
ε < 0

(11)
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3.4. Numerical Solution

Taking the derivatives of both sides of the governing Equation (10) with respect to time, we can
get the below equations.

σ
.
ε =

σ
.
σ

E
+

1
k
σD1−α

t σ (12)

.
ε =

.
σ

E
+

1
k

D1−α
t σ (13)

In order to solve the above equation, the fractional derivative is discretized by the finite
difference method.

Define tm = m∆t, m = 0, 1, 2, . . . , K, 0 ≤ k ≤ K; ∆t = T
K stands the time step. According to the

definition of fractional calculus of Caputo [33], when 0 < h < 1, then a = 0, n = 1, Dh
t σ(t) (0 < h < 1)

can be written as:

Dh
t σ(tk) =

1
Γ(1− h)

k−1∑
i=0

ti+1∫
ti

∂σ(s)
∂s

ds

(tk − s)h
(14)

where, according to the finite difference method, ∂σ(t)∂t and
ti+1∫
ti

ds
(tk−s)h can be written in the interval

[ti, ti+1] as:
∂σ(t)
∂t

=
σ(ti+1) − σ(ti)

∆t
+ o(∆t) (15)

where ∂σ(t)
∂t ≈

σ(ti+1)−σ(ti)
∆t is the forward difference form of ∂σ(t)∂t ; o(∆t) is the error of approximation.

ti+1∫
ti

ds
(tk−s)h = − 1

1−h (tk − s)1−h
∣∣∣∣ti+1
ti

= − 1
1−h

[
(tk − ti+1)

1−h
− (tk − ti)

1−h
] (16)

In addition, because of the idea of difference, tk+1 = (k + 1)∆t, by the same token tk, ti+1, ti,
the above equation can be changed into:

ti+1∫
ti

ds
(tk−s)h = − 1

1−h (tk − s)1−h
∣∣∣∣ti+1
ti

= − 1
1−h

[
(tk − ti+1)

1−h
− (tk − ti)

1−h
]

=
[
(k− i)1−h

− (k− i− 1)1−h
]

∆t1−h

1−h

(17)

Taking Equations (15) and (17) into Equation (14), and defining j = k− i we can obtain:

1
Γ(1−h)

k−1∑
i=0

σ(ti+1)−σ(ti)
∆t

ti+1∫
ti

ds
(tk−s)h =

1
Γ(1−h)

k−1∑
i=0

σ(ti+1)−σ(ti)
∆t

[
(k− i)1−h

− (k− i− 1)1−h
]

∆t1−h

1−h + o((∆t)r)

=
(∆t)−h

Γ(2−h)

k∑
j=1

h j
[
σ(tk− j+1) − σ(tk− j)

]
+ o((∆t)r)

(18)

The coefficient in the higher-order term r = 2− h, define h j = j1−h
− ( j− 1)1−h, j = 1, . . . , k.

o((∆t)r) is the higher-order error term.
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So we can get the expression of Dh
t σ(tk), as shown in Equation (19).

Dh
t σ(tk) =

(∆t)−h

Γ(2−h)

k∑
j=1

h j
[
σ(tk− j+1) − σ(tk− j)

]
+ o((∆t)2−h)

=
(∆t)−h

Γ(2−h)

h1σ(tk) − hkσ(t0) +
k∑

j=2
(h j − h j−1)σ(tk− j+1)

+ o((∆t)2−h)

(19)

Since h1 = 1, the above equation can be simplified to:

Dh
t σ(tk) =

(∆t)−h

Γ(2−h)

σ(tk) − hkσ(t0) +
k∑

j=2
(h j − h j−1)σ(tk− j+1)


+o((∆t)2−h)

(20)

When 0 < α < 1, the 1− α > 0, define h = 1− α, taking it into Equation (20).

D1−α
t σ(tk) =

(∆t)α−1

Γ(1+α)

σ(tk) − hkσ(t0) +
k∑

j=2
(h j − h j−1)σ(tk− j+1)


+o((∆t)1+α)

(21)

Where h j = jα − ( j− 1)α, j = 2, . . . , k.
Take Equations (15) and (21) into Equation (13), and the higher-order error terms can be omitted:

.
ε =

σ(tk+1)−σ(tk)
E∆t + 1

κ
(∆t)α−1

Γ(1+α)


σ(tk) − hkσ(t0)+

k∑
j=2

(h j − h j−1)σ(tk− j+1)


(k = 1 : m, i = 0 : k− 1, j = 2 : k, h j = jα − ( j− 1)α, j = 2, . . . , k)

(22)

4. Numerical Model Simulation Analysis

4.1. Model Parameter Analysis

Taking the fractional Maxwell numerical model and boundary conditions into MATLAB software,
and then combining with the test data determined the time step ∆t = 0.1 s. We selected the more
regular curve which was under strain rate 0.0025%/s and strain amplitude 0.1% as the basic experiment
data and σ(0)= 4.5901 MPa, ε(0)= 0.00903%. Then we analyzed the influence of α and κ values on
the model.

α is the fractional order coefficient, and its range is 0 < α < 1, and the range of quasi-properties
κ can be determined by E and relaxation time according to Equation (2). Although no data on the
relaxation time of M2052 alloy have been found (which can be measured by future relaxation tests), we
can know when α = 0, the minimum value of κ is 68.5 GPa.

In order to facilitate the analysis, we define κ = C × 109, 68.5 < C < ∞ and select α =

0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, C = 100, 500, 2500, 12500.
When C = 100 and α = 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, the stress-time fitting curve

of the loading stage with strain rate of 0.0025%/s and strain amplitude of 0.1% is shown in Figure 14.
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Figure 14. The fitting curve of stress in loading stage for fixed C = 100.

As can be seen from Figure 14, fractional Maxwell can simulate the nonlinear curve of the convex
function in the loading section. Moreover, with the increase of the α, the curvature is higher and higher,
but the maximum stress is lower. In order to observe the influence of the κ, choose α that at the largest
curvature as an invariant.

When α = 0.9 and C = 100, 500, 2500, 12500, the stress-time fitting curve of the loading stage with
the strain rate of 0.0025%/s and the strain amplitude of 0.1% is shown in Figure 15.
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Figure 15. The fitting curve of stress in loading stage for fixed α = 0.9.

It can be seen from Figure 15 that the increase of κ will reduce the curvature of the curve, but
can significantly increase the increment of the stress over time. Therefore, there is an optimal solution
between α and κ.

4.2. Genetic Algorithm Setting

Since the governing Equation (21) is a difference iterative form with time as the iterative variable,
the least square method or linear regression method cannot be used, so the fitting problem can be
transformed into a multi-objective optimization problem. The objective function, design variables
and constraint conditions are prepared by using the GA toolbox of MATLAB 2016R. The optimization
process is shown in Figure 16.
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Figure 16. Flow chart of genetic optimization.

Some parameters are set as follows:

Objective Function : obj =

n∑
i
(yi − yi

′)2

n
(23)

yi stands stress value of the fitting curve corresponding to the test strain point, yi
′ is the stress

value of the test data, and n is the test data number.
Population size: 200, elite count: 10, crossover fraction: 0.85, the end condition is that the two

optimal fitness errors of individuals are less than 1 × 10−15.

4.3. Test Data Fitting

Based on the loading section of uniaxial cyclic tensile test data and genetic algorithm, there are
nine sets of data corresponding to three strain rates and three strain amplitudes can fit out the different
values of α and C. Then can take them into unloading program to get the loading and unloading cycle
tensile curve.

The fitting results of fractional Maxwell model are shown in Figures 17–25.
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Figure 18. Comparison of experimental stress–strain curves and model predictions at =0.0025% / s  

and 
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Figure 17. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.0025%/s

and εa = 0.05%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 18. Comparison of experimental stress–strain curves and model predictions at =0.0025% / s  

and 
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Figure 18. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.0025%/s

and εa = 0.1%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 20. Comparison of experimental stress–strain curves and model predictions at =0.005% / s  

and 
a =0.05% . ( (%)  is strain,   (MPa) is stress, (% / )s  is strain rate, 

a (%)  is strain 

amplitude, the fitting curve is red and the experiment data is black.). 

Figure 19. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.0025%/s

and εa = 0.15%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 20. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.005%/s

and εa = 0.05%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 21. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.005%/s

and εa = 0.1%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 22. Comparison of experimental stress–strain curves and model predictions at =0.005% / s  

and 
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Figure 22. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.005%/s

and εa = 0.15%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 23. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.01%/s and

εa = 0.05%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude, the fitting

curve is red and the experiment data is black.).

Materials 2020, 13, x FOR PEER REVIEW 20 of 39 

 

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

5

10

15

20

25

30

35

40

45

 fitting

 experiment


(M

P
a
)

(%)  

Figure 23. Comparison of experimental stress–strain curves and model predictions at =0.01% / s  

and 
a =0.05% . ( (%)  is strain,   (MPa) is stress, (% / )s  is strain rate, 

a (%)  is strain 

amplitude, the fitting curve is red and the experiment data is black.). 

0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

10

20

30

40

50

60

70

80

 fitting

 experiment


(M

P
a

)

(%)
 

Figure 24. Comparison of experimental stress–strain curves and model predictions at =0.01% / s  

and 
a =0.1% . ( (%)  is strain,   (MPa) is stress, (% / )s  is strain rate, 

a (%)  is strain 

amplitude, the fitting curve is red and the experiment data is black.). 

Figure 24. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.01%/s and

εa = 0.1%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude, the fitting

curve is red and the experiment data is black.).
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unloading curves cannot reflect hysteresis loop, this is because the maximum stress value of the 

loading section fitting curve is smaller. Table 5 shows the fitting coefficients of fractional Maxwell 

model corresponding to each group of data. 
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Number (% / )s  (%)  Generations Fval   C 

1 

0.0025 

0.05 18,191 1.9510 0.0102 12,380.56 

2 0.1 11,591 1.123 0.0044 8929 

3 0.15 19,989 3.8929 0.0046 12,374 

4 

0.005 

0.05 28,735 2.0648 0.0125 21,216.625 

5 0.1 20,263 3.98 0.0016 15,824.938 

6 0.15 10,449 3.92 0.0011 11,160.78 

7 

0.01 

0.05 34,455 0.7885 7.2797 × 10−4 23,822 

8 0.1 44,922 2.6657 5.1945× 10−4 29,563 

9 0.15 27,016 0.7995 0.0079 20,059.3 

It can be seen from Table 5 that each fitting iteration has a large number to ensure the credibility 

of the optimization and avoid falling into local optimization. The optimal fitness value (Fval) ranges 

from 0.79 to 3.98, which represents the approximation between the fitting curve and the test data, and 

the smaller Fval, the better the result gets. The values of   and C are not the same in the group 1–

9. This phenomenon demonstrates that the damping capacity of M2052 is related to the strain rate 

and strain amplitude. At the same strain rate, with the increase of the strain amplitude, the 
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ε(%/s) is strain rate, εa(%) is strain amplitude, the fitting
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From Figures 17–25, it can be seen that the fractional Maxwell model has a good fit for the loading
section, but the unloading section has a large deviation, and the overlap of loading and unloading
curves cannot reflect hysteresis loop, this is because the maximum stress value of the loading section
fitting curve is smaller. Table 5 shows the fitting coefficients of fractional Maxwell model corresponding
to each group of data.

Table 5. Fractional Maxwell model fitting coefficient.

Number
.
ε(%/s) ε(%) Generations Fval α C

1
0.0025

0.05 18,191 1.9510 0.0102 12,380.56
2 0.1 11,591 1.123 0.0044 8929
3 0.15 19,989 3.8929 0.0046 12,374

4
0.005

0.05 28,735 2.0648 0.0125 21,216.625
5 0.1 20,263 3.98 0.0016 15,824.938
6 0.15 10,449 3.92 0.0011 11,160.78

7
0.01

0.05 34,455 0.7885 7.2797 × 10−4 23,822
8 0.1 44,922 2.6657 5.1945× 10−4 29,563
9 0.15 27,016 0.7995 0.0079 20,059.3

It can be seen from Table 5 that each fitting iteration has a large number to ensure the credibility
of the optimization and avoid falling into local optimization. The optimal fitness value (Fval) ranges
from 0.79 to 3.98, which represents the approximation between the fitting curve and the test data,
and the smaller Fval, the better the result gets. The values of α and C are not the same in the group 1–9.
This phenomenon demonstrates that the damping capacity of M2052 is related to the strain rate and
strain amplitude. At the same strain rate, with the increase of the strain amplitude, the combination α
with C also makes the slope of the fitting curve larger. At the same strain amplitude, with the change
of the strain rate, the combination α with C also change but no special law. The value range of α is
5.1945× 10−40.0125 generally small, while C value is bigger, in the range of 7811.4–29563. Combined
with Section 4.1, since the max-stress of loading stage is too big, the fractional coefficient should be
decreased and the κ should be increased to achieve the minimum mean square error. This will lead
to the weak nonlinear of fitting curve. It cannot conform to the characteristics of nonlinear damping
alloy. Therefore, we need to modify model in Section 5. However, the fitting curve of the basic model
is concentrated near the symmetry line of the test hysteresis loop, which indicates that the numerical
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range of the model fitting is close to the actual value. It can be used as approximate curve or equivalent
curve in engineering application or when the accuracy demand is not high.

5. Modified Fractional Maxwell Model

5.1. Establishment of Correction Term

The fractional Maxwell model cannot simulate the hysteresis curve of damping alloys completely.
Its maximum stress value of fitting curve is small. This is because of ignoring the friction between
martensite and austenite or itself, that leads to an error term. So according to the difference value
between the uniaxial cyclic tensile test under constant strain rate and fitting data of fractional Maxwell
model, add a correction term. Figure 26 shows the error diagram of uniaxial cyclic tensile test data
with the fitting curve of fractional Maxwell model in the loading stage.
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Figure 26. The deviation diagram of uniaxial cyclic tensile test data with the fitting curve of fractional
Maxwell model in the loading stage (x-axial is strain ε (%), y-axial is stress σ (MPa),

.
ε (%/s) is strain rate).

As shown in Figure 26, it can be seen that the curve basically shows a sinusoidal wave peak.
So the first-order sinusoidal function is used to fit, and the correction term can be obtained:

∆= asin(bε+ c) (24)

Then, changing the original fractional Maxwell constitutive Equation (6) into (25), let the stress of
original fractional Maxwell model is σm:

σm = κDα
t ε−

κ
E

Dα
t σm (25)

The constitutive equation of modified fractional order Maxwell model can be obtained by adding
the modified term (24):

σ = κDα
t ε−

κ
E

Dα
t σm + ∆ (26)

5.2. Simulation Analysis of Fitting Data

Firstly, the correction coefficients of a, b and c were fitted in MATLAB according to Equation (24),
and then the fitting curve of modified fractional order Maxwell model was obtained by substituting
into Equation (26). The fitting diagram of the correction term is shown in Figure 27. The fitting
coefficient and evaluation index of the correction term are shown in Table 6.
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It can be seen from Figure 27 and Table 6 that the correction term fits the deviation value well, 

which basically reflects the change of the deviation value. Root of mean square (RMSE) values are all 
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many points of the fitting samples. Figures 28–36 are the fitting results of modified Maxwell model 
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Figure 27. Fitting diagram of correction terms (x-axial is strain ε (%), y-axial is stress σ (MPa),
.
ε (%/s) is

strain rate, red is the fitting curve and blue is the original deviation value).

Table 6. Fitting coefficient and evaluation index of the modified item.

Number
.
ε(%/s) ε(%) a b c SSE

(Variance)

R2

(Determinate
Coefficient)

RMSE (Mean
Square Root)

1
0.0025

0.05% 1.777 50.99 −0.3816 0.0037 0.9999 0.0046
2 0.1% 1.99 28.66 −0.3183 1.47 0.9917 0.0609
3 0.15% 2.45 22.61 0.0504 258.2 0.5804 0.579

4
0.005

0.05% 1.937 34.69 −0.164 30.99 0.4756 0.5836
5 0.1% 2.408 31.6 −0.1376 60.24 0.6412 0.5488
6 0.15% 2.255 16.97 0.1778 162.3 0.3146 0.7405

7
0.01

0.05% 0.8868 52.32 −0.5697 17.88 0.2591 0.5504
8 0.1% 1.935 21.92 −0.0335 34.78 0.4599 0.5407
9 0.15% 0.9247 18.7 −0.1211 56.27 0.2077 0.5639

It can be seen from Figure 27 and Table 6 that the correction term fits the deviation value well,
which basically reflects the change of the deviation value. Root of mean square (RMSE) values are all
less than 0.74, and some coefficient of determination (R2) values are smaller, which is caused by too
many points of the fitting samples. Figures 28–36 are the fitting results of modified Maxwell model on
experimental data.
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Figure 28. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.0025%/s

and εa = 0.05%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 29. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.0025%/s

and εa = 0.1%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 30. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.0025%/s

and εa = 0.15%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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and εa = 0.05%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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and εa = 0.1%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,
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Figure 33. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.005%/s

and εa = 0.15%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude,

the fitting curve is red and the experiment data is black.).
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Figure 34. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.01%/s and

εa = 0.05%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude, the fitting

curve is red and the experiment data is black.).

Materials 2020, 13, x FOR PEER REVIEW 27 of 39 

 

0.05 0.10 0.15

0

10

20

30

40

50

60

70

80

90

100

 experiment

 fitting


(M

P
a
)

(%)
 

Figure 33. Comparison of experimental stress–strain curves and model predictions at =0.005% / s  

and 
a =0.15% . ( (%)  is strain,   (MPa) is stress, (% / )s  is strain rate, 

a (%) is strain 

amplitude, the fitting curve is red and the experiment data is black.). 

0.01 0.02 0.03 0.04 0.05 0.06 0.07

0

5

10

15

20

25

30

35

40

45

 experiment

 fitting


(M

P
a
)

(%)  

Figure 34. Comparison of experimental stress–strain curves and model predictions at =0.01% / s  

and 
a =0.05% . ( (%)  is strain,   (MPa) is stress, (% / )s  is strain rate, 

a (%) is strain 

amplitude, the fitting curve is red and the experiment data is black.). 

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0

10

20

30

40

50

60

70

80

 experiment

 fitting


(M

P
a
)

(%)
 

Figure 35. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.01%/s and

εa = 0.1%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude, the fitting

curve is red and the experiment data is black.).
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From Figures 28–36 we can see modified fractional Maxwell model fitting is better with the test 
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is obvious, and the fitting curve is smoother than test data. This is convenient to be used in analysis. 

The loading and unloading curve of modified fractional Maxwell model fitting are symmetry about 

the center line. However, the stress-strain fitting curve at the strain rate of 0.01%/s and the strain 
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Table 7. The evaluation index of modified fractional Maxwell model. 
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RMSE (Mean 

Square Root) 

R2 (Determinate 

Coefficient) 

1 

0.0025 

0.05 181.0160 0.4897 0.9933 

2 0.1 324.4874 0.3986 0.9989 

3 0.15 986.723 0.8313 0.9991 

4 

0.005 

0.05 101.1080 0.5266 0.9938 

5 0.1 286.8182 0.6895 0.9983 

6 0.15% 643.7925 1.0537 0.999 

7 

0.01 

0.05 57.6222 0.4237 0.9972 

8 0.1 277.4389 1.0837 0.9986 

9 0.15 1843.8 5.1216 0.9975 

It can be seen from Table 7 that the modified fractional Maxwell model has a good fitting effect 

on the experimental data, and the determination coefficients can reach above 0.99, but the mean 

square error and variance of group 9 are large. Since its fitting deviation is mainly in the unloading 

section, try to set the unloading period of experiment data as object of correction fitting program. 

Figure 36. Comparison of experimental stress–strain curves and model predictions at
.
ε = 0.01%/s and

εa = 0.15%. (ε(%) is strain, σ (MPa) is stress,
.
ε(%/s) is strain rate, εa(%) is strain amplitude, the fitting

curve is red and the experiment data is black.).
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From Figures 28–36 we can see modified fractional Maxwell model fitting is better with the test
data, and can clearly show the nonlinear constitutive relation of damping alloy. The hysteresis area is
obvious, and the fitting curve is smoother than test data. This is convenient to be used in analysis.
The loading and unloading curve of modified fractional Maxwell model fitting are symmetry about
the center line. However, the stress-strain fitting curve at the strain rate of 0.01%/s and the strain
amplitude of 0.15% has a small hysteresis area, and the loading section is well fitted, but the unloading
section has a large deviation, which is due to the error of experimental data collection. Table 7 is the
evaluation index of modified fractional Maxwell model corresponding to each group of data.

Table 7. The evaluation index of modified fractional Maxwell model.

Number
.
ε(%/s) ε(%) SSE (Variance) RMSE (Mean

Square Root)
R2 (Determinate

Coefficient)

1
0.0025

0.05 181.0160 0.4897 0.9933
2 0.1 324.4874 0.3986 0.9989
3 0.15 986.723 0.8313 0.9991

4
0.005

0.05 101.1080 0.5266 0.9938
5 0.1 286.8182 0.6895 0.9983
6 0.15% 643.7925 1.0537 0.999

7
0.01

0.05 57.6222 0.4237 0.9972
8 0.1 277.4389 1.0837 0.9986
9 0.15 1843.8 5.1216 0.9975

It can be seen from Table 7 that the modified fractional Maxwell model has a good fitting effect on
the experimental data, and the determination coefficients can reach above 0.99, but the mean square
error and variance of group 9 are large. Since its fitting deviation is mainly in the unloading section,
try to set the unloading period of experiment data as object of correction fitting program. First, we can
use the coefficient and the model of the fractional Maxwell to calculate the fitting curve of unloading
stage. Then we can use it and the unloading stage data of the test to fit the modified term. Finally,
the loading stage was calculated according to the modified fractional Maxwell model. The unloading
deviation curve and the unloading correction term fitting curve were shown in Figure 37a,b.
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Figure 37. The unloading deviation curve and the unloading correction term fitting curve. (a) the
unloading deviation curve; (b) unloading correction term fitting curve.

Coefficient and evaluation index of the unloaded correction term: a = 4.886, b = 17.34, c = 0.07346,
SSE (variance) = 85.89, R2 (determination coefficient) = 0.7703, RMS (mean square root) = 0.6966.
The modified fractional Maxwell model curve fitted according to the unloading section compared with
the experiment data is shown in Figure 38.
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Figure 38. The modified fractional Maxwell model curve fitted according to the unloading section
compared with the experiment data at

.
ε = 0.01%/s and εa = 0.15%. (ε(%) is strain, σ (MPa) is stress,

.
ε(%/s) is strain rate, εa(%) is strain amplitude, the fitting curve is red and the experiment data is black.).

The fitting curve in Figure 38 compared with the test data concluded that MSE = 1.363,
SSE = 490.673, R2 = 0.9990, also it can be seen from the picture that effect is superior to the original
loading correction fractional fitting. This reason should be caused by the error generated in test
collection, suggesting non-linear of unloading stage is better. This has confirmed that modified
fractional Maxwell for this strain rate and strain amplitude is feasible.

In order to show the applicability of modified fractional Maxwell model, a comparison of fitting
performance between the modified fractional Maxwell model and other models was be done. Choosing
the stress-strain curve of experiment at 0.005%/s and 0.1% as the fitting standard.

According to Boltzmann superposition principle [34], the stress of material can be express by
Equation (27).

σ(t) = ε0G(t) +
∫ t

0 G(t− s)
.
εds

= G(t) ∗ dε(t)
(27)

where ε0 is the Initial stain value, G(t) is the relaxation modulus,
.
ε is the strain rate, “∗” is the symbol

of Stieltjes convolution [34].
For the classical Maxwell model (Maxwell two-parameter model), as shown in Figure 39.

G(t) = E1e−
t
τ1 (28)

where E1 is the elastic modulus, τ1 =
η1
E1

is the relaxation time.
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Since the
.
ε is constant, take Equation (28) into (27) can get:

σ(t) = ε0E1e−
t
τ1 +

.
ε
∫ t

0 E1e−
t−s
τ1 ds

= ε0E1e−
t
τ1 + E1

.
ετ1 − E1

.
ετ1e−

t
τ1

(29)

For the Maxwell three-parameter model, as shown in Figure 40.

G(t) = E1e−
t
τ1 + E2 (30)

where E1 and E2 are the elastic modulus, τ1 =
η1
E1

is the relaxation time.
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Since the
.
ε is constant, take Equation (30) into (27) can get:

σ(t) = ε0G(t) +
∫ t

0 G(t− s)
.
εds

= ε0

(
E1e−

t
τ1 + E2

)
+

∫ t
0

(
E1e−

t−s
τ1 + E2

)
.
εds

= ε0

(
E1e−

t
τ1 + E2

)
+ E2

.
εt + E1

.
ετ1 − E1

.
ετ1e−

t
τ1

=
(
E1ε0 − E1

.
ετ1

)
e−

t
τ1 + E2ε0 + E2

.
εt + E1

.
ετ1

(31)

For the Maxwell four-parameter model, as shown in Figure 41.

G(t) = E1e−
t
τ1 + E2e−

t
τ2 (32)

where E1 and E2 are the elastic modulus, τ1 =
η1
E1

and τ2 =
η2
E2

are the relaxation time.
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Since the
.
ε is constant, take Equation (32) into (27) can get:

σ(t) = ε0G(t) +
∫ t

0 G(t− s)
.
εds

= ε0

(
E1e−

t
τ1 + E2e−

t
τ2

)
+

∫ t
0

(
E1e−

t−s
τ1 + E2e−

t−s
τ2

)
.
εds

= ε0

(
E1e−

t
τ1 + E2e−

t
τ2

)
+ E1

.
ετ1 − E1

.
ετ1e−

t
τ1 + E2

.
ετ2 − E2

.
ετ2e−

t
τ2

=
(
E1ε0 − E1

.
ετ1

)
e−

t
τ1 +

(
E2ε0 − E2

.
ετ2

)
e−

t
τ2 + E1

.
ετ1 + E2

.
ετ2

(33)

Next, least-squares approximations are used, and two-, three- and four-parameter optimal models
were determined. The parameters and evaluation index of Maxwell models are given in Table 8.
Figure 42 presents experiment data and the optimal Maxwell models.
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Figure 42. The optimal Maxwell models fit to the loading experimental data at
.
ε = 0.005%/s and

εa = 0.1%. (
.
ε(%/s) is strain rate, εa(%) is strain amplitude.).

Table 8. Parameters and evaluation index of Maxwell models.

Number Name E1 (GPa) E2 (GPa) τ1(s) τ2(s)
SSE

(Variance)

R2

(Determinate
Coefficient)

RMSE (Mean
Square Root)

1 Two-parameter
model 68.5 - 3.993 × 105 - 1.926 × 108 0.9969 976.5

2 Three-parameter
model 2.22 × 10−14 68.5 75.06 - 1.925 × 108 0.9969 976.1

3 Four-parameter
model 1.243 67.257 1205 1503 2.235 × 108 0.9964 1057

It is easy to observe, that the classical Maxwell model, Maxwell three-parameter model or Maxwell
four-parameter model are inappropriate for description of this nonlinearity of elastic loading process.
A better fit to experimental data can be obtained, if the modified fractional Maxwell model is used.
In addition to, because the E1 of Maxwell three-parameter model is too small that is almost equal to
zero, the fitting curve of Maxwell two-parameter model is close to Maxwell three-parameter model
shown in the Figure 39 and Table 8. All this has confirmed that the modified fractional Maxwell can
well explain the nonlinear constitutive relation of damping alloy.

Since the parameters of the modified Maxwell model need to be determined according to the
different conditions of each load, the application of this model is limited. In order to improve the
usability of the model, the relationship between model parameters and loading conditions is analyzed.
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By using the method, which calculated the average value of the parameters at different strain rates
but same strain amplitude, the influence of strain rate was eliminated, and the variation rule between
strain amplitude and each parameter was obtained. Then, a strain-related formula is proposed for
each parameter, so that the parameters of the modified Maxwell model can be determined and the
model can maintain at a high precision under the condition that the particular experiment cannot be
carried out.

However, the first step is to assess the impact of replacing the original parameter with the mean
value of parameter. According to the values of parameters under different strain rates and strain
amplitudes, the parameters under the same strain amplitudes but different strain rates were averaged,
as shown in Table 9. This way can minimize the impact of strain rates on model parameters, and get
the functions of model parameters, which are only related to strain.

Table 9. The average values of model parameters under the same strain amplitudes but different
strain rates.

Number Strain
Amplitude (%)

Strain
Rate (%/s) α C a b c

1
0.05%

0.0025 0.0102 12,380.56 1.777 50.99 −0.3816
2 0.005 0.0125 21,216.625 1.937 34.69 −0.164
3 0.01 7.28 × 10−4 23,822 0.8868 52.32 −0.5697

4 Average 0.007809 19,139.72833 1.5336 46 −0.371767

5
0.10%

0.0025 0.0044 8929 1.99 28.66 −0.3183
6 0.005 0.0016 15,824.938 2.408 31.6 −0.1376
7 0.01 5.19 × 10−4 29,563 1.935 21.92 −0.0335

8 Average 0.002173 18,105.65 2.111 27.39333 −0.16313

9
0.15%

0.0025 0.0046 12,374 2.45 22.61 0.0504
10 0.005 0.0011 11,160.78 2.255 16.97 0.1778
11 0.01 0.0079 20,059.3 4.886 17.34 0.07346

12 Average 0.004533 14,531.36 3.197 18.97333 0.100553

For evaluating the impact of the average value of each parameter on the accuracy of model fitting,
the average value (Table 10) was used to replace the original model parameters, and substituted into
MATLAB. The fitting effect is expressed in figures of error, as shown in Table 11.

Table 10. Model parameters under different loading conditions after averaging.

Number Strain
Rate (%/s)

Strain
Amplitude (%) α C a b c

1
0.0025

0.05 0.007809 19,139.72833 1.5336 46 −0.371767
2 0.1 0.002173 18,105.65 2.111 27.39333 −0.16313
3 0.15 0.004533 14,531.36 3.197 18.97333 0.100553

4
0.005

0.05 0.007809 19,139.72833 1.5336 46 −0.371767
5 0.1 0.002173 18,105.65 2.111 27.39333 −0.16313
6 0.15 0.004533 14,531.36 3.197 18.97333 0.100553

7
0.01

0.05 0.007809 19,139.72833 1.5336 46 −0.371767
8 0.1 0.002173 18,105.65 2.111 27.39333 −0.16313
9 0.15 0.004533 14,531.36 3.197 18.97333 0.100553
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Table 11. The error of mean parameters fitting curve with experimental curve and original model
parameter fitting curve.

Number
.
ε(%/s) ε(%)

MSE SSE R2 MSE SSE R2

Compared with
Experimental Curve

Compared with Original Model
Parameter Fitting Curve

1
0.0025

0.05% 0.3401 59.5182 0.9955 0.0493 8.6320 0.9999
2 0.1% 0.3633 145.3041 0.9991 0.1087 43.4667 0.9999
3 0.15% 1.2377 736.4596 0.9994 0.7022 417.7823 0.9999

4
0.005

0.05% 0.3900 36.6571 0.9954 0.0600 5.6439 0.9999
5 0.1% 0.4237 86.0018 0.9988 0.1286 26.1143 0.9998
6 0.15% 1.0439 312.1178 0.9992 0.5027 150.2989 0.9999

7
0.01

0.05% 0.5603 34.7357 0.9976 0.2715 16.8323 0.9999
8 0.1% 0.4168 50.8456 0.9993 0.1352 16.4890 0.9999
9 0.15% 2.7624 497.2249 0.9993 2.4484 440.7147 0.9996

As can be seen from Table 11, the errors of the mean parameters fitting relative to the test and
the original parameters fitting are all within the acceptable range. The R2 values between mean
parameters fitting curve and test are all above 0.9954, while the R2 values between mean parameters
fitting curve and the original parameters fitting curve are all above 0.9996. Therefore, the influence of
the strain rate can be ignored and the mean parameters can be used to replace the original parameters.
Then, the function of each parameter can be proposed according to the relationship between the mean
parameter and the strain, as shown in Figures 43–47.
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of the strain rate can be ignored and the mean parameters can be used to replace the original 

parameters. Then, the function of each parameter can be proposed according to the relationship 

between the mean parameter and the strain, as shown in Figures 43–47. 
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Figure 47. The value of c at different conditions and the fitting of the mean value of c.

The fitting function of the relation between each parameter and strain is shown in Table 12.

Table 12. The fitting function of each parameter.

Number Name Function

1 α α = 0.02123− 34.9088ε+ 15832.7862× ε2

2 C C = −121.78885× e(
ε

4.03144×10−4 ) + 19560.68917
3 a a = 0.34852× e(

ε
7.91488×10−4 ) + 0.87809

4 b b = 75.10374× e(−
ε

6.30589×10−4 ) + 12.01361
5 c c = 0.62557× e(

ε
0.00214 ) − 1.16242
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It can be seen from Figures 43–47 that the equations in Table 12 all have a good fitting result for
the change of each parameter with strain. What is interesting is that all the functions of parameters
can be expressed as exponential functions, except for α. Therefore, the functions in Table 12 can be
used to calculate the values of model parameters under other loading conditions within the elastic
range, instead of the constant strain rate tensile test, which extends the practicability of the modified
Maxwell model.

6. Conclusions

In view of the existing study about nonlinear constitutive relation of Mn-Cu damping alloy being
less, and that it should not be treated as linear elastic material, this study chose M2052 damping alloy
as the research object, through uniaxial cyclic tensile test under constant strain rate to analysis its
nonlinear constitutive relation and hysteretic characteristics. By considering the damping alloy as a
special viscoelastic material and based on the fractional Maxwell model which describes nonlinear
viscoelasticity, a modified fractional Maxwell model suitable for M2052 damping alloy was proposed.
Through the numerical simulation, we can get the following conclusions:

1. Through uniaxial cyclic tensile test with constant strain rate, it is concluded that Mn-Cu
damping alloy can be considered as a viscoelastic material. In the elastic strain range, as the strain
amplitude increases, the slope of the stress-strain curve decreases and the hysteresis loop area and the
damping capacity increases with the same strain rate. Under the same strain amplitude, the slope
and hysteresis area of the stress-strain curve change with the change of the strain rate, this still needs
further study.

2. The Fractional Maxwell model only contains two unknown coefficients and does not have
to get analytic solutions. It can combine with uniaxial cyclic tensile test under constant strain rate
and relaxation test to determine its parameters. Since the max-stress of loading stage is biggish,
the fractional coefficient should be decreased and the quasi-state coefficient should be increased to
achieve the minimum mean square error. This leads to weak nonlinear fitting curve, which does not
match the nonlinear characteristics of damping alloy. However, the fitting curve of fractional Maxwell
model is basically in the middle of the loading and unloading stress-strain curve, which can be used in
some engineering application or situations where the accuracy is not high.

3. The error of fractional Maxwell model is due to ignoring the friction of new martensite with
austenite and original martensite. Combining with the deviation curve, a five-variable modified
fractional Maxwell phenomenological model is proposed. This model can well simulate the nonlinear
characteristics and the hysteresis curve of damping alloys. Determine coefficients all above 0.99,
and the deviation is small. Data fluctuation and measurement error exist in the test curve. However,
the fitting curves do not have these problems and can fully capture the stress-strain variation trend of the
damping alloy. Through compare with other Maxwell models, it also shows a better fitting performance.
In addition, a strain-related formula is proposed for each parameter, so that the parameters of the
modified Maxwell model can be determined without the particular experiment. Therefore, the modified
fractional Maxwell model can be used as the constructive equation of Mn-Cu damping alloys and
reference for the further analysis.
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strain amplitudes at strain rate of 0.01%/s (σ is stress, ε is strain, εa is strain amplitude); Table S1: Hysteresis area
of measured under different strain rates and strain amplitudes (unit: 10 kJ/m3); Table S2: The slope of measured
curve under different strain rates and strain amplitudes.
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