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Abstract

Background: Bisphenol S (BPS) is increasingly used as a replacement for bisphenol A in the manufacture of
products containing polycarbonates and epoxy resins. However, further studies of BPS exposure are needed for
the assessment of health risks to humans. In this study we assessed the potential harmfulness of low-dose BPS on
reproduction in male mice.

Methods: To simulate human exposure under experimental conditions, 8-week-old outbred ICR male mice received
8 weeks of drinking water containing a broad range of BPS doses [0.001, 1.0, or 100 pg/kg body weight (bw)/day,
BPS1-3] or vehicle control. Mice were sacrificed and testicular tissue taken for histological analysis and protein
identification by nano-liquid chromatography/mass spectrometry (MS) and sperm collected for immunodetection
of acetylated lysine and phosphorylated tyrosine followed by protein characterisation using matrix-assisted laser
desorption ionisation time-of-flight MS (MALDI-TOF MS).

Results: The results indicate that compared to vehicle, 100 pg/kg/day exposure (BPS3) leads to 1) significant
histopathology in testicular tissue; and, 2) higher levels of the histone protein yH2AX, a reliable marker of DNA
damage. There were fewer mature spermatozoa in the germ layer in the experimental group treated with 1 ug/kg
bw (BPS2). Finally, western blot and MALDI-TOF MS studies showed significant alterations in the sperm acetylome
and phosphorylome in mice treated with the lowest exposure (0.001 ug/kg/day; BPS1), although the dose is several
times lower than what has been published so far.

Conclusions: In summary, this range of qualitative and quantitative findings in young male mice raise the
possibility that very low doses of BPS may impair mammalian reproduction through epigenetic modifications of
sperm proteins.
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Introduction

Bisphenol A (BPA) is well-documented as an endocrine
disruptor with detrimental effects on reproduction [1];
as a result of increasing scrutiny of BPA, there is a broad
interest in substitution of alternative bisphenols for
human consumption. The most common alternative
bisphenol, Bisphenol S (BPS), includes a sulfone group
(SO,) in place of the dimethylmethylene group [C
(CH3),] in BPA [2]. BPS has shown a range of deleteri-
ous effects following oral ingestion, inhalation or dermal
absorption [3], with the most common route of intake
for humans being exposure through contaminated water
and food at relatively low doses [4]. To date, however,
there have been only limited experimental studies of the
possible harmfulness of low BPS doses.

Previous studies of BPS in male rats have reported a
range of deleterious effects on hormonal balance, reduced
germinal epithelium of seminiferous tubules and increased
generation of reactive oxygen species [5, 6]. Recent studies
have reported BPS induces epigenetic changes, including
alterations in the histone code in oocytes, increased DNA
methylation in mouse spermatocytes and changes to tran-
scriptome and proteome of cells in testicular tissue and
many other cells types [7-10]. Collectively, these findings
suggest BPS may disrupt male reproductive functions
through post-translational modifications (PTMs) of
nucleic acids and proteins [1, 11, 12] and regulation of
transcriptionally silenced spermatozoa [13]. In particular,
lysine acetylation and tyrosine phosphorylation of sperm
proteins regulate spermatogenesis and sperm capacitation
[14-16]. Based on these studies, it is possible that low
doses of BPS could modulate male reproduction through
PTMs of protein and nucleic acid structure. BPS is classi-
fied as an endocrine disruptor and its dose-response is
more likely to be nonmonotonic, hence, very-low doses
may be more effective than high doses. Therefore, we have
chosen wide range of much lower BPS doses than was
published before [5, 6]. Using a wide range of low- and
very-low doses BPS administered in drinking water for 8
weeks to young adult male mice, we want to determine
the effect of BPS doses form the environment. Our find-
ings provide one of the first indications that low doses of
BPS regulate PTMs of spermatozoa and lead to possible
negative effects on male reproduction.

Material and methods

All chemicals, including BPS (CAS: 80-09-1, cat. No.
103039) were purchased from Sigma-Aldrich (USA), un-
less stated otherwise.

Animals

All animal procedures were done in accordance with the
Protection of Animals against Cruelty (Act No. 246/
1992) under the supervision of the Animal Welfare
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Advisory Committee at the Ministry of Education, Youth,
and Sports of the Czech Republic. Adult 7-week-old ICR
male mice were purchased from Velaz Ltd. (Prague, Czech
Republic), housed in standard cages in groups of 3 and
maintained in a 12/12-h light/dark cycle at 21 + 1 °C with
a relative humidity of 60%. Bisphenol contamination was
reduced using intact polysulfonate cages and glass drink-
ing bottles. Mice were maintained on a phytoestrogen-free
diet (1814P Altromin, Altromin Specialfutter GmbH &
Co., Germany) with ultrapure water available ad libitum.

BPS dosage and sample collection

Mice were randomized into four experimental groups
and allowed to adapt for 1 week. Vehicle control (0.1%
ethanol; VC) and BPS for three treatment groups were
administered through drinking water at final concentra-
tions of 0, 0.0038, 3.8, and 380 pg/L, respectively, for 8
weeks (8—16 weeks of age). The following dosages were
presumed [0, 0.001, 1, and 100 pg/kg body weight (bw)/
day] with actual exposure estimated based on the know-
ledge of recorded body weight and water intake as previ-
ously reported [17]. A wide range of doses and the route
of exposure have been chosen appropriate to the real
human exposure; doses of experimental animals through
the drinking water have been used with respect to the
welfare of animals. Hereafter, experimental groups will
be stated as BPS1, BPS2 and BPS3.

Nine mice per group were included in three individual
independent experiments (n = 36). Animal weights were
recorded at the end of the experiments mice euthanised
by cervical dislocation. Blood samples were collected by
cardiac puncture, and serum was stored at — 80 °C until
hormonal assay performance. Left and right testes were
collected, weighed, and processed for histology and pro-
teomics, respectively.

Sperm isolation and assessment

From the mice described above, the cauda epididymidis
was dissected in 0.5mL Whitten’s medium (Suppl.
Table S1), and sperm were allowed to swim out for
30 min. Thereafter, sperm concentration and motility
were evaluated using Makler chamber and light
microscope (Olympus CKX 41; Germany) equipped
with a 10x objective (CAchN NA 0.25). 10pul of
sperm suspension was pipette to the Makler chamber,
thereafter spermatozoa were counted in 3 lines, each
of 10 squares and divide by 3 to obtain average
sperm concentration in million per milliliter. Simul-
taneously, each spermatozoon across the counted area
was identified either as motile or immotile. Accord-
ingly, the sperm motility was expressed as the ratio of
motile to immotile spermatozoa. The analysis was
performed blindly to avoid bias.
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Hormonal profiling

Blood serum samples in three independent experiments
(n =5 mice per group) were assayed with Immunobeads
Milliplex MAP kit (HPTP1IMAG-66 K, MSHMAG-21 K;
Merck Millipore, USA) for the following hormone levels:
adrenocorticotropic hormone, follicle-stimulating hormone,
growth hormone, luteinising hormone, thyroid-stimulating
hormone, cortisol, progesterone, testosterone, triiodothyr-
onine, and thyroxine.

Quantitative and qualitative analyses of testes

One testis from each animal (n=9 per group) was fixed
in Bouin solution, embedded in paraffin wax with
random orientation, and sectioned completely into 10-
um-thick slides. The total testis volume, total germ epi-
thelium volume, and interstitium volume were estimated
according to the Cavalieri principle [18]. The fractions
of spermatogenesis (pre-spermiation stages I-VI; middle
spermiation stages VII-VIII; post-spermiation stages
IX-XII) were found using the point grid approach
[19, 20]. To determine the precision and accuracy of
the stereological analysis, the coefficient of error was
estimated (Suppl. Tab. S2) [18]. Qualitative analysis of
seminiferous tubes was performed according to the
methods described by the Society of Toxicologic
Pathology [21, 22] to assess the following abnormalities:
missing germ cell layers and germ cell depletion, retained
spermatids (spermiation failure), multinucleate and apop-
totic germ cells, and exfoliation of spermatogenic cells
into the lumen. At least 100 seminiferous tubules were
evaluated blind to treatment group for each testicular
cross section. The quantitative assessment was performed
on a Nikon Eclipse Ti-U microscope (Nikon, Japan)
equipped with a motorised stage (Prior, UK) using a 10x
objective (Plan Fluor, NA 0.3) and Stereologer 11 software
(SRC, Biosciences Tampa, FL, USA) for histopathological
evaluation was performed using a 40x objective (UPlanFl,
NA 0.75).

Western blot

Testicular tissue and sperm were dissolved in lysis buffer
(40 mM Tris base, 7 M urea, 2 M thiourea, 4% CHAPS,
120 mM dithiothreitol), enriched with Complete Mini
Protease Inhibitor Cocktail (Roche, Switzerland), for 30
min on ice. Sperm samples of three individuals belong-
ing to the same experimental group were pooled. There-
after, samples were subjected to sodium dodecyl sulfate
polyacrylamide gel electrophoresis on 4—-15% separating
Mini-PROTEAN precast gels and blotted using a Trans-
Blot Turbo Transfer System onto polyvinylidene difluor-
ide membranes (Bio-Rad Laboratories, France). The
membranes were blocked in 1% bovine serum albumin
in TBS with 0.5% Tween-20 for 60 min at room
temperature and incubated overnight at 4°C with
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primary antibodies diluted in blocking buffer. The following
primary antibodies were used: anti-acetyl lysine antibodies
(cat. no. ab80178; Abcam, UK), anti-phospho-tyrosine anti-
bodies (cat. no. ab10321; Abcam), anti-acetylated a-tubulin
antibodies, and anti-yH2AX antibodies. Mouse monoclonal
anti-a-tubulin antibodies (cat. no. T6199; Sigma, St. Louis,
MO, USA) and rabbit monoclonal anti-histone H3
antibodies (cat. no. D1H2; Cell Signaling Technology,
Danvers, MA, USA) were used as the loading control
for yH2AX and acetylated o-tubulin, respectively.
Horseradish peroxidase-conjugated secondary anti-
bodies (goat anti-mouse or anti-rabbit IgG; dilution: 1:
15,000; Invitrogen, Carlsbad, CA, USA) were applied
for 60 min at 22°C. Target proteins were visualised
using ECL Select Western Blotting Detection Reagent
(GE Healthcare Life Sciences, UK) and a ChemiDoc
MP System (Bio-Rad). Alternatively, proteins were visua-
lised using a colorimetric Opti-4CN substrate kit (Bio-Rad),
followed by matrix-assisted laser desorption ionisation
time-of-flight (MALDI-TOF) mass spectrometry (MS) for
peptide detection in the dissected bands.

Proteome profiling

Testis lysates from animals in the experimental groups
were collected for complete proteomic analysis. Nano-
liquid chromatography-MS (nano-LC-MS) was used for
protein identification and quantification, as described
previously [7]. The acetylome and phosphorylome were
analysed separately.

Statistics

The data were processed with GraphPad Prism 8
(GraphPad Software Inc., San Diego, CA, USA). Based
on Shapiro-Wilk normality distribution tests, analysis of
variance (ANOVA) and Kruskal-Wallis tests were used
for normally and non-normally distributed data. In cases
of significant overall findings, differences between indi-
vidual group pairs were assessed by Tukey’s and Dunn’s
post-hoc tests, respectively. Results with P less than 0.05
were considered statistically significant. Normally and
non-normally distributed data were expressed as means
and medians, respectively.

Results

Hormonal profiles and sperm features of BPS-treated
males

At the end of 8-week exposure to actual doses of BPS,
the body and testes weights were recorded and relative
testes weights (mg/g bw) were determined. There
were no differences between the experimental groups
and the vehicle control (Table 1). Hormonal assays
showed no significant differences in plasma hormone
levels between the BPS-treated and vehicle control
groups (Suppl. Table S3). Moreover, the spermatozoa
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Table 1 Characteristics of experimental animals

VC BPS1 BPS2 BPS3
Weight of mouse body (g) 4182 +0,72%° 4244 + 0,77%F 4524 + 1,36 4131+ 1°
Relative weight of testes (mg/g of bw) 12,81 £ 0,30 12,76 £ 0,15 10,87 £ 0,37 11,03+ 0,17

Body and relative testis weights are shown as means + SEM of animals included in the study (n =9 per experimental group). One-way ANOVA was followed by
Tukey’s multiple comparison tests. Different letters in the same row indicate significant differences (p < 0.05). VC vehicle control, BPS71-3 increasing doses of

bisphenol S

count was not affected by BPS exposure (Fig. la), al-
though treatment with 0.001 pg/kg bw BPS1 decreased
the portion of motile spermatozoa (Fig. 1b).

Higher BPS exposure induced abnormal testicular
histopathology

Histological assessment was performed to evaluate the im-
pact of actual BPS doses on testicular tissues. Stereological
analysis showed no differences between groups in terms
of testis volume, germinal epithelium volume (Fig. 2a, b),
interstitium volume, germ layer volume fraction, and in-
terstitium volume fraction. To investigate the effects of
BPS treatments on spermatogenesis, individual stages of
the seminiferous epithelium were identified and no differ-
ences between experimental groups were found (Fig. 2c,
). Histopathological analysis of testicular tissues from
BPS-exposed male mice showed an increased incidence of
abnormalities in mice treated with the highest BPS dose
(BPS3; Fig. 2d). In addition to vacuolisation of germ layer
cells and enlarged multi-nuclear germ cells, the atypical
residual bodies demonstrated the effects of BPS3 on tes-
ticular tissues (Fig. 2d—g). There were fewer mature
spermatozoa in the germ layer in the BPS2 experimental
group (Fig. 2h). Representative images of individual histo-
pathologies are shown (Fig. 2d’-h’).

Proteomic analysis of testicular tissue
Based on the different modes of action of BPS at various
doses, whole-proteome profiling of testicular tissues was

performed. In total, 3044 proteins were detected. Unique
protein expression in the control and BPS-treated
groups is shown in the Venn diagram in Fig. 3a. How-
ever, after quantification of the levels of 1886 proteins,
followed by subsequent principle component analysis
(PCA), no distinct clusters of mice (# = 24) from individ-
ual groups were observed, thus indicating a lack of a
consistent proteome pattern (Fig. 3b). In addition to
total protein analysis, acetylated (# = 15) and phosphory-
lated (n =26) peptides were quantified (Fig. 3c, d), and
no significant differences were observed. Moreover, the
deleterious effects of BPS3 were elucidated using anti-
bodies against the phosphorylated form of H2AX
(YH2AX) to label DNA double-stranded breaks; yH2AX
is a representative PTM that can be used to identify
DNA damage and cellular stress. Consistent with the
increased incidence of abnormalities in seminiferous
tubules in the BPS3 group, we observed an increase in
the YH2AX signal as well (Fig. 3e).

Lower BPS exposure changed the post-translational
quality of sperm proteins

In accordance with whole-proteome analysis of BPS-
treated testes, analyses of the sperm acetylome and
phosphorylome were performed using western blotting
and MALDI-TOF MS. Because of the low protein
amounts in sperm lysate extracts, sperm samples from
three individuals belonging to the same experimental
group were pooled, and three independent experiments
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were performed. After loading equal amounts of protein

T raene . per well, we found that the acetylation of proteins with
2 o " molecular weights of approximately 37, 40, and 50 kDa
% g EI é O izee Q |_;| él = were affected by treatment with BPS1 (Fig. 4a, b). More-
s '_E","“: over, BPS1 also modified the phosphorylation of sperm
’ Ve BPS1 BPS2 BPS3 ) Ve BPST BPS2 BPS3 proteins (37, 40, 85, and 100 kDa; Fig. 4c, d, d’). Candi-
< meexx  EO date acetylated and phosphorylated proteins are sum-
g " marised in Fig. 4 (e, f), and the results indicated the
§’ involvement of housekeeping proteins (ATP synthase

subunit, hexokinase-1) and enzymes (DNA repair pro-
tein, E3 ubiquitin-protein ligase). In accordance with
previous findings, demonstrating that BPS1 suppressed
sperm motility, cytoskeletal factors (i.e., tubulin chains,
actin; Fig. 4e) seems to be underwent to acetylation.
Therefore, an antibody against acetylated a-tubulin
(acTubulin) was used for a verification of tubulin as a
candidate BPS target.

Next, we evaluated the densitometry of bands repre-
senting acetylated tubulin after treatment with BPS1
(Fig. 4g). Decreased tubulin acetylation was observed;
however, the difference was not statistically significant,
suggesting that other targets (such as ATP synthase and
actin) may be related to sperm motility.
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Discussion

Male reproduction involves sensitive machinery, which
is required for spermatozoon development and can be
affected by exposure to various environmental stimuli.
Because mature spermatozoa have been transcriptionally
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& = silenced, changes in PTMs can regulate protein activity
EZ"" and modify other crucial biomolecules. Indeed, lysine
§§‘5 acetylation and phosphorylation have been shown to be
w% * indispensable for the proper function of sperm [14, 15].

o Our findings suggested that PTMs may be affected by
pollutants from the environment. In our study, we simu-

h s lated the exposure of adult males to BPS, a common
E endocrine disruptor, at very low doses (~0.001 and
%%D. 1 pg/kg bw/day). Moreover, we chose ~ 100 pg/kg bw,

which has been suggested to induce reproductive tox-
icity [3, 5]. The 8-week exposure covered the whole dur-
ation of spermatogenesis; therefore, we assumed that the
sperm quality and testicular tissues would be affected at
the tissue/cell and proteome levels. We also evaluated

o
T
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Fig. 2 Stereological and histopathological analyses of mouse testis in
different treatment groups. (@) Fluctuations in the total testis volume
(um?) in experimental groups; (b) volume of germinal epithelium

(um?); and (¢, €) stage of spermatogenesis (%) were recorded. the effects of endocrine disruption on post-translational
Histopathological manifestations were tracked as follows: (d) portion of modifications of testicular/sperm proteins in accordance
seminiferous tubule profiles containing an abnormality (%), including with our hypothesis of the “post-translational effect” of

(e) tubes with vacuolisation (%), (f) tubes carrying large multinuclear
germ cells (%), (g) atypical residual bodies (%), and/or (h) maturation
depletion (%). (d') Representative images of healthy germ epithelium

very low doses of these agents.
Recent studies have demonstrated that bisphenols alter

and (e'-h’) individual abnormalities, respectively, are shown and steroid signalling pathways, having negative effects on
indicated with arrowheads. Data are expressed as medians and 5-95% male and female reproduction. Our observations did not
percentiles of six animals per experimental group. Kruskal-Wallis tests, reveal hormonal changes, even after higher BPS expos-

followed by Dunn’s multiple comparison tests, were performed, and
statistical significance is indicated (*p < 0.05, **p < 0.01). VC: vehicle
control, BPS1-3: increasing doses of bisphenol S

ure, whereas comparable doses were found to be effect-
ive in rats [6]. However, earlier results showing that
endocrine disruptors lead to hormonal imbalances
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(See figure on previous page.)

Fig. 3 Proteomic analysis of testicular tissues. (a) Venn diagram of total described testicular proteins in mice (n =4) after various treatments in
different experimental groups. (b) Projection of 24 experimental mice into the space of first three principal components according to PCA;
percentages in the axis legends show the proportion of total variance explained by the particular component. (c) Overview of acetylated and (d)
phosphorylated testicular proteins. (€) Analysis of yH2AX; band signals were normalized to a-tubulin and related to the vehicle control as the
mean (range) of three independent experiments. Unpaired t tests were performed, and statistical significance is indicated (*p < 0.05). VC: vehicle
control, BPS1-3: increasing doses of bisphenol S
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Fig. 4 Sperm acetylome and phosphorylome analyses. (a) Acetylated sperm proteins (acetylated lysine) with major bands. (b) Densitometric
analysis of the ratio of candidate bands. (c) Phosphorylated sperm proteins (phosphorylated tyrosine) with major bands. (d) Densitometric analysis
of the ratio of 100- to 85-kDa bands. (d') The ratio of 37-40-kDa (moderate) to 85-100-kDa (high) molecular weight bands. Differential counting
was expressed as means (ranges) of three independent experiments. Differences were tested by two-way ANOVA, followed by Tukey's multiple
comparison test, and asterisks indicate statistical significance *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (e) Candidate acetylated and (f)
phosphorylated proteins from individual bands were evaluated using MALDI-TOF MS-based peptide detection. Analysed sperm samples represent
a pool of three animals per experimental group from three independent replicates. (g) Densitometric analysis of acetylated tubulin from BPS1-
treated sperm. VC: vehicle control, BPS1-3: increasing doses of bisphenol S
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should be revised because alternative mechanisms of
hormone-derived actions have been noted. For example,
oestrogen-like action results in carcinogenesis [23], and
changes in the distributions of oestrogen receptors and
androgen-converting enzyme aromatase have been re-
ported [24]. Endocrine disruptors have also been shown
to modulate downstream signalling of activated G
protein-coupled oestrogen receptors [25]. It is difficult
to identify bisphenol-affected mechanisms after systemic
exposure; therefore, cellular and molecular markers are
appropriate for assessment of the risk of bisphenol ex-
posure. Based on our findings, we speculate that differ-
ent doses of BPS may have different effects. For
example, whereas extremely low doses (BPS1: ~ 0.001 pg
BPS/kg bw) affected sperm motility, higher BPS doses
(BPS3: ~ 100 pg/kg bw) showed significant effects on tes-
ticular tissues. Surprisingly, moderate doses of BPS
(BPS2: equal to daily intake of approx. 0.1 ug/kg bw) did
not show any effects on spermiogram recording and
histological assessment. This finding was consistent with
the phenomenon of nonlinear effects [26], with the low-
est dose of BPS (BPS1) inducing motility failure rather
compared with the other BPS doses. Therefore, prote-
ome profiling was used to test a wide range of BPS doses
and characterise the dose-dependent mode of action.
Because of the lack of effect of BPS on the whole
proteome of testicular tissues, protein acetylation and
phosphorylation were chosen for further analysis. Al-
though no significant effects were observed in terms of
acetylation and phosphorylation of the detected peptides,
YH2AX, a mark of DNA damage, was increased in BPS3
testicular tissues, demonstrating the increased occur-
rence of abnormalities. In sperm lysates, protein acetyl-
ation and phosphorylation were detected using specific
antibodies against acetylated lysine and phosphorylated
tyrosine. The choice of PTMs was consistent with the
earlier described biological role of both PTMs in sperm
capacitation and fertilisation ability [14, 27]. Indeed, al-
tered levels of acetylated and phosphorylated proteins
were observed after exposure to very-low-dose BPS
(BPS1). This finding was presumably associated with de-
creased motility, resulting in detection of candidate pro-
teins. We can assume that differentially acetylated and/
or phosphorylated may be responsible for motility fail-
ure, in accordance with the significance of PTMs in
major proteins, including phospho-hexokinase-1 [28]
and phospho-outer dense fibre protein-2 [29]. Decreased
phospho-tyrosine signals at 100 kDa suggest a lack of
hexokinase-1 activity, which is associated with male in-
fertility [30]. Our findings supported the mechanism of
action of BPA described previously through fertility-
related proteins, including protein phosphorylation [31].
Our study suggested that in addition to phosphorylation,
bisphenols altered other PTMs, particularly protein
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acetylation. However, western blot analysis using anti-
acetylated tubulin did not show any decrease, as ex-
pected, and other protein targets for acetylation were
considered, including ATP synthase and actin, both of
which are involved in sperm motility [32, 33].

Conclusion

In conclusion, these studies are among the first to raise
the possibility that low and very low doses of BPS may
have a deleterious effect on sperm quality in mammals.
Since human BPS exposure is much lower (0.004 pg/kg
bw/day) than is commonly tested [34], our findings sug-
gest that post-translational effects could play a role in
idiopathic infertility. Furthermore, this work supports
the view that substitution of BPS for BPA may be inad-
equate for elimination of the negative effects of these
agents on public health. Further biomonitoring and test-
ing of molecular targets of BPS could be relevant for ac-
curate risk assessment and elimination of its potential
negative impact on male fertility.
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