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Abstract

Background: Mosaic mutations acquired during early embryogenesis can lead to severe early-onset genetic
disorders and cancer predisposition, but are often undetectable in blood samples. The rate and mutational
spectrum of embryonic mosaic mutations (EMMs) have only been studied in few tissues, and their contribution to
genetic disorders is unknown. Therefore, we investigated how frequent mosaic mutations occur during
embryogenesis across all germ layers and tissues.

Methods: Mosaic mutation detection in 49 normal tissues from 570 individuals (Genotype-Tissue Expression (GTEx)
cohort) was performed using a newly developed multi-tissue, multi-individual variant calling approach for RNA-seq
data. Our method allows for reliable identification of EMMs and the developmental stage during which they appeared.

Results: The analysis of EMMs in 570 individuals revealed that newborns on average harbor 0.5–1 EMMs in the exome
affecting multiple organs (1.3230 × 10−8 per nucleotide per individual), a similar frequency as reported for germline de
novo mutations. Our multi-tissue, multi-individual study design allowed us to distinguish mosaic mutations acquired
during different stages of embryogenesis and adult life, as well as to provide insights into the rate and spectrum of
mosaic mutations. We observed that EMMs are dominated by a mutational signature associated with spontaneous
deamination of methylated cytosines and the number of cell divisions. After birth, cells continue to accumulate
somatic mutations, which can lead to the development of cancer. Investigation of the mutational spectrum of the
gastrointestinal tract revealed a mutational pattern associated with the food-borne carcinogen aflatoxin, a signature
that has so far only been reported in liver cancer.

Conclusions: In summary, our multi-tissue, multi-individual study reveals a surprisingly high number of embryonic
mosaic mutations in coding regions, implying novel hypotheses and diagnostic procedures for investigating genetic
causes of disease and cancer predisposition.
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Background
Genetic mosaicism describes the co-existence of genetically
different cell populations in an individual developing from
a single fertilized egg [1–3]. Mosaicism has been associated
with a broad range of genetic diseases [4], including neuro-
logical disorders [5, 6], brain malformation and overgrowth
syndromes [7, 8], autism spectrum disorders [9], and cancer
predisposition syndromes [10, 11]. Mosaicism can lead to
genetic disorders that are embryonic lethal when occurring
in germ cells [12], or result in a milder phenotype than a
constitutive mutation [13]. The timing of mutations during
embryogenesis (e.g., cleavage, blastulation, implantation,
gastrulation, neurulation, and organogenesis) influences the
fraction of affected cells and organs in the organism [4, 14].
Moreover, when occurring during gametogenesis, mosaic
mutations can be passed on constitutionally to multiple
offspring [3].
As expected, mosaic mutations are found in the form of

single nucleotide variants (SNVs), insertions and deletions
(indels), and copy number variants (CNVs) and have been
studied using array technology [15] as well as next-
generation sequencing (NGS) [16, 17]. A SNP array-based
study of the Children’s Hospital of Philadelphia found that
17% of the diagnosed cases were caused by mosaic aneu-
ploidies [18]. Acuna-Hidalgo and colleagues suggested that
around 7% of presumed germline de novo mutations are in
fact post-zygotic mosaic mutations [17]. Using whole-
genome sequencing of normal blood from 241 adults, Ju
et al. [19] estimated that approximately three mutations
are accumulated per cell division during early embryogen-
esis. However, despite their potential importance for
human disease, previous studies of mosaic mutations have
focused on only one or few tissues or organs, e.g., using
whole-exome sequencing data of brain tissues [20] or
blood [17]. Therefore, a comprehensive view of mosaic
mutations arising during embryogenesis, including their
rate and mutational spectrum, is missing. Here, we exploit
10,097 RNA-seq samples from 49 different tissues and 570
individuals of the Genotype-Tissue Expression (GTEx) co-
hort [21] to uncover the rate and spectrum of mosaic mu-
tations acquired post-zygotically during early
embryogenesis.

Methods
Samples
In this study, we used release 7 of the Genotype-Tissue
Expression (GTEx) [21, 22] project (dbGaP accession
phs000424.v7.p2) [23], including RNA-seq data for 49
tissues from 570 individuals. We included only individ-
uals for which whole-genome sequencing (WGS) data
was available (necessary for distinguishing somatic from
germline variants) and for which at least 8 tissues were
analyzed by RNA-seq. Furthermore, we only included
tissues for which RNA-seq data from at least 25 donors

was available. Filtering by these criteria resulted in RNA-
seq data from 10,097 samples distributed over 570 indi-
viduals and 49 tissues (Additional file 1). Additional QC
and filtering steps were performed depending on the
specific analysis, as detailed below.

Pipeline for somatic variant prediction in RNA-seq data
Reads were aligned using STAR (version v2.4.2a, param-
eters see Additional file 2: Table S1) against the human
reference genome (GRCh37), and the resulting BAM
files were post-processed in order to remove alignment
artifacts. PCR duplicates were marked using Picard
(version 2.10.1), and reads mapping to different exons
were split using SplitNCigar (part of GATK 3.7 package).
Additionally, reads not overlapping with annotated hu-
man exons (ENSEMBL GRCh37 release 95) or aligning
to immunoglobulin genes (potentially hyper-mutated)
were removed from downstream analysis. Furthermore,
reads aligning with mapping quality lower than 255,
more than one gap opening, or more than 3 mismatches
were filtered. Finally, in order to avoid systematic align-
ment errors at the extremes of the reads (which also
include the “inner ends” of reads split across introns, i.e.,
breakpoints of spliced reads), we trimmed the first and
last 4 bases from each read-end or read-breakpoint
(BamUtil version 1.0.14).
Using the post-processed BAM files, we computed a

three-dimensional genotype array (variant × tissue × indi-
vidual) for all positions found to have a significant alterna-
tive allele call in at least one sample. This algorithm
consists of two main steps:
Step 1: Single sample variant calling. First, base counts

are obtained with samtools mpileup (version 1.3.1) followed
by post-processing using custom scripts (Python and R
scripts). We modeled the error rate (ER) distribution for
each sample using a beta-binomial distribution. Counts of
alternative (non-reference) reads at homozygous-reference
positions (germline) are distributed following a binomial
distribution with parameter P (error rate), which is a ran-
dom variable that follows a beta distribution with parame-
ters α and β.

Alternative counts � Bin Coverage; error rateð Þ
Error rate � Beta α; βð Þ

As the error rate differs depending on the nucleotide
change (for example due to DNA oxidation artifacts
affecting only a specific base), we modeled error distri-
butions independently for each possible nucleotide
change (A>C, A>T, A>G, C>A, C>T, C>G). Finally, we
identified all sites showing alternative allele counts sig-
nificantly deviating from the ER distribution after FDR
correction. Additional filtering criteria were applied for
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each site, including a minimum alternative allele count
of 4 (each having at least base quality of 20), minimum
read coverage of 10, alternative calls presented in for-
ward and reverse strand following the same distribution
as for reference counts (i.e., no strand bias), variant allele
frequency (VAF) greater or equal to 5%, and minimum
distance of 20 bp between variable sites in the same
sample.
Step 2: Multi-sample re-calling of all potentially vari-

able sites across all individuals and tissues is performed
using a custom algorithm in order to build the three-
dimensional genotype array. To this end, sites passing
step 1 as significant in at least one sample were evalu-
ated in each sample using the beta-binomial distribution
as described for single samples, but with less stringent
post-filtering criteria (i.e., without strand bias test and
minimum required distance between variants), resulting
in one of four possible filter states per sample: NO_EX-
PRESSION, HOM_REF, LOW_QUALITY or PASS. Fur-
thermore, the exact reference-like and alternative allele
counts are stored in the coordinates × tissue × individual
array.

A random forest model for multi-tissue, multi-individual
germline and somatic variant calling from RNA-seq data
We next aimed at training a random forest classifier dis-
tinguishing true from false positive variant calls in RNA-
seq data. To this end, we selected 40 cases studied as
part of the ICGC Chronic Lymphocytic Leukemia pro-
ject [24, 25], for which whole-exome sequencing (WES)
data for tumor and normal sample and RNA-seq data
for tumor samples are available (see Additional file 3).
RNA-seq-based variant calling was performed as de-
scribed above for GTEx samples. Additionally, we ob-
tained the reference and alternative allele counts from
tumor and normal WES data for all putative calls identi-
fied in RNA-seq data. Finally, we used the WES data to
predict high-quality germline and somatic variant calls
using GATK HaplotypeCaller and MuTect2 as described
before [26, 27].
Next, variants identified in RNA-seq data were ran-

domly split into training and test sets for RF model
training and testing, with the restrictions that:

� Training and test sets contain a similar number of
true and false events according to WES data

� Training and test sets have a uniform distribution of
variant allele frequencies, except for variants with
VAF < 10%, which were doubled (in order to
increase the sensitivity of the RF for low VAF)

In addition, a set of non-overlapping high-quality calls
from WES data was incorporated in the training and test
sets. We labeled as true variants any site with VAF ≥ 5%

and at least 2 reads supporting the alternative allele in
WES data, and all other sites as false variants. This pro-
cedure resulted in training and test data sets of 2402
sites each.
To train the RF model (R randomForest package) for

distinguishing true and false positive variants (germline
or somatic) called in RNA-seq data, we included as fea-
tures (a) alternative allele count, (b) coverage, (c) VAF,
(d) strand bias, (e) blacklisted genes [28], and (f) average
alternative base quality. As this model, termed RF-RNA-
mut from here on, returned a response value between 0
and 1 for detecting calls, we chose our cutoff based on
the maximum F1 score in the training set (cutoff = 0.19).
Sites with response values exceeding 0.19 were labeled
as high confident variants. To finally generate the som-
atic mutation call set and to remove systematic calling
errors, we filtered variants if (1) they were recurrently
called in RNA-seq data of multiple individuals, (2) their
population allele frequency in GnomAD or 1000GP was
greater than 1%, (3) they overlapped with repetitive ele-
ments annotated by Repeat Masker, (4) they overlapped
with low complexity regions, (5) they were flagged as
likely systematic analysis error by ABB [27], or (6) they
overlapped with a known RNA editing site [29–31].
We measured the performance (precision and recall)

of RF-RNAmut + Filter on identifying (a) germline and
(b) somatic variant calls using the test set, following the
same procedure as described above. To calculate preci-
sion, we considered as true or false positive calls those
variants which were found in RNA-seq data and
matched or not matched with tumor WES data, respect-
ively. For calculating the false negative rate, we consid-
ered high-quality calls identified by MuTect2 in tumor-
normal paired WES analysis that were not found in
RNA-seq data. For benchmarking purposes, we only
analyzed regions overlapping between RNA-seq (with
more than 10x read coverage in annotated exons) and
the WES enrichment kit (Agilent SureSelect 71Mb).
Again, non-exonic regions, known editing sites, and im-
munoglobulin genes were ignored.
To demonstrate the gain in performance (precision)

when using the RF variant filter and to validate that the
RF model was not over-fitted to the training data, we
trained 500 RF models on permutated training data. To
this end, we permuted the labels (true, false) of the train-
ing set while keeping the other data (features) unchanged.
Performances of the 500 permutation test models and the
original RF-RNAmut model were plotted in a histogram
for visual comparison (Additional file 4: Fig. S1).

Identification of mosaic mutations in the GTEx cohort
In order to obtain true mosaic variant calls for the GTEx
cohort, we first removed all germline variants detected by
WGS analysis in any individual (GATK HaplotypeCaller)
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from the 3D genotype array (Fig. 1). Additionally, we re-
moved any site for which the minor allele frequency in the
population was greater or equal than 1% in GNOMAD or
1000GP. Furthermore, we removed all variants present in
expressed tissues of all individuals, as they likely represent
systematic errors, RNA editing sites, or germline de novo
mutations. To further deplete calls produced by RNA edit-
ing events (mainly A > I, less frequently C > U), we ignored
known editing sites described in the literature (http://lilab.
stanford.edu/ [29]), found in the Darned database (https://
darned.ucc.ie/download/ [30]), or identified by the GTEx
consortium (http://srv00.recas.ba.infn.it/atlas/pubs.html -
REDIportal [31]).
Next, we removed sites, which recurrently exhibit low-

quality (LQ) calls across multiple individuals, which are
likely systematic sequencing or alignment errors. Moreover,
we filtered out positions labeled as systematic errors by
ABB [27]. Additionally, we removed any variant overlap-
ping with low complexity regions or repeat regions anno-
tated by Repeat Masker. Finally, as we did not expect
mosaic mutations to be highly recurrent in different indi-
viduals, we removed sites called in more than 2 individuals
of our cohort.

Identification of early- (EEMMs) and mid-embryonic
mosaic mutations (MEMMs)
In order to identify mosaic mutations acquired during
early embryogenesis (cleavage, blastulation, gastrulation,
neurolation, and early organogenesis), we contrasted the
somatic calls in the 3D genotype array with a lineage tree

of human embryogenesis and tissue development includ-
ing the 49 tissues studied here (Fig. 1, Additional file 4:
Fig. S2) [32]. In this part of the analysis, only individuals
with 10 or more tissues sequenced with at least two germ
layers represented by 2 sequenced tissues were included in
the analysis (526 individuals, see Additional file 1). This
procedure allowed us to identify mosaic mutations affect-
ing at least two tissues, whose origin could be unambigu-
ously mapped to a specific stage of development and/or
primary germ layer.
Mosaic mutations identified in both the ectoderm and

mesendoderm branches having zygote as most likely ances-
tral node, i.e., variants likely originating from the first few
divisions of the zygote (cleavage, blastulation, implantation
stages), were defined as early-embryonic mosaic mutations
(EEMMs). In order to avoid detection of de novo germline
variants as EEMMs, we only considered variants with VAF
less than 0.35 that were not found in all expressed tissues
of an individual. Importantly, the adrenal gland, which is
comprised of cells originating from the ectoderm (medulla)
and cells originating from the mesoderm (cortex) [33], was
excluded from this analysis in order to avoid overestimation
of early embryonic mutations.
The remaining mutations found in at least two tissues

of an individual were defined as mid-embryonic mosaic
mutations (MEMMs) if (1) their most likely ancestral
node was not zygote, (2) they were only observed in
either the ectoderm or the mesendoderm sub-tree, and
(3) their appearance in the lineage tree was coherent.
Contradictory (non-coherent) mutation patterns were

Fig. 1 Identification of mosaic mutations acquired during various developmental stages and adult life. a Ten thousand ninety-seven RNA-seq
samples from 49 tissues and 570 individuals (GTEx consortium) were used to generate a 3D genotype array, which facilitated the identification of
mosaic mutations and determination of their germ layer or organ of origin. b Definition of mosaic mutation types depending on the
developmental stage during which they occur: early-embryonic mosaic mutations (EEMMs) occurring during the first few cell divisions of the
zygote until implantation of the embryo, mid-embryonic mosaic mutations (MEMMs) acquired during gastrulation or neurulation (example in
image: mutation in endoderm), late-embryonic mosaic mutations (LEMMs) acquired during early organogenesis, and somatic mutations acquired
after birth. See also Additional file 4: Fig. S2 for the embryogenesis lineage tree used in the study
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defined as alternative alleles, which were observed in far-
apart nodes in the tree, but which were undetectable in
any node close to the affected tissues. In other words,
mosaic mutations that required the assumption that they
had occurred multiple times independently in different
cells of the same individual were not considered coher-
ent and were removed.
Finally, we defined late-embryonic mosaic mutations

(LEMMs) as those mutations that are restricted to one tis-
sue/organ, but likely occurred early during organogenesis.
To this end, we considered variants found in a single tis-
sue per individual, supported by 5 or more reads and with
VAF of ≥ 0.2. This procedure cannot distinguish mosaic
mutations acquired during late embryogenesis (organo-
genesis) from mutations in clonal expansions acquired
after birth. We therefore excluded somatic variants from
tissues known to have detectable clonal expansions such
as the sun-exposed skin, esophagus-mucosa, and whole
blood.

Estimating the rate of mosaic mutations during
embryogenesis
Reliable detection of mosaic mutations in a gene using
RNA-seq data and definition of the mutation’s origin in
the lineage tree requires high gene expression in a ma-
jority of tissues of an individual. In order to estimate the
rate of mosaic mutations, we therefore focused on genes
that are highly and constitutively expressed in most of
the analyzed tissues. Given a large enough pool of con-
stitutively expressed genes, we can subsequently extrapo-
late mutation rates to the whole exome or genome, as
suggested previously for measuring genome-wide tumor
mutation burden (TMB) using small cancer gene panels
[34]. We used four different thresholds to define sets of
constitutively expressed genes. For each set, we inde-
pendently estimated the rate of mosaic mutations, to
ultimately evaluate the robustness of our approach by
comparing the four estimates. The following definitions
were used to define constitutively expressed genes:

1. Genes with TPM ≥ 5 in more than 75% of all total
samples (7630 genes)

2. Genes with TPM ≥ 10 in more than 75% of the
total samples (5231 genes)

3. Genes with COV ≥ 20 in more than 75% of the total
samples (6888 genes)

4. Genes with COV ≥ 30 in more than 75% of the
total samples (5370 genes)

(TPM = transcripts per kilobase per million, COV =
average read coverage across a gene)
Next, we obtained all mosaic variants identified in a

given set of constitutively expressed genes and calculated

the number of mutations per base and individual relative
to the total length of the interrogated region. Finally, we
extrapolated this value to the approximate total length
of all coding exons (45 Mbp) in order to calculate the
number of mosaic coding mutations expected on aver-
age for a newborn child. The procedure was independ-
ently performed for EEMMs and MEMMs.
For LEMMs, which were defined as tissue-specific, we

considered any gene highly expressed in a given tissue of
an individual (i.e., a sample). We normalized the number
of mutations per base and individual relative to the in-
terrogated region for a given sample and extrapolated
this value to the approximate total length of all coding
exons (45 Mbp). Due to their similarity with mutations
in clonal expansions, the rates of LEMMs per exome per
individual are likely overestimated.

Tissue-specific somatic mutation rates
In order to study somatic mutations acquired after birth,
the rate of somatic mutations, signatures of selection, and
mutation spectra in a tissue-specific manner, we per-
formed somatic variant calling using RF-RNAmut without
the restrictions applied for the detection of embryonic
mosaic mutations. Here, we only considered somatic mu-
tations identified in exactly one tissue per individual in
order to minimize the number of mosaic mutations ac-
quired before birth in this set. First, we performed
samples-wise quality control (Additional file 4: Fig. S3)
and excluded samples with the following characteristics:

� PCR duplicate rates in the top 5%
� Outliers for the number of callable sites (top and

bottom 1% per tissue). We considered a site as
callable if the read coverage was ≥ 10

� Outliers for RIN (bottom 1% per tissue)
� Outliers for mutation rate (top 1% per tissue)
� Samples obtained from cell culture (cells-EBV-

transformed_lymphocytes, cells-
transformed_fibroblasts)

� Individuals affected by cancer

In order to improve the statistical power, we removed
tissues with less than 50 high-quality samples from down-
stream analysis (affecting only the kidney with 38 high-
quality samples, see Additional file 4: Fig. S3d), resulting
in 8351 samples from 46 tissues and 558 individuals. We
calculated the somatic mutation rate based on the number
of identified somatic mutations divided by the callable
sites per sample. As quality control revealed a strong
influence of technical confounders (PCR duplicate rate,
RIN, average coverage, sequencing center) on the number
of detectable mutations, we used a linear regression
model to estimate and subtract technical biases. The
linear regression model uses the following variables:
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Mutation rate � duplicatesþ cohortþ RIN
þ TRISCHDþ DPmedian

þ ε mutRate residualsð Þ

We understand mutRate residuals (ε) as the variability
of the observed (raw) mutational rate, which is not ex-
plained by non-biological (technical) features such as PCR
duplicate rates, cohort, or RIN. In order to assess the ef-
fect of age and tissue on mutation rates, we assessed the
relation of the remaining variability (mutRate residuals)
and the age of an individual at death, separately for each
tissue, using a Spearman’s rank correlation test (all p
values were corrected with FDR).

Mutational signatures
Mutational signatures were computed using the R pack-
age deconstructSigs [35], and only signature weights
greater than 0.1 were shown in plots.
For computing mutational signatures of embryonic mo-

saic mutations, all individuals were considered for which
at least 10 tissues were sequenced. For the calculation of
signatures of somatic mutations acquired during the life-
span, only individuals older than 60 years were included in
the analysis in order to increase the number of mutations
related to mutagenic processes. Again, we focused on mu-
tations found in exons due to the limited RNA-seq cover-
age in intergenic and introic regions. We obtained
mutational signatures for each tissue separately, as well as
for groups of tissues based on predominant environmental
exposures, with a specific focus on:

� Sun-exposed skin
� Non-sun-exposed skin
� Exposure to mutagens in food: colon,

esophagus-mucosa, small intestine, liver, and
stomach

� Brain tissues: brain-anterior_cingulate_cortex_BA24,
brain-hippocampus, brain-substantia_nigra,
brain-caudate_basal_ganglia, brain-
cerebellar_hemisphere, brain-frontal_cortex_BA9,
brain-spinal_cord_cervical_c-1, brain-amygdala,
brain-cortex, brain-cerebellum, brain-hypothalamus,
brain-nucleus_accumbens_basal_ganglia,
brain-putamen_basal_ganglia

Identifying signatures of positive selection in cancer
genes using dN/dS
To estimate the extent of selection acting on somatic mu-
tations in healthy tissues, we used the SSB-dN/dS method
[36], which calculates the trinucleotide-corrected ratio of
nonsynonymous to synonymous mutations from NGS
data. Somatic mutations identified by RF-RNAmut were

annotated using the variant effect predictor (VEP). To in-
crease statistical power, we only considered constitutively
expressed genes having more than 5 TPM in at least 75%
of patients for a focal tissue. We computed SSB-dN/dS in
each tissue separately, and in the pan-tissue combinations
listed above, using 192 parameters for nucleotide bias cor-
rection (correcting for mutation bias in all possible triplets
on forward and reverse strand). However, we only com-
puted dN/dS values for those tissues having at least 3
non-silent or silent somatic mutations in the analyzed
genes. In addition to the exome-wide dN/dS provided in
the output of the SSB-dN/dS method, we calculated the
global dN/dS for 198 cancer genes [37] and 995 essential
genes [36]. Finally, we focused on NOTCH1 and TP53
genes in order to replicate the findings of strong positive
selection described recently [37–40].

Results
Somatic variant calling in RNA-seq data
Somatic variant detection using RNA-seq data is challen-
ging, especially if subclonal mutations with allele fractions
as low as 5% are of interest [40]. We therefore developed a
highly accurate multi-sample variant calling procedure,
which models nucleotide-specific errors, removes germ-
line variants and confounders such as RNA editing sites,
and generates a multi-individual, multi-tissue array of
variant calls (3D genotype array) by re-genotyping poten-
tially variable sites across thousands of GTEx RNA-seq
samples (Fig. 1a). Although several methods for RNA-seq-
based mutation detection exist (SEURAT [41], RADIA
[42], VaDiR [43], or RNA-MuTect [40]), our method is
the first to apply a multi-sample variant detection design
concurrently taking into account multiple tissues across
hundreds of individuals. This novel approach permitted us
to (1) reliably distinguish somatic mutations from germ-
line variants and post-transcriptional modifications, (2)
distinguish embryonic mosaic mutations (EMMs) from
germline de novo and adult somatic mutations, (3) achieve
high sensitivity for detecting all tissues of a person harbor-
ing a specific mosaic mutation, (4) estimate the time point
and germ layer at which an EMM occurred, and (5) estab-
lish a reliable estimate of embryonic mosaic mutation
frequencies across a large cohort.
To further improve the specificity of our method, we

trained a random forest classifier (RF-RNAmut) distin-
guishing true from false mutation calls. We used whole-
exome sequencing (WES) and RNA-seq data from the
ICGC Chronic Lymphocytic Leukaemia project [24] for
generating training and independent test data sets (the
“Methods” section, Additional file 3). High confidence
somatic variant calls with > 0.15 VAF in tumor WES
data were identified in RNA-seq with 71% sensitivity and
85% precision (comparable to the performance of the
method described by Yizhak et al. [40] with sensitivity
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and precision of 0.72 and 0.87, respectively), and sensi-
tivity was positively correlated with VAF (Additional file
2: Table S2). A comparison of RF-RNAmut to random
forest models trained on permuted data sets indicated
that RF-RNAmut increases the precision of the “raw”
SNV calls from 54 to 85% (the “Methods” section,
Additional file 5 and Additional file 4: Fig. S1). Germline
variants found in tumor and normal WES data were
identified in RNA-seq data with 86% sensitivity and 95%
precision (however, germline variants are of no interest
for this study).

Rate and spectrum of early mosaic mutations during
embryogenesis
In order to identify mosaic mutations acquired during em-
bryonic development, we computed the 3D genotype array
for 9704 samples of the GTEx cohort comprising 526
cancer-free individuals and 49 tissues (see the “Methods”
section and Additional file 1 for sample selection criteria).
We contrasted the 3D genotype array with the embryogen-
esis lineage tree (Additional file 4: Fig. S2, Additional files 6
and 7 for detailed calls) to identify the most likely germ
layer or tissue of origin of each mutation. We first removed
variants occurring in all expressed tissues with average VAF
greater than 0.35, as they might constitute de novo germ-
line variants. Then, we defined three types of embryonic
mosaic mutations (EMMs): early- (pre-implantation), mid-
(gastrulation and neurulation), and late- (organogenesis)
embryonic mosaic mutations (EEMMs, MEMMs, LEMMs
in Fig. 1b). EEMMs appeared during the first few divisions
of the zygote (cleavage, blastulation, implantation) and
therefore are present in the ectoderm and mesendoderm
(mesoderm and/or endoderm). MEMMs are mutations
found in at least two tissues of the same individual that ori-
ginate from the same germ layer. We define LEMMs as
mutations present in a large cell fraction of a single organ,
which are not the consequence of somatic clonal expan-
sions. Finally, we also screened for postnatal and adult
somatic mutations in the transcriptome of all cancer-free
individuals.
To minimize false negatives, we focused our analysis on

housekeeping genes constitutively expressed in the major-
ity of tissues and samples (7630 genes with TPM> 5 in at
least 75% of tissues). After strict filtering (the “Methods”
section), we identified 58 putative EEMMs and 37
MEMMS in 7630 constitutively expressed genes. We esti-
mated a rate of 8.1164 × 10−9 (CI (95%) = [7.0973 × 10−9 to
9.1292 × 10−9]) EEMMs and a rate of 5.1166 × 10−9 (CI
(95%) = [4.5592 × 10−9 to 5.6740 × 10−9]) MEMMs per
nucleotide and individual for exonic regions. Following an
approach for extrapolating tumor mutation burden
(TMB) from gene panels to exomes (45-Mbp exonic re-
gions) [34], we estimated a mean of 0.37 exonic EEMMs
(Fig. 2a) and 0.23 exonic MEMMs (Fig. 2b) per individual

(0.44 and 0.275 when correcting for precision and sensitiv-
ity of our variant calling algorithm). Using different
thresholds for constitutively expressed genes only margin-
ally affected the estimated rate of EEMMs or MEMMs
(Fig. 2a, b, Additional file 2: Table S3). We also observed
no correlation between the embryonic expression levels of
the 7630 selected genes (based on Yan et al. [44]) and
EEMM mutational rates (R2 = 0.009 and p value = 0.94,
Additional file 5 and Additional file 4: Fig. S4), indicating
that transcription-coupled repair efficiency at different ex-
pression levels had no measurable effect on the estimation
of mutational rates. We have furthermore tested if the
level of immune cell infiltration in different tissues biased
the variant allele frequencies of detectable mutations and
thereby the estimate of EMM rates (Additional file 5). We
found no correlation between the VAF of EMMs and the
fraction of immune cells in their respective tissue
(p value = 0.648, Pearson correlation’s test, Additional file
4: Fig. S5), evidencing that infiltration of hematopoietic
cells did not measurably bias our results.
A recent study by Ju et al. [19] used whole-genome

sequencing of blood samples from 241 individuals to
estimate that approximately three mutations are acquired
per cell per cell division during early embryogenesis.
Extrapolation of this estimate to the expected mutation
burden after three to four divisions of the zygote
(Additional file 5 and Additional file 4: Fig. S6) results in
approximately 0.3 to 0.6 exonic mutations per individual,
an estimate that is reassuringly similar to our estimate of
0.44 early embryonic mosaic mutations per individual.
On average, a specific EEMM was detectable in 63.6%

of the tissues of an individual expressing the respective
gene, consistent with the assumption that they arose
during the first divisions of the zygote. Interestingly, only
41% of EEMMs in genes expressed in blood were detect-
able in blood samples, which could be explained by the
asymmetric cell doubling model (unequal contribution
of early-embryonic cells to adult somatic tissues) sug-
gested by Ju et al. [19]. Hence, a large fraction of mosaic
mutations would be missed by blood-based genetic diag-
nostic tests. As expected, we observed a positive
correlation between the variant allele fraction of
EEMMs/MEMMs and the number of tissues supporting
the variant (Rho = 0.56; p value = 3.24 × 10−9). Moreover,
mutations occurring earlier in development also showed
a greater proportion of cells carrying the variant (Rho =
− 0.39; p value = 7.83 × 10−5, Additional file 4: Fig. S7).
The combined rate of EEMMs and MEMMs of 1.32 ×

10−8 is comparable to the estimated rate of de novo
germline mutations reported in the literature [3, 17],
ranging from 1.0 to 1.8 × 10−8 per nucleotide per gener-
ation (44 to 82 mutations per genome [3], or ~ 0.5–1
mutations per exome (45 Mbp) per individual). Recently,
several genetic disease studies indicated that more than
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50% of sporadic cases can be explained by de novo
germline mutations [3, 5]. Consequently, embryonic mo-
saic mutations are similarly likely to explain a significant
fraction of sporadic genetic disease cases, and a substan-
tial fraction of germline de novo variants identified in
blood are potentially post-zygotic mutations. Moreover,
we likely underestimated the rate of EEMMs and MEMMs
due to factors such as allele-specific expression, nonsense-
mediated decay, and more effective transcription-coupled
repair in highly expressed genes. As most of the disease-
causing mosaic mutations cannot be detected by sequen-
cing blood-derived DNA, these variants have likely been
missed in past studies and could explain a substantial part
of the missing heritability.

In order to identify the most likely processes causing
early- and mid-embryonic mosaic mutations, we investi-
gated their mutational signatures. We found that a large
fraction of EEMMs and MEMMs (1 and 0.92) could be ex-
plained by Signature 1 [45–47] (Fig. 2c). signature 1 is
thought to be the result of an endogenous mutational
process initiated by spontaneous deamination of 5-
methylcytosine leading to C>T transitions at CpG dinucleo-
tides and likely reflects a cell-cycle-dependent mutational
clock [46]. Hence, our findings indicate that most early- and
mid-embryonic mosaic mutations occur spontaneously with
very limited contributions from exposure to environmental
factors or other endogenous processes. Furthermore, our
results clearly distinguish early mosaic mutations from

Fig. 2 Rate and mutational signatures of mosaic mutations in healthy individuals acquired during embryogenesis. For a and b, the left Y-axis
represents the mutational rate per nucleotide, the right Y-axis represents the extrapolated number of mosaic mutations expected in 45-Mbps
coding exons, and the dashed red line indicates the mean rate/number between different parameter setting (i.e., different definitions of
constitutively expressed genes). a Rate of early-embryonic mosaic mutations (EEMMs) acquired during the first few divisions of the zygote. We
estimated a mean rate of EEMMs per base and individual of 8.1164 × 10−9 (CI (95%) = [7.0973 × 10−9 to 9.1292 × 10−9]). b Mid-embryonic mosaic
mutations (MEMM) affecting at least 2 tissues. We estimated a mean of 5.1166 × 10−9 MEMMs per nucleotide and individual (CI (95%) = [4.5592 ×
10−9 to 5.6740 × 10−9]). c Mutational signatures of early- (EEMMs), mid- (MEMMs), and late-embryonic mosaic mutations (LEMMs)
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germline de novo mutations, which are dominated by signa-
ture 5 characterized by A>G transitions [3].

Late-embryonic mosaic mutations arising during
organogenesis
Our definitions of EEMMs and MEMMs prevent the iden-
tification of organ-specific mutations acquired during or-
ganogenesis. We therefore screened for late-embryonic
mosaic mutations (LEMMs, Fig. 1b), which we defined as
tissue-specific mutations at high cell fraction (VAF ≥ 0.2).
Here, we excluded tissues previously shown to be affected
by clonal expansion of mutated cells such as the
esophagus-mucosa, sun-exposed skin [34, 37–40, 48], and
whole blood [14, 49], which also showed the highest som-
atic mutation rates in our analysis (Additional file 4: Fig.
S8). We identified 377 mutations across all individuals,
considering any gene expressed in at least one tissue
(Additional file 8), resulting in an estimate of 2.44 × 10−9

(CI [0.95] = [1.86 × 10−9–3.03 × 10−9]) LEMMs per nucleo-
tide per tissue per individual, and extrapolating to 0.11 (CI
[0.95] = [0.084–0.137]) mutations per exome per tissue.
Notably, the average rate of LEMMs (2.23 × 10−9) for
brain tissues closely resembled the estimates by Wei et al.
[20] (2.55 × 10−9) obtained using WES data of brain tis-
sues. In sum across all 43 examined tissues, we estimated
4.7 LEMMs per exome per individual.
Due to the incompleteness of the GTEx tissue matrix

and variable expression levels of genes across tissues, it
is not possible to ascertain if exactly one tissue is
affected by a mosaic mutation. However, examination of
expression levels for 100 randomly selected single-tissue
mutations revealed that for most of the mutations a suf-
ficient fraction of tissues showed enough high expression
to determine that they did not occur before neurulation
(Additional file 5 and Additional file 4: Fig. S9).
LEMMs are indistinguishable from mutations in clonal

expansions acquired after birth [37, 38, 40, 48], and the
rate of LEMMs is therefore likely overestimated. Nonethe-
less, our results indicate that organ-specific mosaic muta-
tions arising during organogenesis could significantly
contribute to the phenomenon of missing heritability in
rare genetic diseases as well as cancer predisposition.

Rate and mutational signatures of tissue-specific somatic
mutations
To identify other mutation processes leading to the ac-
cumulation of somatic mutations during adult life, we
next studied mutational signatures across all tissue-
specific somatic variants identified in the GTEx cohort.
Considering only variants with VAF ≥ 0.05, we identified
8780 somatic mutations in 8351 samples representing 46
tissues (the “Methods” section, Additional file 4: Fig. S3,
and Additional files 6 and 7 for call set details). We ob-
served lower power to detect somatic SNVs in lowly

expressed genes (TPM< 10) likely due to lack of coverage
(Additional file 4: Fig. S10a-b) and a negative correlation
between read coverage and VAFs of detectable mutations
(Spearman R = − 0.81, p value < 10−16; see Additional file 5
and Additional file 4: Fig. S10c). However, considering only
genes with TPM> 10, we observed no significant correl-
ation between gene expression and the fraction of mutated
genes (Additional file 4: Fig. S10b). After removal of tech-
nical confounders (PCR duplicate rates, RIN, TRISCHD,
coverage, laboratory), we observed the highest mutation
burden for the sun-exposed skin, lung, testis, esophagus-
mucosa, and vagina (Fig. 3a, Additional file 4: Fig. S11,
Additional file 9). Our results confirmed the previous find-
ing presented in Yizhak et al. [40] that the skin, lung, and
esophagus are the tissues with the highest average number
of mutations, likely explained by the constant exposure to
environmental factors such as UV radiation, air pollution,
smoking, and food. As expected, the sun-exposed skin
showed significantly higher mutation burden than the non-
sun-exposed skin, while brain tissues showed, in general,
the lowest somatic mutation burden. We observed that the
mean numbers of somatic mutations per sample highly
correlated between the two studies for all analyzed tissues
(Additional file 4: Fig. S12, Pearson R = 0.92, p value =
1.46 × 10−10).
Finally, we tested if residual mutation rates were re-

lated with the age of individuals for each tissue individu-
ally (Fig. 3b). Only two tissues showed a significant
association between age and mutational rates (after FDR
correction), namely the sun-exposed skin (Rho = 0.31;
qval = 1.19 × 10−7) and esophagus-mucosa (Rho = 0.22;
qval = 2.82 × 10−3), confirming previously reported re-
sults [37–40]. Using dN/dS as a measure of selection, we
observed a lack of selection in highly expressed genes at
a pan-tissue level (dN/dS = 0.98, CI [95] = [0.92–1.06]).
However, when focusing on cancer genes, we observed a
strong positive selection for the sun-exposed skin and
esophagus-mucosa (Additional file 4: Fig. S13). Mutations
in NOTCH1 and TP53 disproportionally contributed to the
high dN/dS values and showed the highest overall mutation
rates. NOTCH1 showed stronger positive selection than
TP53 in both esophagus-mucosa and skin sun-exposed
(dN/dS of 8.46 vs. 4.57 and dN/dS of 4.01 vs. 2.85, respect-
ively, Additional file 2: Table S4). Interestingly, we did not
find a positive selection of these two genes in any other
tissues, and no other gene reached significance in any of
the tissues.

Aflatoxin mutational signature in organs of the dietary
tract
Previous studies have analyzed the spectrum of somatic
mutations in the healthy esophagus and skin [37–40],
identifying mutational signatures [45] 1, 5, and 7 [50].
Our analysis of mutational signatures for patients who

Muyas et al. Genome Medicine           (2020) 12:49 Page 9 of 14



died at advanced age (≥ 60 years old) revealed that ultra-
violet light (UV) exposure (signature 7) was predomin-
ant in the sun-exposed skin, while it was absent from
the non-sun-exposed skin (Fig. 4). Our observations
confirm the results of previous studies on healthy skin
samples [37, 51], which showed a highly similar distribu-
tion of nucleotide substitutions and a strong prevalence
for C>T mutations characteristic of UV-radiation dam-
age (Additional file 4: Fig. S14). Interestingly, studies of
the mutational signatures found in healthy tissues form-
ing the gastrointestinal tract (GI tract) are lacking,
although the constant exposure to food likely leads to a
particular mutational spectrum. We therefore performed
a pan-gastrointestinal-tract mutational signature analysis
considering the colon, esophagus-mucosa, liver, small
intestine, and stomach. Apart from signatures 1 and 5,
which are frequently observed in most tissues, we found
a signature explained by the mutagenic effect of dietary
aflatoxin (signature 24). The aflatoxin signature explained
a fraction of 0.18 of the mutational spectrum in the tissues
of the GI tract (Fig. 4, Additional file 10). Furthermore, we
saw a strong enrichment of the characteristic CGN
> CTN mutations not observed in any other tissue.
Finally, we observed that the aflatoxin signature is
significantly stronger in older individuals (age > 60) than
in younger individuals (age < 45) across all organs of the

GI tract (two-way Mann-Whitney-Wilcoxon’s test, p value
< 0.01, Additional file 4: Fig. S15).
Aflatoxin B1 (AFB1) is a potent mutagen and carcinogen

typically found in grains contaminated with the food spoil-
age fungus, Aspergillus flavus. Dietary exposure to AFB1 is
a known risk factor for human hepatocellular carcinoma
(HCC), the third leading cause of cancer death worldwide.
One of aflatoxin degradation products, the metabolite exo-
epoxide, forms a covalent bond with guanyl N7 (AFB1-N7-
Gua), ultimately leading to G>T mutations during replica-
tion. Consistently, signature 24 has previously been found
in a subset of liver cancers [52, 53], but has not been re-
ported for other cancer entities. We therefore tested if the
observed enrichment of signature 24 was solely introduced
by a strong mutagenic effect in the liver. On the contrary,
when excluding the liver from the analysis, the aflatoxin sig-
nature was still found at a similar level, explaining a fraction
of close to 0.16 of the mutational spectrum. These results
indicate that aflatoxin-related mutations are frequent in all
tissues of the gastrointestinal tract and might play a role in
the development of cancer in several organs. Indeed, evi-
dence for the involvement of aflatoxin in gallbladder cancer
(an organ of the GI tract) has recently been published by
Koshiol et al. [54] and reported in the latest signature ana-
lysis of the Cosmic cohort (https://cancer.sanger.ac.uk/cos
mic/signatures), supporting our hypothesis.

Fig. 3 Rate of somatic mutations varies significantly across the 46 tissues of the GTEx cohort (ignoring kidney, cell-EBV-transformed lymphocytes,
and cell-transformed fibroblasts for technical reasons, see the “Methods” section). a Distribution of the somatic mutation rate per base and
individual residuals (mutRate residuals) across analyzed tissues. mutRate residuals represent the somatic mutation rates corrected for non-
biological confounders such as PCR duplication rate, RIN, cohort, and read coverage. b Spearman correlation between mutRate residuals and age
per tissue. Colors show the significance of the correlation test after FDR correction (q value < 0.05 in red)
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Discussion
The accumulation of DNA mutations during life is
inevitable, despite the many cellular mechanisms
involved in the preservation of genome integrity. In this
study, we presented a novel analysis strategy using RNA-
seq data of multiple tissues per individual to identify
mosaic mutations occurring during various stages of
embryo development. Using the human embryogenic
lineage tree, we approximated the time point of the mu-
tation events as well as the affected germ layer or devel-
oping organ. We demonstrated how to distinguish, to
some extent, embryonic mosaic mutations from de novo
germline mutations and somatic mutations in clonal
expansions acquired after birth.
Analyzing RNA sequence data from 49 tissues and 570

patients, we found that newborns on average harbor 0.5–1
mosaic mutation in coding exons affecting multiple tissues
and organs, and likely an even larger number of organ-
specific coding mutations. Post-zygotic and early-embryonic

mosaic mutation patterns are dominated by signature 1,
which is associated with aging and cell division. Hence, they
largely result from spontaneous deamination of methylated
cytosines without showing any influence of external muta-
gens. Moreover, our estimates suggest that embryonic
mosaic mutations are as frequent as germline de novo muta-
tions and could explain a substantial fraction of unresolved
cases of sporadic and rare genetic diseases, as well as play a
role in cancer predisposition.
The recognition of a widespread and under-recognized

role of mosaic mutations in genetic disease would have
many implications for genetic diagnostics procedures
[55]. We have furthermore demonstrated that a substan-
tial fraction of EMMs is not detectable in blood cells, a
finding which has important implications for clinical
diagnostics, as samples from the affected tissue are often
unavailable. Instead, sequencing of circulating cell-free
DNA (liquid biopsy), which has been successfully ap-
plied for the detection of somatic mutations in solid

Fig. 4 Weights of mutational signatures observed in the sun-exposed skin, skin not sun-exposed, diet-exposed tissues of the gastrointestinal tract,
gastrointestinal tract without the liver, and brain tissues. Detailed descriptions of signatures are available on the Cosmic portal [50]
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tumor tissues [56–58] and healthy individuals [59–61],
could be an unbiased approach for the detection of em-
bryonic mosaic mutations causing rare genetic diseases.
Interestingly, our method also revealed a strong signa-

ture of the food poison aflatoxin detectable in all organs
of the dietary tract. Aflatoxin mutations have previously
been associated to liver cancer. Our results indicate that
the role of aflatoxins in cancer development might be
more widespread than previously appreciated, affecting
the mutation spectrum of tumors in the colon, esophagus-
mucosa, liver, small intestine, and stomach.

Conclusions
In this study, based on a multi-tissue, multi-individual ana-
lysis, we found a surprisingly high number of embryonic
mosaic mutations in exonic regions of healthy individuals,
implying novel hypotheses and diagnostic procedures for
investigating genetic causes of disease, cancer predispos-
ition, and aging.
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