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ABSTRACT: Fluorescent carbon dots (CDs) have numerous
important applications, but enhancing the fluorescence emission and
overcoming fluorescence quenching are still big challenges. Here,
fluorescence-enhanced carbon dots (named hr-CDs) were prepared
from sustainable hydrogenated rosin, using a simple hydrothermal
method in a water solvent. The hr-CDs were mainly composed of
graphitized carbon cores with surface functional groups. With the
increase in the concentration to hr-CDs aqueous solutions, the
distance between the carbon cores decreased, which resulted in the
formation of J aggregates and the enhanced blue fluorescence
emission. Even in the solid state, the hr-CDs show fluorescence
emission because the surface functional groups could prevent π−π
stacking interactions between the carbon cores. The hr-CDs show excellent resistance to photobleaching under intense ultraviolet
light (200 mW/cm2). Vibrations and rotations of graphitized carbon core are restricted by low temperature and high viscosity,
leading to increased radiative transition and thus increase in fluorescence intensity. The pH value in the range of 3.99−9.87 and
anions have little effect on the fluorescence emission of hr-CDs. The fluorescence emission of the hr-CDs was selectively quenched
by Fe3+ and can thus be used to detect Fe3+. The hr-CDs also have good biocompatibility and show the same ability in cell nuclear
staining as 4′,6-diamidino-2-phenylindole (DAPI).

■ INTRODUCTION

There have recently been numerous peer-reviewed articles that
describe carbon dots (CDs) with excellent optical properties
and discuss their potential as substitutes for conventional
fluorescent materials, such as fluorescent organic dyes and
inorganic fluorescent nanoparticles.1−4 Because of their many
advantages, including tunable fluorescence, low toxicity, good
biocompatibility, and resistance to photobleaching,5−11 CDs
has been widely used as biomarkers, photocatalysts, and white
light emitting diodes (WLEDs).8,12−16 Many kinds of raw
materials, which can be broadly classified as either organic
materials derived from industrial synthesis17,18 or naturally
occurring biomass materials,19 have been successfully con-
verted into CDs using increasingly sophisticated synthetic
methods.20,21 Simple and economical methods for converting
low-cost renewable biomass materials into CDs, especially,
have received much attention recently. A wide variety of
renewable biomass materials, including corn,21 starch,22

enokitake mushrooms,23 various fruits,24−26 rice husks,27,28

chitosan,29 alkali lignin,30 and willow catkins31 have now been
used to prepare CDs. Taking every factor into account,
however, current methods for producing CDs all have
shortcomings. In many regions of the world, food is in short

supply and it is wasteful to use edible materials to prepare CDs.
Reported technologies to synthesize CDs also usually require
high-temperature calcination, strong acid or strong alkali for
deep carbonization,32 or extraction with organic solvents,33

which require massive consumption of energy and materials.
Another drawback is that the fluorescence of many CDs is
quenched in more concentrated solutions. Some CDs totally
lose their fluorescence in the solid state by a process known as
aggregation-caused quenching (ACQ), which is caused by
fluorescence resonance energy transfer and direct π−π
interactions.34 ACQ remains the Achilles heel that restricts
the wider application of CDs. Some CDs, however, show
aggregation-induced emission enhancement (AIEE) instead
and avoid fluorescence attenuation by radiative recombina-
tion.35,36 There is currently a real need for novel CDs with
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AIEE. Here, we report a new type of CDs, named hr-CDs,
which can be prepared from hydrogenated rosin, a biomass raw
material with a unique ternary ring structure, by a one-step
hydrothermal method in an aqueous solvent environment,
without the need for a dopant or purification, and also avoid
the introduction of toxic reagents through a method that is
different from the one reported. The preparation of hr-CDs is
shown in Scheme 1. The prepared hr-CDs solution emits a

blue fluorescence with an enhanced intensity as the
concentration is increased. Even in the solid state, the hr-
CDs, which have a yellow-green emission, are different from
the conventional carbon dots with aggregation fluorescence
quenching in the solid state.37 The hr-CDs can be used not
only as a fluorescent probe for detecting Fe3+ but also for cell
imaging.

■ RESULTS AND DISCUSSION
Characterization of hr-CDs. The as-prepared hr-CDs

were dissolved in deionized water and their morphology was
investigated by transmission electron microscopy (TEM). The
carbon dots possessed a spherical appearance (Figure 1a), with
an average diameter of 1.5 nm (Figure S1). The lattice fringes
of the hr-CDs display interplanar spacings of 0.21 and 0.24 nm
(Figure 1a, inset), which correspond to the (100)38 plane of
graphitic carbon and the (1120)39,40 lattice fringes of graphene,
respectively. In the UV−vis spectra (Figure 1b), compared
with hydrogenated rosin, the hr-CDs showed significantly
enhanced absorption over the range 247−320 nm due to the
absorption bands of π−π* and n−π* transitions.18,41 Since the
spectra of hydrogenated rosin and hr-CDs were determined at
the same concentration, this indicates a more conjugated
structure in the hr-CDs, compared with hydrogenated rosin. X-
ray diffraction analysis showed that the diffraction peak
position of the graphite carbon cores is noticeably influenced
by the structure of the raw material (Figure S2). The Fourier
transform infrared (FTIR) spectrum of the hr-CDs (Figure 1c)
showed that peaks were consistent with hydrogenated rosin.
Proton nuclear magnetic resonance (1H NMR) spectra (Figure
1d) were used to determine the structure of the hr-CDs.
Aromatic H signals seen in the range of 6.0−8.0 ppm may be
attributed to graphitized carbon core proton resonance.35,42

Analysis of the hr-CDs by high-resolution X-ray photoelectron
spectroscopy (XPS) of C 1s (Figure 1e) and O 1s (Figure 1f)
indicated the presence of C−C/CC, CO, C−O, and O−
CO groups.43−45 The above results proved the existence of
the basic structural−functional group unit molecule of
hydrogenated rosin on the surface of the carbon core.

Photoluminescence (PL) Properties of hr-CDs. To
determine the potential of hr-CDs in bioimaging, we first
investigated their fluorescence properties. An aqueous solution
of hr-CDs is blue (Figure 2a inset) under 365 nm UV light and
the fluorescence emission spectrum of the aqueous solution
was shown to be excitation dependent (Figure 2a). The
fluorescence intensity reached a maximum when the excitation
wavelength was 310 nm, with the strongest emission peak at
442 nm (Figure 2a). Fluorescence emission spectra of aqueous
solutions of hr-CDs with different concentrations (Figure 2b)
showed a stable enhancement from 1.0 to 20.0 μg/mL. This
may be attributable to the formation of J-aggregate-like
structures between graphite carbon cores when the concen-
tration of hr-CDs is increased.35 The fluorescence lifetime of
hr-CDs in a solution was 2.16 ns (Figure S3), with a PL
quantum yield of 1.22%. Notably, the solid powder showed a
strong fluorescence emission peak at 550 nm with excitation at
480 nm and yellow-green fluorescence under ultraviolet
irradiation (365 nm) (Figure 2c, inset). The research has
shown that the yellow-green fluorescence emitting carbon dots
worked as a color conversion layer to fabricate white light
emitting diode (WLED)38 so the prepared hr-CDs could be
potentiality used to fabricate WLED. The solid-state
fluorescence emission was also found to be excitation
dependent (Figure 2c), mainly because the functional group
on the surface of carbon cores effectively prevents π−π
stacking interactions, thus contributing to the solid-state
emission fluorescence.38 The resistance of the hr-CDs to
photobleaching was investigated using commercially available
4′,6-diamidino-2-phenylindole (DAPI) as the control. Upon
irradiation with UV light, the fluorescence of the hr-CDs

Scheme 1. Schematic Illustration Showing Preparation of
Fluorescence Enhancement Carbon Dots from
Hydrogenated Rosin

Figure 1. (a) TEM image of hr-CDs (inset: high-resolution TEM
(HR-TEM)). (b) UV−vis spectra of solutions of hydrogenated rosin
(10 μg/mL) and hr-CDs (10 μg/mL). (c) FTIR spectra of hr-CDs
and hydrogenated rosin. (d) 1H NMR spectra of hr-CDs. High-
resolution XPS C 1s (e) and O 1s (f) of hr-CDs.
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decreased by ∼25% in the first 60 min and then remained
stable (Figures 2d and S4). The fluorescence intensity of
DAPI, on the other hand, continued to decrease after 60 min,
with a total reduction of ∼80% after 180 min (Figure 2d). It is
worth noting that the UV irradiance that we use is 200 mW/
cm2, which is 2000-fold higher than the intensity used in a
recently reported study.45

The fluorescence intensity of carbon dots is influenced by
factors such as pH, temperature, metal ions, and some anions.
To better understand the potential applications of hr-CDs, we
next investigated the effect of pH on fluorescence intensity.
The fluorescence intensity of the hr-CDs was stable, with little
obvious changes, over the pH range of 3.99−9.87 (Figures 3a
and S5). This is the pH range of intracellular microenviron-
ments,46 suggesting that the hr-CDs are suitable for cellular
imaging. The fluorescence intensity of an aqueous solution of
hr-CDs decreased as the temperature increased (Figures 3b
and S6). Since vibration and rotation of graphitized carbon
core with functional groups are restricted at lower temper-
atures, there is increased radiative transition and thus increased
fluorescence intensity.45 The effect of viscosity on the
fluorescence intensity of hr-CDs was investigated using
different proportions of water and glycerin as the solvent.
The fluorescence intensity increased with increasing amounts
of glycerin (Figures 3c and S7) because the higher viscosity
inhibits the vibration and rotation of the carbon dots, thus
increasing the radiative transitions.
Selectivity and Sensitivity of hr-CDs. The experiment

was carried out to test the fluorescent response of the hr-CDs
to various anions (Figures 3d and S8) and cations (Figures 3e
and S9) by adding the test ion (50 μM) to an aqueous solution
of hr-CDs (20 μg/mL). F0 is the fluorescence intensity of the
solution of hr-CDs without added ions and F is the intensity of
the solution with added ions. A wide variety of anions had very
little effect on the fluorescence intensity (Figures 3d and S8).

Cations, on the other hand, had different individual effects on
the fluorescence intensity (Figures 3e and S9). The most
obvious quenching was caused by Fe3+ (Figure 3e), likely
because the open d orbitals of Fe3+ can coordinate easily with
the hydroxyl groups.28 When Fe3+ binds to the hr-CDs, which
act as electron donors, the d orbitals of the Fe3+ split. Some
electrons in the excited state are then transferred from the hr-
CDs to the d orbitals of Fe3+,30 reducing the proportion of
radiative transition and leading to fluorescence quenching.45

Then, we explored the feasibility of using hr-CDs for the
detection of Fe3+ (Figure S10). On the addition of Fe3+, there
was a marked decrease in fluorescence intensity, and in the
range of 0−60 μM, the Fe3+ concentration fits well with the
fluorescence intensity ratio (F0/F) by linear equation (Figure
3f) and the equation is F0/F = 0.00845C + 0.9781, where the C
is the concentration of Fe3+. The detection limit was about
6.16 μM, which was lower than that reported by the previous
Fe3+ detection systems based on CDs.47,48

Cytotoxicity and Cell Imaging of hr-CDs. For years,
CDs have been reported to achieve outstanding imaging
quality in cell biology. To demonstrate the potential of hr-CDs
to replace the previously described CDs, we investigated the
inherent cytotoxicity and biocompatibility of hr-CDs in MG-63
and human umbilical vein endothelial cells (HUVECs) using
standard cell counting kit-8 (CCK-8) assays. The hr-CDs
showed excellent biocompatibility with MG-63 (Figure 4a)

Figure 2. (a) Fluorescence spectra of an aqueous solution of hr-CDs
(20 μg/mL) at different excitation wavelengths (inset: photograph
showing the fluorescence of aqueous solution of hr-CDs under 365
nm ultraviolet irradiation). (b) Fluorescence spectra of the aqueous
solutions of hr-CDs with different concentrations (Ex = 310 nm). (c)
Fluorescence spectra of solid hr-CDs (inset: photograph showing
fluorescence of solid hr-CDs under 365 nm ultraviolet irradiation).
(d) Fluorescence intensity of aqueous solution of hr-CDs (10 μg/
mL) and DAPI (10 μg/mL) after irradiation with UV lamp (200
mW/cm2) for different periods of time. Figure 3. (a) Changes in the fluorescence intensity of the aqueous

solutions of hr-CDs (10 μg/mL) at different pH values. (b) Changes
in the fluorescence intensity of aqueous solutions of hr-CDs (20 μg/
mL) at different temperatures. (c) Changes in the fluorescence
intensity of solutions of hr-CDs (20 μg/mL) in different mixtures of
water and glycerol. (d, e) Fluorescence intensity ratio of an aqueous
solution of hr-CDs (20 μg/mL) on the addition of different ions (F0
and F are fluorescence intensities without and with ions, respectively).
(f) Dependence of F0/F on the concentration of Fe3+ ions over the
range 0−340 μM (inset: linear relationship of F0/F versus the
concentration of Fe3+ ions over the concentration range 0−60 μM).
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and HUVECs (Figure 4b). Flow cytometry was used to assess
cell apoptosis in MG-63 and HUVECs treated with hr-CDs
(50 μg/mL) for 72 h. The percentages of apoptotic (Q2 + Q4)
MG-63 cells and HUVECs were 10% (Figure 4c) and 7.8%
(Figure 4d), respectively, which are no higher than that for
normal cell apoptosis (10%).
The hr-CDs were next investigated as a biological dye and

incubated with MG-63 and HUVECs for 10 h in a bioimaging
study. Images of MG-63 and HUVECs stained with DAPI,
which produces a blue color under UV light, are shown in
Figure 5a-I,b-I. The images showing a green color under blue
light (Figure 5a-II,b-II) are those stained with hr-CDs. DAPI is
commonly used as a cell nuclear stain and the images stained
by DAPI and hr-CDs overlapped well (Figure 5a-III,b-III),
demonstrating that the hr-CDs are also an effective cell nuclear
stain.

■ CONCLUSIONS

Hydrogenated rosin was used as the raw material to synthesize
hr-CDs using a simple hydrothermal method. Upon irradiation
with 365 nm light, an aqueous solution of hr-CDs and solid hr-
CDs emitted blue and yellow-green fluorescence, respectively.
Importantly, the hr-CDs had excellent resistance to photo-
bleaching when irradiated with ultraviolet light (200 mW/
cm2), which is 2000-fold higher than the intensity used in a
recent report. The hr-CDs could also be used to detect Fe3+,
with a detection limit of 6.16 μM. Because of their inherent
biocompatibility and low cytotoxicity, the hr-CDs could be
used as a cell nuclear stain that is as effective as the commonly
used cell nuclear stain, DAPI.

■ EXPERIMENTAL SECTION

Materials. Hydrogenated rosin (acid value, 170.7 mg
KOH/g, specific information is recorded in Table S1) was
purchased from Guangxi Hualin Chemical Co., Ltd., China,
and DAPI was purchased from Shanghai McLean Biochemical
Reagents Co., Ltd., China. Al(NO3)3·9H2O, Ca(NO3)2·4H2O,
Cd(NO3)2·4H2O, Cu(NO3)2·3H2O, and Fe(NO3)3·9H2O
were purchased from Tianjin Bodi Chemical Industry Co.,
Ltd., China. Ni(NO3)2·6H2O, Pb(NO3)2, Sr(NO3)2, Zn-
(NO3)2·6H2O, Ba(NO3)2, CH3ClCOONa, CH3COONa,
glycerol, and NaNO2 were purchased from Tianjin Fuyu
Fine Chemical Co., Ltd., China. EDTA-2Na, B4O7Na2,
C2O4Na2, Na2CO3, Na2HPO4, Na3PO4, NaCl, NaF,
NaHCO3, and NaH2PO4 were purchased from Tianjin Yongda
Chemical Reagent Co., Ltd., China. All reagents were analytical
grade and used as received without further purification.
Deionized water was prepared using a Clever-Q30 UT water
filtration system Zhiang Instrument Co., Ltd. (Shanghai,
China). A cell counting kit-8 (CCK-8) assay kit was purchased
from Dojindo Laboratories (Kumamoto, Japan), and Normo-
cin was purchased from InvivoGen (San Diego). Fetal bovine
serum (FBS), Dulbecco’s modified Eagle’s medium/Ham’s
F12 medium (DMEM/F12), and phosphate-buffered saline
(PBS) solution were purchased from Gibco and Thermo
Fisher Scientific Inc. (Waltham). MG-63 cells and HUVECs

Figure 4. (a, b) Relative viability of MG-63 and HUVECs incubated
with a series of gradient concentrations of hr-CDs for 24 h.
Cytotoxicity was evaluated by flow cytometry using (c) MG-63
cells and (d) HUVECs treated with hr-CDs (50 μg/mL) for 72 h.

Figure 5. Fluorescence images of (a) MG-63 cells and (b) HUVECs stained by DAPI and incubated with hr-CDs for 10 h. Imaging stained by
DAPI in nucleus (I), imaging stained by hr-CDs in nucleus (II), and overlays of the previous two (III).
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were purchased from the Chinese Academy of Sciences
(Shanghai, China).
Characterization. Transmission electron microscopy

(TEM) and high-resolution transmission electron microscopy
(HR-TEM) images were collected using a JEM-2100 trans-
mission electron microscope (JEOL, Ltd., Tokyo, Japan).
Proton nuclear magnetic resonance (1H NMR) spectra were
measured in dimethyl sulfoxide (DMSO) using an AVANCE
III HD 500 MHz spectrometer (BrukerCorp, Karlsruhe,
Germany). X-ray photoelectron spectroscopy (XPS) was
carried out using an Escalab 250Xi X-ray photoelectron
spectrometer (Thermo Fisher Scientific Co., Ltd., Shanghai,
China). The FTIR spectra were collected using a frontier
Fourier transform infrared spectrometer (PerkinElmer Co.,
Ltd., Waltham, MA). The UV−vis absorption spectra were
recorded using a TU-1950 ultraviolet−visible spectrofluor-
ometer (Persee General Instrument Co., Ltd., Beijing, China).
Photoluminescence (PL) measurements were carried out using
an LS55 fluorescence spectrometer (PerkinElmer Co., Ltd.).
Fluorescence decay curves were measured using a DeltaFlex
modular fluorescence lifetime instrument (Horiba Jobin Yvon
IBH Ltd., Glasgow, U.K.). PL quantum yields were measured
using an FLS1000 fluorescence spectrometer (Edinburgh
Instruments, Ltd., Edinburgh, U.K.). Fluorescence images
were captured using a DMI4000 B inverted fluorescence
microscope (Leica Microsystems Inc., Wetzlar, Germany).
Synthesis of hr-CDs. Hydrogenated rosin (0.7 g) was

ground to a powder and placed in a 100 mL Teflon-lined
stainless autoclave together with deionized water (70 mL). The
mixture was heated to 180 °C for 12 h and then allowed to
cool to room temperature. The resulting solution was filtered
through a 0.22 μm ultrafiltration membrane and then freeze-
dried to provide the hr-CDs.
Cytotoxicity Test. The effects of different concentrations

of hr-CDs on the viability of HUVECs and MG-63 were
determined using a cell counting kit-8 (CCK-8) assay. Cell
suspensions, harvested at the exponential growth phase of the
cells, were plated onto a 96-well plate at a density of 5000
cells/well. The cells were then grown overnight at 37 °C in a
culture medium (10% FBS + 90% DMEM/F12 + 100 μg/mL
Normocin) in a humidified atmosphere of 5% CO2 to ensure
that the cells adhered to the orifice plates. The wells were then
divided into a blank control group (medium only), a negative
control group (medium + cells), and eight test groups
(medium + cells + hr-CDs), with eight wells in each group.
In the test groups, the cells were cultured in the presence of
different concentrations (1.25, 2.5, 5.0, 10, 20, 40, 80, 160 μg/
mL) of hr-CDs. The cells were placed in an incubator at 37 °C
in a humidified atmosphere of 5% CO2 for 24 h. CCK-8 (10
μL) was then added to each well, and the cells were incubated
for a further 4 h at 37 °C. The absorbance of each well (OD)
was measured at 450 nm using a Multiskan GO microplate
reader (Thermo Fisher Scientific, Vantaa, Finland). Cell
viability was defined as the ratio of absorbance in the presence
of hr-CDs to that in the absence of hr-CDs.

= −

−

×

cell viability (%) (OD OD )

/(OD OD )

100%

test bland control

negative control bland control

Cellular Imaging. HUVECs and MG-63 were inoculated
into 48-well plates (10 000 cells/well) with clean cover glass

and cultured at 37 °C in a humidified atmosphere of 5% CO2
for 24 h. Culture medium (10% FBS + 90% DMEM/F12 +
100 μg/mL Normocin) was added, and the cells were cultured
with hr-CDs in a saturated humidity incubator at 37 °C under
an atmosphere of 5% CO2 for 10 h. The cover glass was
removed and washed three times with PBS. The cells were
immobilized with a precooled 4% paraformaldehyde solution
for 30 min and then dyed using a solution of DAPI in PBS (10
μg/mL) for 5 min. After each operation, the cover glass was
washed three times with PBS. The cover glass was sealed with
antifluorescence quenching agent and images were captured
using an inverted fluorescence microscope.
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