
The emerging role of epigenetic therapeutics in immuno-
oncology

Michael J. Topper1,2, Michelle Vaz1,2, Kristen A. Marrone1, Julie R. Brahmer1, Stephen B. 
Baylin1,*

1Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel 
Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.

2These authors contributed equally: Michael J. Topper, Michelle Vaz

Abstract

The past decade has seen the emergence of immunotherapy as a prime approach to cancer 

treatment, revolutionizing the management of many types of cancer. Despite the promise of 

immunotherapy, most patients do not have a response or become resistant to treatment. Thus, 

identifying combinations that potentiate current immunotherapeutic approaches will be crucial. 

The combination of immune-checkpoint inhibition with epigenetic therapy is one such strategy 

that is being tested in clinical trials, encompassing a variety of cancer types. Studies have revealed 

key roles of epigenetic processes in regulating immune cell function and mediating antitumour 

immunity. These interactions make combined epigenetic therapy and immunotherapy an attractive 

approach to circumvent the limitations of immunotherapy alone. In this Review, we highlight the 

basic dynamic mechanisms underlying the synergy between immunotherapy and epigenetic 

therapies and detail current efforts to translate this knowledge into clinical benefit for patients.

Immune-checkpoint inhibition was introduced as a novel clinical paradigm of cancer therapy 

in March 2011 with the FDA approval of the anti-cytotoxic T lymphocyte antigen 4 

(CTLA-4) antibody ipilimumab for the treatment of advanced-stage melanoma. This 

treatment paradigm was further established upon the approval, in late 2014, of the anti-
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programmed cell death 1 (PD-1) antibodies nivolumab and pembrolizumab for the same 

indication. Since then, inhibitors targeting the CTLA-4 and PD-1 immune checkpoints have 

revolutionized the management not only of melanoma but also of non-small-cell lung 

carcinoma (NSCLC), renal cell carcinoma (RCC) and Hodgkin lymphoma, among other 

malignancies, as evidenced by improved survival outcomes in these patient populations1–15. 

Notably, the possibilities of immunotherapy as a cancer management strategy have long 

been recognized and pursued16. We are now in an age of renaissance of immunotherapy and 

immune-checkpoint inhibition is but one promising approach that has emerged; detailing 

aspects of the many other novel potentially efficacious immunotherapeutic strategies that are 

currently being explored is outside the scope of this Review, although examples include 

chimeric antigen receptor T cell therapy, vaccine-based approaches and natural killer (NK) 

cell-directed treatments17–24. Despite the early excitement regarding the promise of 

immune-checkpoint inhibitors (ICI), the majority of patients with cancer fail to derive 

clinical benefit from or ultimately develop resistance to such treatment25–28. Moreover, 

response rates vary between cancer types and are typically highest in patients with 

melanoma, urothelial cancer, NSCLC and colorectal cancers with microsatellite 

instability29; certain cancers, such as those of the pancreas, breast or ovaries, seem to be 

intrinsically resistant to ICI29–32, although patients with advanced-stage, programmed cell 

death 1 ligand 1 (PD-L1)-positive, triple-negative breast cancer have been shown to benefit 

from the addition of anti-PD-L1 antibodies to chemotherapy33. The variability in 

responsiveness to immune-checkpoint inhibition among cancer types has been attributed to 

several factors, including tumour mutational burden (TMB), immune phenotype of the 

tumour microenvironment (TME) and mechanisms of tumour immune evasion. Thus, the 

development of combinatorial strategies with ICI is needed to maximize clinical benefit, 

with several approaches being tested in clinical trials. These include dual ICI (for example, 

pairing anti-CTLA-4 and anti-PD-1 antibodies) as well as immunotherapy combined with 

chemotherapy, radiotherapy or epigenetic therapy. Indeed, dual immune-checkpoint 

inhibition with ipilimumab plus nivolumab is the most established combinatorial approach; 

this combination has been reported to improve progression-free survival (PFS) outcomes in 

patients with advanced-stage RCC and metastatic melanoma, compared with those 

associated with sunitinib and ipilimumab monotherapy, respectively, and is approved for the 

first-line treatment of these cancers34,35. The addition of pembrolizumab to chemotherapy 

has been shown to increase both PFS and overall survival (OS) in phase III trials involving 

patients with advanced-stage NSCLC, leading to FDA approval of this approach in the 

frontline setting36,37. The pairing of radiotherapy with ICI is currently being tested in a 

variety of settings across a range of solid tumour types (NCT02239900, NCT03700905, 

NCT03867175 and NCT03693014). Notably, patients with NSCLC receiving consolidation 

therapy with durvalumab (an anti-PD-L1 antibody) after chemoradiotherapy had a longer 

median PFS duration than those in a placebo group38. Beyond NSCLC, case reports 

describing the potential benefit of combined radiotherapy plus ICI have been published 

across a variety of solid cancers39–41.

In addition to the aforementioned combination regimens, the application of epigenetic 

therapy plus ICI is an emerging paradigm and an area of active clinical investigation 

(Supplementary Table S1). In this Review, we highlight the ‘roles’ of epigenetic regulation 
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in both tumour and immune cell populations and the implications of epigenetic drugs in the 

perturbation of these compartments. We also summarize the current state of preclinical and 

clinical development of epigenetic-immunotherapy.

Overview of the ICI paradigm

Principles of ICI

The advent of ICI is the product of many years of basic science research seeking to discern 

why anticancer immunotherapy was not reaching the promise suggested for over a century 

since the original seminal insights provided by William B. Coley16. This breakthrough was 

made possible through an increased understanding of immune tolerance of cancer and 

centres upon targeting checkpoints in T cell priming and activation42–44, a concept that 

earned Allison and Honjo the 2018 Nobel Prize in Physiology or Medicine. Chronic 

interactions between tumour cells and subsets of immune cells induce this tolerance by 

rendering cytolytic CD8+ tumour-infiltrating lymphocytes ineffective in mounting 

antitumour responses45–49. The basic constituents of this mechanism, which is defined as 

immune checkpoint activation, are interactions between receptors on T cells, most notably 

PD-1 and CTLA-4, and their respective ligands, PD-L1 and CD80 or CD86, present on 

tumour cells42,50,51 and/or antigen-presenting cells52–54. Thus, the rationale for immune-

checkpoint inhibition is the treatment with antibodies targeting PD-1, PD-L1 or CTLA-4 in 

order to reverse this inhibitory checkpoint action and facilitate antitumour effects1,51. In 

addition to the aforementioned checkpoints, a number of other immune checkpoint pathways 

have been identified and studies are ongoing to determine the feasibility of the component 

receptors and ligands as therapeutic targets. These targets include lymphocyte activation 

gene 3 protein (LAG3), T cell immunoglobulin mucin receptor 3 (TIM3; also known as 

HAVCR-2), B and T lymphocyte attenuator (BTLA), NK cell receptor 2B4, T cell 

immunoreceptor with Ig and ITIM domains (TIGIT), V-type immunoglobulin domain-

containing suppressor of T cell activation (VISTA), CD96 (also known as T cell surface 

protein tactile) and CD112 receptor (CD112R; also known as PVRIG), all of which are 

negative regulators of T cell activation55. In addition, targeting of co-stimulatory immune 

checkpoint proteins, such as the tumour necrosis factor receptor superfamily members 4–

1BB (CD137), CD40, 0X40 and GITR, is another focus of immunotherapy drug 

development55.

Prerequisite for a response to ICI

A clinical response to CTLA-4 and/or PD-1 or PD-L1 ICI is dependent on the immune 

status of the tumour in the following ways. First, antigen-specific CD8+ lymphocytes must 

be present within the TME56–58. Second, the composition of resident immune cell 

populations must be polarized towards an immunopermissive state59–62. Third, tumours 

must be functionally competent for MHC class I-mediated antigen presentation to be 

receptive to immune attack and be dependent upon the PD-1-PD-L1 axis as the dominant 

mechanism of immune escape (reflected in the requirement for tumoural PD-L1 expression 

as a criteria for treatment with PD-1 or PD-L1 inhibitors, in some approved indications)63. A 

state of immune evasion arises if tumours lack these characteristics64–66, which enables a 

cancer to live under the ‘radar’ of immune detection. This evasive state characterizes what 
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has been termed immune ‘cold’ tumours versus immune ‘hot’ tumours, which exhibit the 

defining characteristics detailed above58,67,68 (BOX 1; FIG. 1). Immune hot tumours often 

have higher mutational burdens than immune cold tumours and, relatedly, a greater number 

of neoantigens, which correlates with higher objective response rates to ICI across several 

common cancer types69. The association between TMB and responsiveness to ICI is well 

established, although the implications with regard to T cell behaviours, such as tumour 

infiltration, are nebulous and perhaps context dependent. Analyses of The Cancer Genome 

Atlas melanoma specimens revealed a lack of correlation between a T cell inflammation 

gene-expression signature and nonsynonymous somatic mutation burden70. By contrast, 

findings in RCC samples demonstrated a positive correlation between TMB and a T cell 

inflamed transcriptional signature71.

Therapeutic strategies aimed at converting immune cold tumours into immune hot tumours 

are currently being intensely investigated. The implications of epigenetic mechanisms in the 

control of these states and how epigenetic therapy can be used to optimize this transition are 

discussed in detail in a later section of this manuscript.

Epigenetic mechanisms and therapeutics

Basic principles of epigenetics

As extensively outlined in multiple reviews72–77, epigenetics is the process by which 

changes mediating heritable patterns of gene expression are established without changing 

the sequence of DNA. Epigenetics can thus be viewed as a virtual ‘software package’ to 

control and utilize the information coded in the ‘hard drive’ of DNA. Thus, non-malignant 

cells and cancer cells have an epigenome’ constituted by regulation of the components of 

chromatin, which defines the interaction of DNA with proteins, principally histones. 

Nucleosomes, the 3D distribution of which throughout the genome essentially determines 

how DNA is packaged in a cell to regulate patterns of gene expression and chromosome 

structure, are the basic units of these interactions72,73,78–81. This packaging process is fine-

tuned by interactions mediated by methylation of genomic DNA at CpG sites and by 

covalent marks, principally acetylation and methylation, of amino acids on histones in the 

context of the nucleosomes72,75,76,80–82.

Enzymes or ‘writers’ that establish DNA methylation (DNA methyltransferases (DNMTs)), 

histone acetylation (histone acetylases) and histone methylation (histone methyltransferases) 

control each of these processes. In turn, these epigenetic marks can be removed dynamically 

by enzymes referred to as ‘erasers’, which comprise the ten-eleven translocation enzymes 

that undo DNA methylation and histone deacetylases (HDACs) and histone demethylases 

that reverse histone acetylation and methylation, respectively83–85. Histone marks can be 

activating for RNA transcription, for example, lysine acetylation and some methylation 

modifications, whereas others, such as lysine deacetylation and certain methylation marks, 

mediate repressive states of gene expression. Finally, the DNA methylation and histone 

modifications are recognized by regulatory proteins, or ‘readers’, that enable these 

chromatin processes throughout the genome to modulate transcriptional profiles84–87.
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Key specifics of the cancer epigenome

The cancer epigenome can be characterized by abnormalities in essentially every one of the 

epigenetic control features outlined in the preceding section73,75,84,85,88–90; the most 

investigated aspects to date are cancer-specific alterations in DNA methylation and histone 

acetylation, as has been extensively reviewed elsewhere73,76,79,85,91. The most common 

changes in DNA methylation found in cancer cells, as compared with their non-malignant 

counterparts, are global, genome-wide losses of methylation (hypomethylation) that could 

result in the upregulation of genes with pro-tumorigenic functions, accompanied by more 

focal, cancer-specific hypermethylation located at CpG rich sites or CpG islands in the 

promoter regions of hundreds of genes74,75,79,85. These hypermethylated promoters can be 

associated with repression of expression or prevention of inducibility of involved genes, 

providing an alternative suppressive mechanism to genetic aberrations for the loss of 

function of key tumour suppressor genes and is a central feature of carcinogenesis75,76,92–96. 

In addition, losses and gains of DNA methylation can involve other regulatory regions of the 

genome, such as gene enhancers, which often regulate networks of genes. The epigenetic 

alterations in these regulatory regions, which can be located distant from a given gene under 

their control, can influence cancer development97–101.

Abnormalities of histone acetylation, most commonly losses at gene promoter regions that 

result from increased activity of HDACs, can either accompany alterations of DNA 

methylation in mediating important effects on the cancer epigenome or constitute 

independent controlling effects85,102–104. Specifically, histone deacetylation, with or without 

coincident DNA methylation, can cause the repression of tumour suppressor genes105–108. 

Conversely, increased histone acetylase-mediated histone acetylation can constitute a cancer 

abnormality associated with abnormal upregulation of gene expression109. Thus, the 

targeting of DNA methylation and/or histone deacetylation (or acetylation), as extensively 

reviewed elsewhere104,110,111, is a major focus of epigenetic therapy and is central to its 

combination with ICI, as discussed later in this Review.

Roles in immune cell differentiation

In the past decade, a number of elegant studies in the field of immunology have led to a 

much more cohesive view of the epigenetic regulation of normal physiological subsets of 

key immune cell lineages. These studies provide insights into the functions and interactions 

of these cell populations within the TME. The epigenetic regulation of differentiation has 

been studied across several major immune cell populations, including myeloid cells, CD8+ T 

cells and CD4+ T cells. The epigenetics of CD4+ T cell differentiation have been reviewed 

extensively112,113, but remains an emergent paradigm; therefore, the following section is 

focused on the epigenetic regulation of CD8+ T cells and myeloid populations, the direct 

antitumour activities of which are potentially amenable to the actions of epigenetic drugs.

CD8+ T cell differentiation.—The activation and differentiation of CD8+ T cells are a 

result of stimulation following antigen presentation by professional antigen-presenting cells 

(Box 2). Epigenetic mechanisms have important roles in dictating the fate of T cells114 (FIG. 

2). These mechanisms are essentially mediated by progressive, large-scale remodelling of 

chromatin, which modulates the accessibility of transcription factors to regulatory regions of 
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target genes involved in T cell development, maturation and lineage commitment114–116. 

Transcription factor 7 (TCF7, also known as TCF1) has been identified as one of the key 

transcription factors involved in establishing the epigenetic identity of T cells during their 

differentiation and patterns the chromatin landscape, enabling T cell differentiation to 

evolve116. The pathways of naive CD8+ T cell differentiation to CD8+ effector T cells 

involve dynamic epigenetic changes in chromatin accessibility, with genome-wide gains and 

losses of DNA methylation and histone modifications observed during this process117–121 

(FIG. 2). Similarly, epigenetic mechanisms also demonstrably regulate the dedifferentiation 

of CD8+ effector T cells to memory T cells118,122. This phenotypic switch is accompanied 

by a reversal of epigenetic repression of naive T cell-associated genes but with maintenance 

of demethylation of key genes expressed in CD8+ effector T cells118,119 (FIG. 2). Thus, 

CD8+ memory T cells have distinct patterns of chromatin accessibility associated with the 

capacity for rapid re-induction of effector functions123.

Another end point in the fate of effector T cells involves the acquisition of an ‘exhausted’ 

phenotype facilitated by chronic antigen stimulation. A hallmark of this cell state is the 

downregulation of effector functionality, as evidenced by a diminished capacity for induced 

production of tumour necrosis factor, IL-2 and IFNγ124. Exhausted T cells also have 

upregulation of inhibitory immune checkpoint molecules, such as PD-1, CTLA-4, LAG3 

and TIM3, on the cell surface to levels exceeding those observed in effector T cells125. In the 

context of immunotherapy, PD-1 is an important target, the expression of which is regulated 

by both DNA methylation126 and alterations of chromatin accessibility127. Notably, 

exhausted CD8+ T cells regain minimal effector and/or memory functions following PD-1 

inhibition in mouse models of chronic lymphocytic choriomeningitis virus infection119,128, 

thus suggesting the need to consider combination strategies to prevent the acquisition of or 

reverse the exhausted state. Crucially, when considering potential epigenetic-immunotherapy 

combinations, this finding was predominantly attributed to the epigenetic stability of these 

cells under PD-1 inhibition, in a state distinct from that of effector and memory T 

cells119,128; however, this epigenetic state could be counteracted, and T cells reinvigorated, 

through sequential inhibition of DNMTs followed by PD-L1, with similar findings observed 

in an immune-checkpoint inhibition-refractory mouse TRAMP-C2 model119. These data 

highlight the importance of considering epigenetic plasticity in dictating the effects of 

current immune-checkpoint inhibitors on CD8+ T cells.

Myeloid differentiation.—Epigenetic modifications also regulate the fate of cells of the 

myeloid lineage by orchestrating their differentiation and activation. These changes mainly 

involve various histone modifications that regulate the binding of lineage-specific 

transcription factors to their target genes, largely by modulating chromatin 

accessibility129,130. As discussed later in this manuscript, HDAC inhibitors, either alone or 

in combination with DNMT inhibitors, have proved to be effective in enhancing antitumour 

immunity across multiple preclinical models by depleting tumours of myeloid-derived 

suppressor cells (MDSCs) — a cell population known to induce peripheral T cell tolerance 

and to inhibit both T cell activation and proliferation131–133. Epigenetic mechanisms have 

also been implicated in the regulation of macrophage polarization134,135. Accordingly, in a 

mouse model of ovarian cancer, combination treatment with the DNMT inhibitor azacitidine 
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and the ornithine decarboxylase inhibitor α-difluoromethylornithine results in depletion of 

pro-tumorigenic M2-like macrophages from the TME and enrichment with inflammatory, 

antitumour, M1-like macrophages136.

Targeting the cancer epigenome

In keeping with the crucial roles of epigenetic mechanisms in regulating the functions of 

non-malignant epithelial and immune cells as well as the epigenetic alterations associated 

with malignancy, strategies to target the cancer epigenome have proved effective in 

controlling tumour growth. The goal of such therapy is to reprogramme the epigenome of 

cancer cells in order to disrupt the self-renewal of stem-like cells, induce differentiation 

towards a non-malignant phenotype, block the invasive or metastatic behaviour of malignant 

cells, and/or sensitize tumours to other therapeutic interventions85,111,137–139. Excitement 

surrounding these concepts is increasing now that the pharmaceutical industry has developed 

different drugs with which to target virtually all of the writer, eraser and reader functions 

outlined above (TABLE 1). Many of these agents are undergoing testing in phase I and/or II 

clinical trials and the demonstration of acceptable toxicity profiles and promising efficacy is 

anticipated. These studies might therefore facilitate the future use of epigenetic agents as 

monotherapies or in combinatorial strategies. The only epigenetic drugs currently approved 

by the FDA for use in patients are DNMT inhibitors for the treatment of myelodysplastic 

syndrome and acute myeloid leukaemia (AML), in combination with the BCL-2 inhibitor 

venetoclax for the latter disease, and HDAC inhibitors for the treatment of cutaneous or 

peripheral T cell lymphoma and relapsed multiple myeloma (TABLE 1). DNMT inhibitors 

include azacitidine, which can result in the demethylation both DNA and RNA, as well as 

DNA-specific demethylating agents, such as decitabine and its derivative with a longer half-

life, guadecitabine140. DNMT inhibitors and HDAC inhibitors are currently being studied 

alone and in combination with ICI across a variety of solid and haematological malignancies 

(TABLE 1). As the focus of this Review, we outline the promise of such combinations to 

enhance the efficacy of ICI and other immunotherapies in the following sections.

Rationale for epigenetic-immunotherapy

Epigenetic therapy modulates key regulatory features of both immune cells and tumour cells 

in ways that might overcome some of the current limitations of immunotherapy (FIGS 1; 2). 

For example, epigenetic drugs have the potential to reverse many processes that tumours 

engage to evade immune-mediated destruction (FIG. 1).

Epigenetic control of immune exhaustion

Much interest over the past several years has surrounded the state of immune cell 

‘exhaustion’, which is a component of immune tolerance and evasion120,141. In the scenario 

of T cell exhaustion associated with cancer, tumour-targeting CD8+ T cells adopt a unique 

differentiation state, in which they are unable to mount effector functions and thus their 

cytolytic activity against tumour cells is impeded120. Importantly, as described above, this 

state is characterized by a complex programme of gene expression changes that are 

correlated with alterations in chromatin conformation and DNA methylation117,123. In 

mouse models, epigenetic therapy can reverse these changes in chromatin conformation and 
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DNA methylation acquired during the transition to an exhausted T cell state, which is 

postulated to be induced by a DNMT3A-mediated de novo methylation programme119 (FIG. 

2). Indeed, in these preclinical studies, prevention of the exhaustion state with DNMT 

inhibitors was associated with an increase in the efficacy of ICI with anti-PD-1 

antibodies119.

Epigenetic reversion of immunoediting

DNMT inhibitors and HDAC inhibitors are known to promote innate immune-related 

signalling in cancer cells, which could potentially also enhance recognition of these cells by 

adaptive immune cell populations142–147 (FIG. 1). Early examples of this concept include 

the induction of tumour antigens, termed cancer/testis antigens (CTAs), consisting largely of 

proteins usually expressed exclusively in embryonic or germ cells during 

development148–156. The expression of CTA genes is controlled by transcriptional 

repression, including promoter DNA methylation and histone deacetylation in association 

with other histone modifications, thus making these genes likely targets of epigenetic 

therapy157–159. In addition to CTA upregulation, epigenetic therapy can potentiate tumour 

cell immune recognition through restoration of the MHC class I antigen processing and 

presentation machinery — deficiencies which can be selected for during cancer 

immunoediting and, indeed, are one of the defining characteristics of immune hot 

tumours142–144,160–163.

The list of actionable targets of epigenetic therapy has now expanded beyond CTAs, with a 

particular focus on DNMT inhibitor-mediated augmentation of signalling related to innate 

immunity and induction of inflammation-associated genes such as cytokines and 

chemokines142–144,146,147,164. Intriguingly, these effects are typically predicated on 

potentiation of type I and III interferon signalling invoked by increased levels of cytoplasmic 

viral RNAs, a phenomenon termed viral mimicry146,147. This response is largely centred on 

the transcriptional de-repression of endogenous retroviruses (ERVs)146,147. ERVs have been 

incorporated into the human genome over millennia, such that they now account for ~8% of 

the genome165, but are generally silenced in somatic cells through DNA methylation and 

repressive histone modifications166–169. Thus, DNMT inhibitors induce demethylation of 

ERV sequences, which enables ERVs to be transcribed into RNAs that fold into double 

stranded RNA structures. Subsequent interactions between these viral double stranded RNAs 

and cognate cytoplasmic sensors triggers a viral defence response, including induction of 

type I interferon signalling.

Taken together, these effects emphasize the demonstrable potential of epigenetic therapy to 

facilitate immune recognition of tumour cells, not least through augmentation of antigen 

expression, processing and presentation (FIG. 1). The following sections summarize the 

evidence accumulated to date that epigenetic therapy can overcome barriers to clinical 

responses to immunotherapy.
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Combined epigenetic therapy and ICI

Preliminary clinical observations

Observations made in an early phase I/II clinical trial of combination epigenetic therapy 

with the DNMT inhibitor azacitidine and the HDAC inhibitor entinostat170 have helped to 

bring the concept of combined therapy with epigenetic drugs and ICI to the fore. These 

observations have guided the design of preclinical studies to explore the scientific 

underpinning for the promise of such approaches. Briefly, in this initial clinical trial 

involving 45 patients with advanced-stage refractory NSCLC170, two patients exhibited very 

durable, Response Evaluation Criteria in Solid Tumors (RECIST)-defined objective 

responses to epigenetic therapy and survived for 3–4 years after treatment. Additionally, five 

patients who had disease progression during the trial were subsequently enrolled in the first 

trials of anti-PD-1 antibodies; three of these patients achieved RECIST objective responses 

whereas the remaining two patients had stable disease for 24 weeks before 

progression142–170. Whilst these observations generated excitement, the underlying 

mechanism for the noted efficacy was not elucidated, thus spurring the initiation of multiple 

preclinical studies to evaluate the effects of epigenetic therapy on antitumour immune 

responses.

Promising preclinical data

DNMT inhibitor-based therapy.—Direct evidence of synergy between DNMT inhibition 

and immune-checkpoint inhibition has been established in the preclinical space across 

multiple model systems. In animal models of ovarian cancer or melanoma, the addition of a 

demethylating agent (decitabine and azacitidine, respectively) to anti-CTLA-4 antibody 

therapy increases the antitumour effect relative to that observed with immune-checkpoint 

inhibition alone, as evidenced by prolongation of survival146–171, with an enhancement of 

cytolytic CD8+ T cell accumulation within the tumours noted in the ovarian cancer 

model171. Other studies provide evidence that the effectiveness of anti-PD-1 antibodies can 

also be potentiated with the use of DNMT inhibitors. In the MMTV-Neu mouse breast 

cancer model, treatment with guadecitabine augments both MHC class I expression and T 

cell chemotaxis via the CXC-chemokine ligand 9 (CXCL9)/CXCL10/CXCL11-CXC-

chemokine receptor 3 (CXCR3) axis, which has been correlated with enhanced tumour 

infiltration of CD8+ T cells and subsequent potentiation of responses to anti-PD-1 

antibodies172. Additionally, Yu et al.173 delineated important decitabine-mediated 

immunological effects in a syngeneic mouse CT26 colon cancer model. These effects 

included mobilization of the antigen presentation machinery, intratumour accumulation of 

PD-1-positive CD8+ T cells and sensitization to anti-PD-1 antibody therapy. As mentioned 

above, in the mouse TRAMP-C2 model of immune-checkpoint inhibition-resistant prostate 

cancer, administration of decitabine was found to induce the sensitivity of CD8+ T cells to 

anti-PD-L1 antibodies through the prevention of the DNMT3A-mediated DNA methylation 

programme of exhausted T cells, thereby enhancing antitumour responses119. Together, 

these findings provide evidence supporting the effectiveness of combined DNMT inhibition 

and immune-checkpoint inhibition, which is mediated in part by epigenetic enhancements of 

the adaptive immune system.
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HDAC inhibitor-based therapy.—The deployment of HDAC inhibitors in combination 

with immunotherapies has demonstrated efficacy across multiple animal models. The axes 

most amenable to perturbation by HDAC inhibitors are T cell chemoattraction gradients and 

myeloid cell populations, predominantly MDSCs. An early indication of the potential 

synergy between HDAC inhibition and immune-checkpoint inhibition was derived from a 

syngeneic mouse B16-F10 melanoma model174. In this study174, the concurrent application 

of the HDAC inhibitor panobinostat potentiated anti-PD-1 antibody therapy, thus resulting in 

slower tumour growth and longer survival than that observed with either treatment alone. 

The induction of PD-L1 after HDAC inhibition, mediated by a gain of PDL1 gene promoter 

acetylation, was one notable in vitro observation174. This induction of PD-L1 could 

constitute a possible resistance mechanism when HDAC inhibition is paired with ICI and 

should, therefore, be considered when evaluating PD-L1 tumour positivity in the context of 

epigenetic therapy. In a study using a subcutaneous mouse hepatocellular carcinoma model, 

administration of the HDAC inhibitor belinostat was demonstrated to enhance the efficacy of 

CTLA-4 inhibition, but not PD-1 inhibition, in association with increases in the abundance 

of M1-polarized tumour-associated macrophages and in IFNγ production by tumour-

specific CD8+ T cells as well as decreased numbers of splenic regulatory T (Treg) cells175. 

Tumour antigen-presenting cells had upregulation of PD-L1 early after treatment with the 

HDAC and CTLA-4 inhibitors, with later upregulation of PD-1 on T cells also noted; 

simultaneous HDAC, PD-1 and CTLA-4 inhibition resulted in complete tumour rejection. 

Across multiple animal models of solid tumours, the HDAC inhibitor entinostat induced the 

depletion of MDSCs and enhanced the efficacy of anti-PD-1 therapy176,177. Specifically, 

Orillion et al. found that the application of entinostat reduced the levels of both MDSC-

associated chemoattractants and MDSC suppressive activity177. Furthermore, evidence 

suggested that HDAC inhibition might promote the differentiation of this cell population177.

In addition to MDSC-directed immune effects, HDAC inhibitors have been found to have a 

variety of effects on T cell responses. For example, the HDAC inhibition using romidepsin 

increased levels of T cell chemoattractants and tumour infiltration in multiple lung 

adenocarcinoma models, with a correlated sensitization to anti-PD-1 therapy117. Building on 

these preclinical studies, HDAC inhibition in combination with immune-checkpoint 

inhibition is currently being explored in multiple clinical trials (TABLE 1; Supplementary 

Table S1) and might be most efficacious against cancers with a type IV TME, a hallmark of 

which is a demonstrably high level of MDSC infiltration (BOX 1).

DNMT inhibitor and HDAC inhibitor combinatorial paradigm.—The 

aforementioned concepts based on the combination of DNMT or HDAC inhibitors with ICI 

have subsequently been extended to combination paradigms founded on both DNMT and 

HDAC inhibition, with robust antitumour effects observed in multiple preclinical solid 

tumour models144,176,178. Importantly, in all cases, the efficacy of such combinations has 

been tightly tied to CD8+ T cell dependent mechanisms144 and/or associated with 

sensitization to immune-checkpoint inhibition176,178. In ovarian and lung cancer animal 

models, attraction of CD8+ T cells to the TME occurs in association with initiation of a type 

1 T helper (TH1) cell chemokine axis involving CC-chemokine ligand 5 (CCL5) and 

CXCL10 (REFS194,197). These chemokines have the demonstrated ability to facilitate the 
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attraction of CD8+ T cells through interaction with CC-chemokine receptor 5 (CCR5) and 

CXCR3, respectively, on these cells179–182. CCL5 seems of particular importance in patients 

with lung adenocarcinoma as this chemokine is an established hallmark of an active 

lymphocytic compartment in clinical samples and is associated with favourable survival 

outcomes183. Additionally, in animal models of NSCLC, the application of epigenetic 

therapy prevents the aforementioned exhausted phenotype in tumour-associated CD8+ T 

cells119, with acquisition of effector and/or memory phenotypes noted144.

In addition, preclinical studies in NSCLC models have identified MYC as a key target of 

combination DNMT plus HDAC inhibition (FIG. 1); suppression of MYC activity by such 

epigenetic therapy potentiates type I interferon signalling and the associated induction of 

CD8+ T cell-attracting chemokines, including CCL5 (REF144). A similar pattern of immune 

effects emerged from studies by another group after genetic manipulation of MYC 

expression in a mouse model of Kras-mutated lung adenocarcinoma184. In this study, MYC 

expression in tumour cells resulted in the production of CCL9 and IL-23; CCL9 was shown 

to mediate recruitment of PD-L1-positive macrophages and associated PD-L1-dependent 

expulsion of T and B cells, whereas IL-23 orchestrates exclusion of adaptive T cells and B 

cells and innate immune NK cells184. The implications of the potential epigenetic regulation 

of MYC on the tumour immune microenvironment are not limited to the setting of NSCLC. 

Casey et al.185 have established that MYC regulates the expression of both PD-L1 and CD47 

in human T cell acute lymphoblastic leukaemia cells and mouse models of this disease. The 

regulation of these targets by MYC was found to be through direct binding and thus 

transcriptional induction, with MYC inactivation resulting in target downregulation and 

potentiation of antitumour responses noted in mouse models185. Notably, CD47, termed the 

‘do not eat me’ antigen, facilitates antagonization of macrophage-dependent immune 

surveillance through interaction with signal-regulatory protein α (SIRPα) on macrophages. 

Targeting of the CD47–SIRPα axis is an emerging paradigm in immunotherapy186.

These preclinical studies establish, through a diverse set of mechanisms, the multifaceted 

potential utility of epigenetic therapy to enhance the efficacy of cancer immunotherapy 

(FIG. 1). These results have formed the basis of a growing number of clinical trials designed 

with the aim of translating the concept of epigenetic-immunotherapy into patient 

management.

Current clinical trials

The early clinical observations with combined DNMT and HDAC inhibition elucidated in 

the setting of advanced-stage, treatment-refractory NSCLC142,170, together with data 

obtained from the preclinical studies discussed above144, have prompted the initiation of two 

trials (NCT01928576 and NCT03220477; Supplementary Table S1). In these ongoing 

studies, DNMT plus HDAC inhibition is being combined with concurrent anti-PD-1 

antibody therapy for patients with advanced-stage NSCLC. The protocols of these trials have 

been amended to focus on the potential of this combination in the treatment of both ICI-

resistant and ICI-naive patient populations. Additionally, multiple clinical trials involving 

DNMT and/or HDAC inhibition plus immune-checkpoint inhibition are ongoing across a 

variety of solid tumours and myelodysplastic syndrome and/or AML (Supplementary Table 
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S1). Notably, many of these trials include robust correlative studies, such as serial sampling 

of peripheral blood and tumour specimens for analyses of induced viral mimicry, interferon 

induction and T cell functional phenotypes (for example, NCT01928576, NCT03233724, 

NCT03220477, NCT03576963, NCT02901899 and NCT02397720). Although objective 

responses, disease stabilization and encouraging OS outcomes have been observed in a 

previous clinical trial of such a combination in patients with AML186,187, careful 

consideration of the optimal study populations and epigenetic agents are needed. This 

requirement is exemplified by results from a randomized, placebo controlled phase II trial of 

oral azacitidine (CC-486) added to pembrolizumab that failed to show a statistically 

significant difference in PFS (HR 1.374, 90% CI: 0.926–2.038; P = 0.179) or OS (HR 1.375, 

90% CI: 0.830–2.276; P = 0.297) in patients with advanced-stage NSCLC188. Of note, the 

combination treatment group in this study received a median of two fewer cycles of therapy 

than the placebo group, in association with increases in the proportions of patients that had 

treatment-related adverse events, dose reductions and treatment interruptions188. This 

increased toxicity might be reflective, in particular, of the intestinal and haematological 

toxicities noted for the oral formulation of azacitidine, which have been associated with dose 

interruptions or reductions in 16% and 19% of patients (with myeloid neoplasms), 

respectively189. These findings highlight the need for careful selection of epigenetic 

modifying agents in order to maximize the potential synergy with specific ICI whilst 

limiting treatment-related toxicities.

Currently, it is too early to know whether clinically significant efficacy will emerge from the 

ongoing trials of combined epigenetic therapy and immune-checkpoint inhibition, thus 

warranting movement of these combinatorial approaches further towards formal clinical use. 

As the results of these trials are reported in the coming years, a focus on biomarkers will be 

essential to allocating these therapies to the patients who are likely to derive the greatest 

benefit.

Emerging epigenetic partners for ICI

The aforementioned preclinical studies demonstrating immunological effects of DNMT 

inhibitors and HDAC inhibitors have fostered a growing number of reports that epigenetic 

drugs with different targets can enhance the efficacy of ICI. Indeed, many of the alternative 

combinations are undergoing testing in early phase clinical trials. Emerging preclinical 

findings suggest that the effectiveness of ICI might be further enhanced by future strategies 

incorporating single or multiple epigenetic drugs with diverse targets.

EZH2 inhibitors

Therapeutics of this class inhibit the activity of the enzyme enhancer of zeste homologue 2 

(EZH2), which is the histone-lysine N-methyltransferase subunit of the polycomb repressive 

complex 2 (PRC2). PRC2, via the activity of EZH2, is responsible for placing the 

transcriptionally repressive histone modifications H3K37me2 and H3K27me3 

(REFS190–193). These forms of histone modifications are closely associated with genes 

vulnerable to cancer-specific DNA hypermethylation at gene promoter region CpG islands, 

which silences the expression or blocks the inducibility of the affected genes194–197. 
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Multiple preclinical studies have demonstrated the potential of EZH2 inhibitors to augment 

the activity of immunotherapy or induce immunostimulatory effects. In mice harbouring 

tumours derived from patients with ovarian cancer together with adoptively transferred 

autologous CD8+ T cells derived from the same patients, the application of an EZH2 

inhibitor in combination with a DNMT inhibitor led to the establishment a robust 

chemotactic gradient of the TH1-type chemokines CXCL9 and CXCL10, thus facilitating the 

attraction of CXC3R+ CD8+ effector T cells, with subsequent sensitization to ICI with anti-

PD-L1 antibodies198. Moreover, Goswami et al.198,199 found that peripheral blood T cells 

from patients treated with ipilimumab had increased expression of EZH2; accordingly, they 

demonstrated that the use of an EZH2 inhibitor alone altered the phenotype and function of 

human Treg cells and enhanced the cytotoxic activity of human CD8+ effector T cells as well 

as sensitizing syngeneic mouse MB49 bladder cancer and B16-F10 melanoma to anti-

CTLA-4 ICI198,199.

Additionally, EZH2 seems to have a specific role in mechanisms of adaptive resistance to 

immunotherapy (with anti-CTLA-4 antibodies or IL-2), whereby infiltrating tumour-reactive 

CD8+ T cells trigger induction of EZH2 in melanoma cells that leads to epigenetic silencing 

of antigen processing and presentation machinery as well as repression of TH1 cell-

associated chemokines. EZH2 inhibition can reverse this adaptive resistance programme and 

enhances the efficacy of anti-CTLA-4 antibody therapy in mouse melanoma models200. 

Several EZH2 inhibitors have entered clinical testing (TABLE 1). Together, these studies 

provide initial indications of synergy between EZH2 inhibition and immune-checkpoint 

inhibtion and have provided the foundations for the initiation of phase I/II clinical trials of 

such combinations (Supplementary Table S1).

LSD1 inhibitors

Lysine-specific histone demethylase 1A (LSD1; also known as KDM1A) is the enzyme 

responsible for erasure of the key mono-methyl (me1) and di-methyl (me2) chromatin marks 

on histone H3, predominantly at lysines 4 and 9 (H3K4 and H3K9). This enzyme thereby 

functions as a transcriptional co-regulator in a context-dependent manner through 

demethylation of the repression-associated H3K9me1 and H3K9me2 marks or the 

activation-associated H3K4me1 and H3K4me2 marks201. LSD1 can also demethylate a 

number of nonhistone substrates, including DNMT1, and the loss of LSD1 expression is 

correlated with a decrease in DNMT 1 levels owing to increased methylation and 

destabilization of this protein202; therefore, LSD1 inhibition could potentially result in 

decreased global DNA methylation. Of note, LSD1 is also overexpressed in a number of 

malignancies and, thus, LSD1 inhibitors might be promising potential therapeutic options in 

a variety of cancers203–205. Moreover, The Cancer Genome Atlas data indicate that LSD1 

expression is inversely correlated with CD8+ T cell infiltration into various cancers206,207. 

Accordingly, LSD1 inhibitors have been shown in multiple mouse cancer models to induce 

the viral mimicry-like response, with remarkable similarity to the effect observed with 

DNMT inhibitors206,207, which enhances the recruitment of T cells, increases antigen 

presentation and thereby sensitizes poorly immunogenic tumours, such as triple-negative 

breast cancers, to anti-PD-1 ICI206,207. Thus, LSD1 inhibitors now take a place among 

future, potential combinatorial epigenetic therapy strategies to enhance the efficacy of ICI. 
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Pharmacological inhibitors are currently being tested in phase I/II clinical trials involving 

patients with various advanced-stage malignancies (TABLE 1), including in combination 

with ICI (Supplementary Table S1).

G9a inhibitors

The histone-lysine N-methyltransferase EHMT2 (also known as G9a) places the 

aforementioned repressive H3K9me2 mark in chromatin, including in the promoters of 

abnormally DNA hypermethylated genes (indeed, G9a and DNMT1 can function as part of a 

ternary complex)208. The gene encoding G9a can be overexpressed, with and without being 

amplified, in multiple tumour types, which has been associated with advanced-stage disease 

and an unfavourable prognosis209–211. Of note, knockout studies in mice have revealed a 

role of G9a in the maintenance of stem cell self-renewal212. Specific inhibitors of G9a are 

available for preclinical experiments, although a compound suitable for use in clinical trials 

has not yet been developed. However, an important role for G9a inhibition as a means of 

inducing viral mimicry has emerged — when used in combination with a DNMT inhibitor, a 

G9a inhibitor reduces H3K9me2 levels within the long terminal repeat regions of ERVs and 

thus augments ERV transcription in ovarian cancer cell lines213. Moreover, in cancer cells, 

repression of ERV sequences without DNA methylation is maintained, in part, by the 

presence of G9a and H3K9me2 at transcriptional start sites214. Thus, inhibition of G9a is an 

intriguing future candidate strategy for the enhancement of the therapeutic activity of ICI.

BET inhibitors

The bromodomain and extra-terminal (BET) family encompass a number of epigenetic 

readers, namely BRD2, BRD3, BRD4 and BRDT; these proteins generally recognize 

acetylated lysines in histones215, which accompany the open chromatin structures associated 

with active transcription, as described earlier. BRD4 is the most intensely investigated BET 

family member and inhibitors of this protein can suppress aberrantly active transcription in 

cancer216–218. Initially, this inhibition was thought to be focused specifically on targets of 

MYC oncogene activation, but other affected pathways have now also been identified219. A 

number of different BET inhibitors are being tested, including in combination with ICI in 

multiple phase I/II trials (TABLE 1; Supplementary Table S1), predominantly for the 

treatment of haematopoietic malignancies; a full assessment of efficacy of such agents is 

awaited.

Preclinical studies indicate that JQ1, one of the original bromodomain-targeted BET 

inhibitors, synergizes with anti-PD-1 antibodies in a mouse model of NSCLC with activating 

Kras mutation and Tp53 deletion220. As observed in studies of DNMT plus HDAC 

inhibition, JQ1 induced an increase in the abundance of activated, tumour-infiltrating T cells 

with a TH1-type cytokine profile as well as depletion of tumour-infiltrating Treg cells, and 

resulted in stronger, more-durable antitumour responses and improved survival compared 

with those observed with either agent alone220. Thus, use of BET inhibitors might provide 

yet another future combinatorial approach to enhancing the efficacy of ICI.
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Conclusions

Epigenetic therapy has emerged as a promising combination partner for use with 

immunotherapy of advanced-stage malignancies. The potential of epigenetic therapy to 

enhance patient benefit when compared to immunotherapy alone is centred on its ability to 

overcome certain limitations of current immunotherapeutic strategies. The success of 

immunotherapy is dependent on the existence of a certain type of immune environment, 

principally the presence of tumour-infiltrating lymphocytes and PD-L1 expression in the 

TME. Epigenetic therapy has been shown to modulate various components of the TME, 

including augmentation of CTA expression and of antigen processing and presentation, 

increased attraction and infiltration of CD8+ T cells, and prevention or reversion of T cell 

exhaustion with a concurrent increase in the abundance of effector and/or memory T cells 

(FIG. 1). As focused upon in this Review, combining epigenetic therapy with ICI is, 

therefore, one of several possible combinatorial approaches to enhancing efficacy of the 

latter treatment strategy. In a growing number of clinical trials across multiple cancer types 

(Supplementary Table S1), emphasis has been placed upon testing the established epigenetic 

therapy agents, DNMT inhibitors and HDAC inhibitors (alone or in combination) together 

with ICI. These approaches are being investigated both in patients receiving their first line of 

immune-checkpoint inhibition and, more recently, in patients harbouring relapsed and/or 

refractory disease after prior immune-checkpoint inhibition with the aim of reversing 

resistance to the immunotherapy. The future adoption of these approaches as accepted 

cancer management strategies will be dependent on the observation of efficacy signals in 

these trials. The future will also see the development of novel approaches involving next-

generation epigenetic drugs combined with emerging immunotherapy modalities, including 

vaccine-based and adoptive T cell therapies221,222.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• The past decade has witnessed the emergence of immune-checkpoint 

inhibition as the potential fourth pillar of anticancer therapy; however, 

combination therapeutic paradigms are needed to maximize benefits and 

overcome resistance to immune-checkpoint inhibition.

• Epigenetic therapy has the ability to modulate the tumour microenvironment, 

for example, by inducing both the accumulation and infiltration of CD8+ 

lymphocytes through interferon-dependent, chemokine-mediated chemotaxis.

• Epigenetic therapy can also prevent the emergence and/or acquisition of an 

epigenetic programme of T cell exhaustion and can facilitate the formation of 

CD8+ effector and/or memory T cells.

• Histone deacetylase inhibitors can affect the tumour myeloid compartment by 

causing myeloid-derived suppressor cell depletion, differentiation and 

functional antagonism.

• Epigenetic modulators can enhance tumour cell recognition and potentiate 

type I interferon responses through MYC and MYC-related target 

downregulation.

• The combination of epigenetic drugs and immunotherapy is emerging as a 

crucial therapeutic paradigm across a variety of malignancies.
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Box 1 |

Types of tumour immune microenvironments

The past decade has seen the emergence of immunotherapy as one of the most promising 

treatment strategies for advanced-stage cancers. The ability of tumours to adapt in order 

to overcome innate and acquired immune mechanisms that would normally lead to 

recognition and killing of the tumour cells is a crucial aspect of cancer initiation and 

progression47,223. Four postulated states of immune landscapes have been observed in 

tumours and dictate the vulnerability of the tumours to different immunotherapeutic 

strategies224,225. This categorization is largely based on the expression of programmed 

cell death 1 ligand 1 (PD-L1) in the tumour microenvironment (TME) and the occurrence 

and distribution of CD8+ tumour-infiltrating lymphocytes (TILs) at the tumour site224.

Type I (adaptive immune resistance)

In the presence of abundant T cell infiltrates, tumours can develop adaptive immune-

resistance mechanisms that often involve upregulation of PD-L1 (REFS44,226–229). 

Accordingly, these tumours are generally referred to as ‘hot tumours’ and are identified 

by the presence of CD8+ TILs along with expression of PD-L1 in the TME227. The 

expression of PD-L1 is a feedback response to IFNγ secreted by TILs that, via triggering 

of the T cell inhibitory receptor programmed cell death 1 (PD-1), diminishes the potential 

of those TILs to mount an antitumour response227. This TME is that most poised for 

clinical benefit from single-agent immune-checkpoint inhibition with anti-PD-1 or anti-

PD-L1 antibodies, because this intervention can restore the cytolytic activity of CD8+ T 

cells230.

Type II (immunological ignorance)

Tumours with this immune microenvironment, generally referred to as ‘cold tumours’, 

are characterized by an absence of CD8+ TILs as well as a lack of expression of PD-L1 

(REFS57,231). Patients with such tumours typically do not benefit from single-agent 

immune-checkpoint inhibition. Combinatorial therapeutic approaches using dual 

immune-checkpoint inhibition (typically with antibodies targeting PD-1 or PD-L1 and 

cytotoxic T lymphocyte antigen 4 (CTLA-4)), cancer vaccines, chimeric antigen receptor 

T cells or agents such as epigenetic drugs, which aid in recruiting key immune cells to the 

TME prior to the application of immune-checkpoint inhibition, are likely to be the most 

effective treatment strategies for these tumours11,35,144,178,232–234.

Type III (oncogenic pathway activation)

These tumours, in which expression of PD-L1 is often a result of constitutive oncogenic 

signalling, are termed innate immune-resistant tumours and include those that are PD-L1-

positive in the absence of CD8+ T cells235–237. Such tumours underscore the importance 

of considering the presence of TILs in the TME in conjunction with PD-L1 status in 

order to predict the likelihood of a response to PD-1 or PD-L1 inhibition. Patients with 

tumours of this type will probably benefit from similar combinatorial therapeutic 

approaches to recruit TILs as those with type II tumours.

Type iV (immunological tolerance)
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These tumours contain TILs that are rendered incapable of mounting antitumour 

responses despite a lack of PD-L1 expression in the TME. The development of 

immunological tolerance can result from immunoediting, which might involve 

suppression of the antigen processing and presentation machinery238, ineffective TIL 

activation owing to a lack of co-stimulatory signals or T cell exhaustion124. These 

tumours can also contain immunosuppressive cells such as regulatory T cells and 

myeloid-derived suppressor cells239. Therapeutic approaches for these tumours include 

targeting of immune checkpoint proteins other than PD-1 or PD-L1 or 

immunosuppressive pathways, such as immunometabolism (including the adenosine and 

indoleamine 2,3-dioxygenase pathways)240,241, adoptive transfer of immune effectors 

and cancer vaccine strategies242. Combination epigenetic therapy and immunotherapy 

approaches hold great promise in the treatment of these tumours, given the role of 

epigenetic events in regulating CD8+ T cell differentiation117,118,120,243 and the ability of 

epigenetic therapy to prevent CD8+ T cell exhaustion119and to shift CD8+ TILs to an 

effector and/or memory phenotype144.
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Box 2 |

Antigen-specific T cell activation

The activation of naive T cells to form fully functional effector T cells is a highly 

regulated process that requires the simultaneous application of three distinct stimuli from 

professional antigen-presenting cells (APCs) such as dendritic cells or macrophages244. 

Signal 1 results from the interaction between the T cell receptor (TCR) and a peptide–

MHC class II complex present on the APC or MHC class I in the setting of dendritic cell 

cross presentation245. This interaction triggers mitogen-activated protein kinase and 

phospholipase C signalling downstream of the TCR, inducing nuclear factor-κB and 

activator protein 1 activation, and culminating in transcription and expression of IL-2 

(REF246). Although required for T cell activation, signal 1 alone is not sufficient to 

induce clonal expansion of these cells; TCR stimulation in the absence of a co-

stimulatory signal can induce the formation of anergic T cells, leading to peripheral 

tolerance or defective effector T cell populations247. The co-stimulatory signal, or signal 

2, can result from many potential receptor interactions, the most well-established of 

which is the CD28 receptor on T cells with B7 family ligands (CD80 or CD86) on 

APCs248,249. A crucial effect of signal 2 is increased transcription and stabilization of 

IL2 mRNA250. Signals 1 and 2 acting in concert drive the onset of T cell activation and 

proliferation, thus initiating an expansion phase. T cell responses must be fine-tuned to a 

particular function or immunological response and, therefore, a third signal provides the 

basis for cell polarization, optimal effector functionality and survival251. Signal 3 results 

from cytokines and/or chemokines present in the microenvironment, usually derived 

directly from APCs251. This signal has a potent effect on T cell differentiation, with 

factors such as IL-12 and IFNα, IFNβ and IFNγ skewing T cell fate towards cytotoxic T 

lymphocyte or type 1 T helper-type responses, whereas retinoic acid and transforming 

growth factor-β promotes the generation of regulatory T cells252,253. In the presence of 

sufficient antigen, proliferation of activated T cells will be initiated and sustained; upon 

clearance of antigen, T cell populations enter contraction, followed by a memory 

phase244. During this memory phase, stable numbers of long-lived, antigen-specific 

CD8+ T cells remain in the circulation; this cell population has a distinct phenotype that 

enables rapid reinduction of a robust cytotoxic activity upon antigen re-encounter118,123.

Topper et al. Page 31

Nat Rev Clin Oncol. Author manuscript; available in PMC 2020 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. Effects of epigenetic therapy on the immune state of a tumour and rationale for the use 
of combination epigenetic and immunotherapy strategies in cancer.
Epigenetic therapy has the potential to convert a tumour from an immune repressive 

(immune cold) to an immune permissive (immune hot) state through effects on several 

factors of the tumour microenvironment that normally impede the therapeutic activity of 

immune-checkpoint inhibition. Immune cold tumours are characterized by the absence of 

tumour-infiltrating lymphocytes, the presence of immunosuppressive cell populations, such 

as tumour-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), 

and/or a lack of expression of programmed cell death 1 ligand 1 (PD-L1) by the tumour 

cells224,254. Epigenetic agents can modulate the immune composition of the tumour 

microenvironment by decreasing the abundance of TAMs and MDSCs and increasing the 

numbers of CD8+ effector T cells and memory T cells144,178. As well as having the potential 

to shift the differentiation of CD8+ tumour-infiltrating lymphocytes towards effector and/or 

memory phenotypes, epigenetic drugs can augment innate immune-related signalling and the 
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expression of inflammatory proteins, such as chemokines142–144,146,147,164, which aid the 

recruitment of T cells to the tumour. In addition, epigenetic therapy can revert key aspects of 

cancer immunoediting via increased expression of tumour antigens, such as cancer/testis 

antigens (CTAs)148–151, and restoration of the MHC class I (MHC I) antigen processing and 

presentation machinery (which is often dysregulated in tumour cells)142–144,160,161, thus 

potentiating the immune recognition of tumours. Type I interferon (IFN) signalling is a 

major node of these immunological pathways and can be triggered in response to increased 

levels of cytoplasmic viral RNAs resulting from epigenetic de-repression of endogenous 

retroviruses (ERVs)146,147. Epigenetic therapy can also induce the repression of MYC and 

MYC-related signalling, thus counteracting the immunosuppressive functions of this 

oncogenic transcription factor, which include downregulation of type I IFN-mediated gene 

expression, for example, of the gene encoding the T cell-attracting chemokine CC-

chemokine ligand 5 (CCL5)144; production of CCL9 that recruits immunosuppressive, PD-

L1-positive macrophages to tumours and IL-23 that results in exclusion of T cells, natural 

killer cells and B cells (not shown); and upregulation of inhibitory immune-checkpoint 

proteins PD-L1 and CD47 in tumour cells, which suppress T cell activation and 

macrophage-mediated phagocytosis, respectively184,185. All of the above contribute to the 

activity of epigenetic agents in converting immune cold tumours into immune hot 

tumours224, such that the tumours become amenable to immunotherapeutic interventions. 

For example, the effectiveness of immune-checkpoint inhibitors (ICI) in unleashing an 

effective T cell-mediated immune response is likely to be enhanced in the context of re-

establishment of effective antigen-presentation mechanisms, upregulation of PD-L1, a 

decreased abundance of TAMs, and increases in the numbers of effector and/or memory T 

cells within the tumour microenvironment224. CTLA-4, cytotoxic T lymphocyte antigen 4; 

PD-1, programmed cell death 1; SIRPα, signal-regulatory protein a; TCR, T cell receptor; 

TH1 cell, type 1 T helper cell.

Topper et al. Page 33

Nat Rev Clin Oncol. Author manuscript; available in PMC 2020 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. Implications of DNA methylation-associated programmes on T cell differentiation.
T cell activation from the naive to an effector state is induced by interaction between the T 

cell receptor (TCR) and corresponding MHC class II–peptide complex on professional 

antigen-presenting cells or MHC class I in the setting of dendritic cell cross presentation (the 

context shown in the figure) in concert with co-stimulatory molecule interactions and 

inflammatory stimuli255. Bone marrow-derived antigen-presenting cells — predominantly 

dendritic cells but also macrophages or B cells — are sufficient to induce CD8+ T cell 

priming, whereas CD4+T cells are unable to facilitate this process245. As elucidated in 

studies by Youngblood et al.118 and Ghoneim et al.119, among others, the methylation status 

of genes encoding several crucial mediators of T cell differentiation undergoes dynamic 

changes during the acquisition of major T cell phenotypes. For example, the transition from 

a naive to effector phenotype is characterized by the induction and repression of many 

distinguishing cell-surface markers, including the G protein-coupled chemokine receptors 

CXC-chemokine receptor 3 (CXCR3) and CC-chemokine receptor 7 (CCR7) and the 

inhibitory immune-checkpoint receptor programmed cell death 1 (PD-1). CXCR3 

expression has been shown to be epigenetically regulated in antigen-specific CD4+ T cells, 

although it remains unclear whether the same is true in CD8+ T cells, and renders effector T 

cells responsive to interferon-inducible, type 1 T helper (TH1) cell-associated chemokines, 

such as CXC-chemokine ligand 9 (CXCL9), CXCL10 and CXCL11, which tend to emanate 

from sites of inflammation256. Augmentation of PD-1 expression through demethylation of 

the PDCD1 (PD-1) gene promoter and a regulatory region ~300 bp upstream of the 

transcription start site occurs rapidly following antigen stimulation of naive T cells as the 

direct result of activatory signalling from the TCR126,257. PD-1 signalling acts as a negative 

feedback regulator of the inflammatory activity of T cells by inhibiting TCR-mediated 
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signalling258. Cell-surface expression of the homing receptor CCR7 is also dynamically 

regulated during the naive to effector phenotypic transition via DNA methylation and thus 

repression of the CCR7 gene118,119. CCR7 facilitates the recruitment of naive T cells from 

the bloodstream to lymphoid organs; therefore, downregulation of this receptor enables 

primed effector T cells to migrate from these organs to other tissues in surveillance of their 

cognate antigen259. In addition, effector T cells have an increase in methylation and thus 

repression of TCF7, which encodes transcription factor 7, as well as a loss of methylation 

and de-repression of IFNG, which encodes the inflammatory cytokine IFNγ119. The post-

effector fate of CD8+T cell generally involves the acquisition of either of two major 

phenotypes, namely exhausted or memory260. The exhausted state is characterized by 

whole-genome gains in DNA methylation, including sites in TCF7, IFNG and CCR7 
(REF119). These methylation gains result in reduced effector functionality in terms of both 

cytolytic activity and cell proliferation. In comparison with effector T cells, exhausted T 

cells have increased PD-1 expression and decreased CXCR3 expression, which act to 

sensitize T cells to inhibitory interactions with programmed cell death 1 ligand 1 and prevent 

chemotactic responses to (TH1) cell-associated chemokines, respectively. The acquisition of 

the memory phenotype in effector T cells is correlated with the demethylation and thus re-

expression of CCR7 (REF.118), with retention of CXCR3 and PD-1 expression261–263. 

Memory T cells demonstrate increased IFNG methylation compared with that associated 

with the effector state, but do not demonstrate the high methylation levels of this gene found 

in naive or exhausted CD8+ T cells118,119. The T cell populations that seem to be most 

amenable to modulation with epigenetic therapies are those in the post-effector states of T 

cell differentiation (boxed area)119,144.
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