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Abstract

Methodologies that facilitate high-throughput proteomic analysis are a key step toward moving 

proteome investigations into clinical translation. Data independent acquisition (DIA) has potential 

as a high-throughput analytical method due to the reduced time needed for sample analysis, as 

well as its highly quantitative accuracy. However, a limiting feature of DIA methods is the 

sensitivity of detection of low abundant proteins and depth of coverage, which other mass 

spectrometry approaches address by two-dimensional fractionation (2D) to reduce sample 

complexity during data acquisition. In this study, we developed a 2D-DIA method intended for 

rapid- and deeper-proteome analysis compared to conventional 1D-DIA analysis. First, we 

characterized 96 individual fractions obtained from the protein standard, NCI-7, using a data-

dependent approach (DDA), identifying a total of 151,366 unique peptides from 11,273 protein 

groups. We observed that the majority of the proteins can be identified from just a few selected 

fractions. By performing an optimization analysis, we identified six fractions with high peptide 

number and uniqueness that can account for 80% of the proteins identified in the entire 

experiment. These selected fractions were combined into a single sample which was then 

subjected to DIA (referred to as 2D-DIA) quantitative analysis. Furthermore, improved DIA 

quantification was achieved using a hybrid spectral library, obtained by combining peptides 

identified from DDA data with peptides identified directly from the DIA runs with the help of 

DIA-Umpire. The optimized 2D-DIA method allowed for improved identification and 

quantification of low abundant proteins compared to conventional unfractionated DIA analysis 

(1D-DIA). We then applied the 2D-DIA method to profile the proteomes of two breast cancer 

patient-derived xenograft (PDX) models, quantifying 6,217 and 6,167 unique proteins in basal- 

and luminal-tumors, respectively. Overall, this study demonstrates the potential of high-throughput 

quantitative proteomics using a novel 2D-DIA method.

Graphical Abstract
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The ultimate goal of human proteomics research is to be able to analyze and understand all 

of the proteins expressed in certain cell or tissue type including post-translational 

modifications essential for cellular function for biological or pathological investigations.1,2 

Due to the high complexity of the human proteome, the development of sample processing 

methods, mass spectrometry technologies, and data analytics, in combination and 

independently, have been leveraged to identify and quantify almost all genes at the protein 

level.3−5 Liquid chromatography followed by tandem mass spectrometry (LC−MS/MS) 

using data-dependent acquisition (DDA) is the conventional approach used for proteomic 

analysis due to its simplicity and relative high-throughput. 6,7 Typically, DDA methods 

incorporate a MS1 scan for all peptide peaks to obtain precursor m/z information and then 

perform a fragmenting ion scan (MS2 scan) of selected peaks dependent on the MS1-scan 

data. Obtaining information on one peptide per MS/MS fragment scan has the advantage of 

obtaining a high-purity MS2 scan, but peptide features not selected for fragmentation are 

lost opportunities due to the limitation of instrument cycle time.8−10 This intrinsic feature of 

DDA limits its application for complex samples, such as mammalian tissues, due to reduced 

peak capacity on chromatography columns and rate-limiting cycle time of the mass 

spectrometer.11 To circumvent this drawback of DDA, recent studies have combined 

advanced mass spectrometry instrumentation and optimized MS scan parameters to increase 

protein identifications from single-shot sample analysis.12

Data independent acquisition (DIA) is one strategy to overcome the described limitations of 

DDA. In the DIA method, the MS2 scan is performed through a predefined MS1 m/z 
isolation window, fragmenting all precursor ions within the selected window range, 

repeating until MS2 spectra for all the MS1 windows are acquired.13,14 In addition, DIA has 

improved quantitative accuracy and reproducibility for protein quantification, using a similar 

principle of traditional selected reaction monitoring (SRM) methods, wherein transitions 

(MS2 peptide fragmentation spectra) of all peptides are recorded.15−18 Because of this 

inherent advantage, DIA has great potential for quantitative proteomic analysis.19,20

To reduce the peak complexity and increase sensitivity, additional dimensions of ion 

separation such as ion mobility have been developed to allow for the identification of more 

proteins in a single shot through additional ion separation.21−23 For example, high-field 

asymmetric waveform ion mobility spectrometer (FAIMS) coupled with Orbitrap mass 

spectrometer results in quantifying 7,818 of human proteins in 4 h.22 In addition, 

multidimensional fractionation strategies are widely used to achieve comprehensive 

proteomic analysis by decreasing the sample complexity and increasing the peak capacity of 

the LC separation. In particular, fractionation using basic reverse phase liquid 

chromatography (bRPLC) has shown remarkable potential as a prior process of onlineLC.
24,25 Optimized fractionation coupled with a LC−MS/MS workflow has allowed for the 

identification of 14,200 protein isoforms (from 12,200 protein coding-genes) and 584,000 

unique peptides in a single experiment.26 However, the described method requires extensive 

sample fractionation and instrument acquisition time, severely reducing sample throughput.

In this study, we describe a novel single-shot proteomic approach, integrating the positive 

characteristics of peptide fractionation (reducing sample complexity) and DIA (protein 

quantitation accuracy), which we refer to as single-shot 2DDIA. We demonstrated that our 
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2D-DIA approach provided reproducible, quantitative performance, as well as improved 

sensitivity for the detection of low abundance peptides/proteins compared to existing single-

shot DDA and DIA methods.

MATERIALS AND METHODS

Enzymatic Digestion and Basic-pH Reverse Phase Fractionation.

Four replicates of NCI-7 cells,27 which were developed as clinical proteomic reference 

material based on seven NCI-60 cell lines that expressed 92% of NCI-60 genome or 88% of 

human genome, and three replicates from each of the patient-derived xenograft (PDX) 

models (basal breast cancer and luminal breast cancer), were prepared and digested with 

trypsin (Pierce Trypsin Protease, MS grade) as described in a previous study.27,28 Briefly, 

equal amounts of proteins (0.3 mg) were dissolved in 8 M urea lysis buffer (8 M urea, 75 

mM NaCl, 50 mM Tris-HCl, pH 8.0), followed by reduction and alkylation with 5 mM 

dithiothreitol for 1 h at 37 °C and 10 mM iodoacetamide for 45 min in darkness. Samples 

were diluted to 2 M urea with 50 mM Tris, and trypsin was added at a ratio 1:50 = enzyme: 

protein. The mixture was incubated for 16 h at RT. Digested peptides were desalted using 

C18 cartridge (Waters, Sep-Pak Vac 1 cm3 100 mg) after acidifying to adjust to pH 2.0 and 

dried by Speed Vac. The peptide concentration was determined by nanodrop (Nanodrop lite, 

Thermo Scientific), and 200 μg of peptides were used for the DIA-MS analysis.

The 3% of peptides (6 ug) were saved as “unfractionated peptides”, and the remaining 97% 

(194 ug) of peptides were fractionated using bRPLC (1220 Infinity series, Agilent) with 

reverse phase column (Agilent Zorbax 300 Extend-C18; 4.6 × 250 mm) under mid-pH 

mobile phase (solvent A: 2% ACN in 5 mM ammonium formate, pH 8.0, B: 90% ACN in 5 

mM ammonium formate, pH 8.0). Peptide samples were loaded through a 1 mL sample loop 

to the column and separated using the following gradient: time (min)/B% ∼ 7/0 (isocratic), 

7−13/0−16 (linear), 13−73/16−40 (linear), 73−77/40−44 (linear), 77−82/44−60 (linear), and 

82−96/60 (isocratic) with a 1 mL/min flow rate. The fraction collector (Agilent, G1364C 

Analyt-FC) collected 96 fractions (A1 ∼ H12) from 1 to 97 min with a 1 min time slice, and 

then each fraction was dried and stored at −80 °C until MS analysis.

LC−MS/MS Setting up for DDA/DIA.

All DDA and DIA analyses were performed by Orbitrap Fusion Lumos Tribrid mass 

spectrometer with Thermo Scientific EASY-nLC 1200 system. Before injecting the samples, 

iRT peptides (Biognosys, Ki-3002) were added to each sample (1 μg) respectively and the 

mixed samples were separated on the analytical column (house-made column, 0.75 μm I.D. 

× 26.5 cm length packed with ReproSil-Pur 120 C18-AQ, 1.9 μm) using the following LC 

gradient [min/B%: 0−1 min/4% B (isocratic), 1−61 min/ 4−30% B (linear gradient), 61−65 

min/30−60% B (linear gradient), 65−66 min/60−90% B (linear), 66−70 min/90% B 

(isocratic), 70−71 min/90−50% B (linear), and 71−80/50% B (isocratic)]. The temperature 

of the column was maintained at 50 °C, and the flow rate was at 200 nL/min during the 

analysis. For DDA setting, the precursor ions were acquired with 120 K resolution at 200 m/

z for 350−1650 m/z range and the AGC value was set as 4E105. The top 20 highest intensity 

precursor ions were fragmented respectively by HCD using 34% normalized collision 
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energy (NCE), and fragment ions were acquired with 15K resolution with 5E104 of AGC 

value for 50 ms of injection time. For DIA setting, the DIA segments, MS1, and MS2 

resolutions were set as in the following Table S1. Isolated ions from the corresponding MS1 

window were fragmented by HCD with 34% NCE, and all of fragmented ions were acquired 

with 3E106 of the AGC value for 120 ms of maximum injection time.

Exploratory DDA Data Analysis.

The initial exploratory analysis of DDA data was performed as follows. The MS/MS spectra 

were searched with SEQUEST search engine of Proteome Discoverer software against the 

human protein sequence database (UniProt/SwissProt 2017–04 release) appended with the 

Biognosys iRT peptide sequences. The precursor and fragment mass tolerances were set to 

10 and 20 ppm, respectively. The oxidation of methionine and N-terminal protein acetylation 

were set as variable modifications, while carbamidomethylation of cysteine was set as fixed 

modification. Peptide to spectrum matches (PSMs) were processed using the Percolator and 

then filtered to 1% protein and PSM-level false discovery rate (FDR). The log2iBAQ protein 

intensity (an intensity-based measure of absolute protein abundance) was calculated based 

on the following equation: log2 (∑intensity/#theoretical peptides).29,30

Construction of Spectral Libraries Using LibMatic.

Spectral libraries were generated from DDA data and DIA data acquired in the current study 

using a LibMatic pipeline, which implements our previously outlined strategy for DIA 

quantification using combined (hybrid) DDA and DIA-derived libraries.31−33 First, all DDA 

(NCI7 cell line data) and DIA (NCI7 and PDX data) raw files were converted into the 

mzXML file format using msconvert.exe with centroid spectra option. The NCI7 DDA 

mzXML data were searched with three different database search algorithms (X! Tandem, 

MSGF+, and Comet)34−36 against a human protein sequence database (UniProt/SwissProt; 

downloaded 2018–03-22), appended with an equal number of decoy sequences as well as 

Biognosys iRT peptide sequences. Precursor tolerance was set to 10 ppm, and only tryptic 

peptides with up to two missed cleavages were allowed. The oxidation of methionine was set 

as a variable modification, while carbamidomethylation of cysteine was set as a fixed 

modification (note that X! Tandem, by default, considers several additional common 

modifications, including N-terminal protein acetylation). Database search results from each 

search engine were individually processed (via the Philosopher toolkit; https://github.com/

Nesvilab/philosopher) using PeptideProphet37 and then combined using iProphet,38 resulting 

in one iproph.pep.xml file for each DDA run.

Direct identification of peptides from the DIA data was performed with the help of DIA-

Umpire.32 The DIA-Umpire signal extraction (SE) module was used to process each DIA 

mzXML file to generate the so-called pseudo MS/MS spectra (assembled separately into 

three output files based on the quality of the corresponding precursor peptide signal in MS1 

data, Q1, Q2, and Q3). After conversion to the mzXML format, DIA pseudo-MS/MS spectra 

were searched using the MSFragger39 search engine against the same human sequence data 

set as for DDA data (NCI7 DIA data) or against a combined mouse plus human UniProt/

Swiss database (PDX DIA data). For each run, MSFragger search results from the three 
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input mzXML files (Q1, Q2, and Q3) were individually processed using PeptideProphet and 

then combined using iProphet into a single iproph.pep.xml file.

With the use of the DDA and DIA-derived peptide identification results described above, 

spectral libraries were generated for each of the three analyses described in the manuscript 

(Table S2): (1) NCI7 DDA (all 96 fractions) combined with NCI7 DIA; (2) NCI7 DDA (6 

fractions selected for 2D DIA analysis only) combined with NCI7 DIA; and (3) NCI7 DDA 

(6 fractions selected for 2D DIA analysis only) combined with PDX DIA. For each analysis, 

all iproph.pep.xml (both DDA and DIA) were processed together with ProteinProphet40 to 

perform joint protein inference, resulting in one combined.prot.xml file encompassing both 

DDA and DIA-identified peptides. All peptide identifications (DDA and DIA) were filtered 

using this combined protein inference file using Philosopher (filter command), generating a 

list of proteins filtered to 1% protein-level FDR. In addition, as part of that step, all peptides 

shared between multiple proteins were assigned as razor peptides to only one protein in the 

combined list which had the most peptide evidence overall (using “razor” option of the 

Philosopher filter command). Second, retention times of peptides identified in each DDA or 

DIA run were aligned, using nonlinear alignment, against one of the DIA run selected as a 

reference run (which showed the best average correlation coefficient against all other DIA 

runs in that experiment). The original retention times in the mzXML and iproph.pep.xml 

files were then replaced with the aligned retention times. Third, the aligned iprophet.pep.xml 

and mzXML files were used to build the spectral libraries, separately for DDA and DIA 

data, using a SpectraST and msproteomicstools toolbox (https://github.com/

msproteomicstools/msproteomicstools) essentially as previously described.31 In short, 

SpectraST41 was run to build the spectral library using MS/MS spectra identified with the 

PeptideProphet probability score passing the 1% peptide ion FDR level (the threshold 

reported by the Philosopher filter command). Retention times of the library peptides were 

rescaled to the iRT scale using the spectrast2spectrast_irt.py program. The consensus 

spectral library (.splib file) was converted into a transition list format using a 

spectrast2tsv.py command with the following options: −g −17.03, −18.01 −1250, 2000 −s 

b,y −x 1,2 −o 3 −n 6 −p 0.05 −d −e −k. The resulting DDA and DIA-derived libraries were 

converted to Spectronaut-compatible format and further processed to correct peptide to 

protein mappings to match those determined by the joint protein inference analysis 

described above (i.e., peptide−protein mappings reported in the Philosopher-generated 

reports). Finally, the DDA and DIA libraries were combined into a single library. In doing 

so, if a peptide ion was present in both the DDA and DIA library, the entry from the DIA 

library was selected for the combined spectral library. More information regarding the 

pipeline for building hybrid spectral libraries from DDA and DIA data (LibMatic pipeline), 

including associated scripts, can be found at https://github.com/Nesvilab/LibMatic.

Peptide Quantification Using Spectronaut.

The spectral libraries, built as described above for each analysis (Table S2), were loaded into 

Spectronaut (versions 12.4, Biognosys, Schlieren, Switzerland) and analyzed using default 

settings. In short, the MS1 and MS2 tolerance for extracted ion chromatography (XIC) were 

set as “dynamic”. The indexed retention time value of peptides were calculated by linear 

regression of empirical retention time of iRT peptides and XIC retention time window set as 
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“dynamic” with 1 correction factor. The decoy method was set as “mutated”, and 1% FDR 

was applied at the precursor and protein levels (Q value ≤ 0.01).42 After removing 

interfering signals, selected 3 peptide ions were used for protein quantification. The protein 

quantity was normalized based on local regression described by Callister et al.43 The protein 

inference was set as “from search engine”, i.e., based on the peptide-protein grouping as 

provided by the spectral library.

RESULTS AND DISCUSSION

Spectral Library Built Using 96 Fraction DDA.

Spectral libraries were used for DIA-based proteomes. Library building consists of DDA 

mass spectrometry analysis of either the same sample or similar sample composition. In 

addition, sample fractionation can reduce sample complexity by separating peptides based 

on their unique amino acid composition; however, this does not result in uniform distribution 

of peptides derived from individual proteins. To fully optimize our 2D-DIA approach, and 

identify a “hot zone” of peptide distribution for maximum protein identification, we 

performed extensive fractionation of a reference standard, NCI-7,27 followed by single-shot 

DDA analysis of the individual fractions.27 After identifying the respective fractions that 

would result in the highest number of identifications at the protein-level, select fractions 

were pooled and subjected to DIA analysis. The optimized 2D-DIA method was then 

utilized to investigate the proteome of two patient-derived breast cancer xenograft models. 

Our overall experimental approach is illustrated in Figure 1.

Comprehensive Proteome Profile Using bRPLC Fractions.

Using a modified basic reversed-phase liquid chromatography (bRPLC) separation protocol 

(Materials and Methods section), we fractionated the NCI-7 reference standard, obtaining 96 

individual samples that were subsequently analyzed via ESI-LC-MS/MS using a DDA 

approach. This method allowed us to identify a total of 151,366 of peptides from 11,273 of 

human proteins. Our search parameter required two peptides in order to identify a protein. 

Individual fractions corresponded to 1 min of the bRPLC gradient time. On the basis of our 

mass spectrometry results, most peptides eluted between 10 and 60 min (corresponding to 

fractions A10-E12) (Figure 2A). Due to uneven separation of peptides via fractionation, 

fewer peptides were identified in early fractions (A01−A09) and later fractions (F01−H12), 

respectively. We observed a high density of peptide identification in fractions B02 to C10, 

identifying 7,000 peptides from 3,000 proteins (Figure 2A). Since fractions were based on 

bRPLC gradient time and not peptide peak width, peptides and consequently proteins were 

identified across sequential fractions. The combination of peptide redundancy across 

fractions and limited number of peptides required for protein identification resulted in only a 

small number of fractions needed to obtain 80% of total numbers of peptides and proteins 

identified from all 96 fractions (Figure 2B,C). When selecting various subsets of fractions 

for the analysis, we observed that peptide uniqueness (defined here as the proportion of all 

peptides identified in that fraction that are fraction-specific) in each fraction was an 

important metric affecting the total number of proteins identified. Out of all 96 fractions, 27 

fractions were considered to have a high peptide uniqueness, resulting in 122,789 peptides 

identified (Figure 2B). At the protein level, the total number of proteins identified showed 
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rapid saturation after inclusion of just a few fractions with high peptide uniqueness (Figure 

2C). Although the identification of more unique peptides generally results in more protein 

identifications, an important caveat to consider is the number of unique peptide sequences 

contributed by each protein (with larger proteins contributing more unique peptides). 

Examining this relationship of unique peptide identification compared to unique protein 

identifications, we found that six fractions (B04 to B09) displayed the highest degree of 

peptide uniqueness, while the six best fractions for protein coverage were B05, B06, B09, 

B10, C4, and C10. We identified 8,730 proteins in these six fractions, representing ∼80% of 

the proteins identified from 96 fractions Also, due to redundancy of peptide identification 

across fractions, we found an inverse relationship of increasing analysis time (i.e., analyzing 

additional fractions) and the number of identified peptides and proteins (Figure S1).

Optimization of 2D-DIA Analysis Parameters.

In addition to determining which bRPLC fractions would be optimal for protein 

identification, we examined several DIA mass spectrometry data acquisition parameters for 

the optimal peptide identification and peptide/protein quantification, including MS2 

resolution and the m/z range for DIA windows. As shown in Table 1, additional metrics such 

as scan cycle times and the number of data points per peak were influenced by the selected 

MS2 parameters and impacted the total number of proteins identified. We optimized the data 

acquisition parameters, with 15K MS2 resolution and 24 DIA windows resulting in the 

highest number of proteins identified while providing a sufficient number of data points per 

peak for accurate quantification (>5 points, on average, per fragment peak). Furthermore, we 

were able to improve the number of detected and quantified peptides and proteins by using 

hybrid (i.e., combined DDA-based and direct DIA-based) spectral libraries derived using a 

LibMatic pipeline (see the Materials and Methods section) compared to using spectral 

libraries created using DDA data alone (Table S3).

We also hypothesized that by incorporating a second dimension (2D fractionation) in our 

DIA analysis, we could reduce sample complexity and increase the dynamic range of 

peptides detected, which could increase the number of identified peptides from low 

abundance proteins relative to conventional 1D (i.e., single-shot analysis of unfractionated 

samples) DIA strategies. We chose the six fractions (B04−B09) derived from NCI-7 with the 

highest degree of peptide uniqueness to maximize the protein coverage and pooled the 

peptides from those fractions. We evaluated the reproducibility of quantification by 

analyzing three replicates of pooled B04−B09 samples (obtained from three independent 

fractionation experiments). As a comparison, NCI-7 peptides were also analyzed with 1D-

DIA. In 1D-DIA analysis, the identified peptides had a median CV (across three replicates) 

of 6% for peptide quantification and 5% for protein quantification. In 2D-DIA analysis, a 

median CV of 11% and 10% were obtained for peptide and protein quantification, 

respectively (Figure 3A). Even though the 2D-DIA method had slightly higher median CVs 

than the 1D-DIA method for both peptide- and protein-level quantification, we observed that 

the 2D-DIA method significantly increased the number of quantified proteins compared to 

1D-DIA or 1D-DDA methods (Figure 3B). A total of 6,219 proteins were identified in 2D-

DIA, almost doubling the number of protein identifications compared to 1D-DDA (3,185) 

and providing a 35% increase comparing with the number of protein identifications from 
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1DDIA (4,586). Filtering for quantitative confidence (<20% CV), we still observed a higher 

number of proteins identified using our 2D-DIA method, identifying 4,540 with 2D-DIA 

compared to 3,733 using 1D-DIA. Although the median CV% of 2D-DIA was slightly 

higher than 1D-DIA, the number of reliably quantified proteins was higher in the 2D-DIA 

data sets due to the significant increase in the total number of identified and quantified 

proteins. Even when leveraging the fast scan speed of the state-of-the-art Orbitrap Fusion 

Lumos Tribrid mass spectrometer used in this work, the number of peptides quantified in 

1D-DDA was lower than that in both 1D-DIA and 2D-DIA methods, potentially due to the 

limited number of peptide features that can be detected and measured within one hour 

gradient time. At the peptide level, a total of 27,730 peptides was identified using 1D-DDA, 

compared to the 37,664 and 35,038 peptides identified using 1D-DIA and 2DDIA methods, 

respectively. Interestingly, we detected a higher number of peptides identified in our 1D-DIA 

data set relative to the 2D-DIA data set (Figure 3B). When we investigated the average 

number of peptides per protein, we found the 1D-DIA method had a higher peptide/protein 

ratio than the 2D-DIA (8.2 vs 5.6). Although the DIA method acquires all fragment ions in 

the selected m/z window, intensities of fragment ions are affected by individual peptide 

dynamics due to the limited ion counts in the c-trap and the complexity of fragment ions 

from several peptides. Thus, the peptide species derived from highly abundant proteins have 

an increased likelihood of detection relative to peptide species from low abundance proteins. 

As a result, 2D-DIA had less peptide coverage than 1D-DIA. However, the reduction in 

sample complexity due to fractionation enabled us to identify more low abundance proteins. 

Comparison of the two data sets showed that 2,118 proteins were identified only in 2D-DIA, 

while 485 proteins were identified in the 1D-DIA analysis only (Figure 3C). Using 

log2iBAQ intensities (see the Materials and Methods section) as measures of protein 

abundance, we observed a wider range of protein abundance in the 2D-DIA data set (22−35) 

relative to the 1D-DIA data set (26−35). Further investigation revealed that proteins uniquely 

identified using the 1D-DIA method displayed a log2iBAQ range of 25−34, which was 

similar to the range of commonly identified proteins between the two data sets. In contrast, 

proteins uniquely identified in the 2D-DIA data set had a lower log2iBAQ range (22−30), an 

exclusive feature to 2D-DIA relative to those identified in 1D-DIA or shared between the 

two data sets (Figure 3C).

Quantitative Proteome Analysis of Two Breast PDX Tumors through 2D-DIA.

The optimized 2D-DIA workflow was further applied to investigate the proteomes of two 

PDX tumors models, comprising of breast basal and luminal tumors (Figure S2).44 Three 

sample preparations were generated and analyzed using the 2D-DIA approach. Resulting 

2D-DIA data were searched using a combined spectral library that included the mouse 

proteome (released by Biognosys, 11,505 precursor entries) and human plus mouse 

proteome (NCI-7 DDA + PDX DIA library, 69,113 precursor entries, Table S2) from 

xenograft material containing both mouse and human proteins.28,45 From three replicate 

DIA runs, totally 6,217 and 6,167 proteins were identified from basal and luminal PDX 

models, respectively, including 4,419 and 4,408 proteins from the human proteome that did 

not share peptides with the mouse proteome. Note that due to the relatively small size of the 

mouse subset of the spectral library, the proteome coverage for mouse proteins was lower 

than expected. Using a specific spectral library for the PDX model should result in a higher 
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mouse proteome coverage. Applying a filter of CV < 20%, 5,016 (3,555 human proteins) 

and 5,114 (3,663 human proteins) from basal and luminal were quantified. To further 

evaluate the quantitative performance of the 2D-DIA method, we correlated reported protein 

abundances from replicate analyses of the same tumor sample, observing high correlation 

and reproducibility. Pearson correlation (r) among intratumor analyses was over 0.95, while 

intertumor protein abundance correlation was lower (r = 0.65) as expected (Figure S3A). 

The median CVs of the quantified proteins were 7.5% and 5.6% for basal and luminal 

tumors, respectively, with protein CVs lower than peptide CVs (Figure S3B). Hierarchical 

clustering clearly separated the two molecular subtypes of breast cancer (Figure 4C). Next, 

we explored the differential expression of proteins between the basal and luminal subtypes 

by filtering proteins based on 2-fold change and p-value < 0.001 (Figure 4B). In total, 477 

proteins were identified with increased levels in the basal subtype and 889 proteins with 

increased levels in the luminal subtype. Among them, several known triple-negative breast 

cancer markers, such as WDHD1, GSTP1 and SMARCA5, were identified with increased 

expression in the basal subtype.46,47 Similarly, several known markers of the luminal 

subtype, PARP1, FOXA1, GATA3, and SLC9A3R1 showed increased expression in the 

luminal samples (Figure 4C).48−50 Gene ontology analysis showed that overexpressed 

proteins in the basal subtype were significantly enriched (p-value <0.01) for biological 

processes including cell proliferation, cell division, G1/S transition of mitotic cell cycle, 

extracellular matrix organization, and cholesterol biosynthetic process, whereas down-

regulated proteins were enriched in oxidation reduction, fatty acid beta-oxidation, type I 

interferon signaling pathway, mitochondrial electron transport ubiquinol to cytochrome c, 

and tricarboxylic acid cycle (Figure 4D). The high proliferation and mitotic rates are known 

as a characteristic of the basal breast cancer subtype because of low expression of the RB1 
and CCND1 genes, as well as high expression of E2F3 and CCNE genes.51,52 Overall, our 

2D-DIA data recapitulated previous findings observed in triple negative breast cancer 

experiments, proving additional confirmation of the overall good quality of the quantitative 

data generated using our 2D-DIA method.

CONCLUSIONS

Recent improvements in the accuracy, sensitivity, and resolution of mass spectrometers have 

enabled high throughput, in-depth proteome characterization. However, spatial or temporal 

limits, such as loading capacity on columns or c-trap, and the instrument cycle time, make it 

difficult to identify low abundance proteins in highly complex biological/clinical samples. 

The conventional 1D-DIA method has been shown to overcome some of these constraints; 

however, many low abundance proteins remain unidentified in a typical analysis due to the 

high dynamic range of protein abundances in complex samples. In this study, we developed 

an improved 2D-DIA method by reducing the sample complexity of the entire proteome via 

sample fractionation. Characterization of the peptides derived from NCI-7 cell in each 

fraction from 2D fractionation showed that a combination of several fractions can achieve 

sufficient protein identification, and those fractions were evaluated with DIA. The optimized 

2D-DIA method demonstrated that analyzing a pool of just a few fractions from a complex 

sample could improve the number of protein identifications, as well as the ability to identify 

relatively low abundance proteins, as compared to conventional 1D-DIA analysis. In 
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addition, despite a slight decrease in the reproducibility due to variability of the 2D 

fractionation processes, it was still possible to achieve a median CV values of around 10%, 

demonstrating the potential of this method as a quantitative assay. Given the emergence of 

the field of personalized medicine, the demand for personalized proteomics in the clinical 

field is increasing. The maintenance of the instruments and the cost of the analysis per 

sample are a major hurdle for researchers who want to analyze hundreds of samples. Our 

results show that 2D-DIA allows identification of over 6,000 proteins within 1 h gradient 

time in cell lines and PDX samples. We expect that the 2D-DIA method will become a 

useful approach for quantitative proteomic analysis that is able to achieve excellent results 

while minimizing the overall time and costs of the analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall experimental design for single shot “2D-DIA”.

Cho et al. Page 14

Anal Chem. Author manuscript; available in PMC 2021 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Protein and peptide characterization of NCI-7 cell through 96 DDA runs. (A) The number of 

PSMs, peptides, and proteins in each fraction, respectively. The density bar (bottom of 

graph) indicates the peptide uniqueness (no. unique peptide/no. total peptides) of each 

fraction. (B) The number of peptides identified with an increasing number of fractions. (C) 

Same as (B), at the protein level.
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Figure 3. 
Comparison of 2D-DIA with 1D-DIA. (A) Coefficient variation (CV) was calculated from 3 

replicates at the peptide (line) and protein (dot) levels, respectively. Asterisk (*) indicates the 

median CV (%). (B) The number of peptides and protein identified in 1D-DDA, 1D-DIA, 

and 2D-DIA. Asterisk (**) indicates the average number of peptides per protein. (C) 

Distribution of intensity-based absolute abundances of proteins (iBAQ) identified using 1D-

DDA, 1D-DIA, and 2D-DIA methods.
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Figure 4. 
Quantitative proteomic analysis of PDX models (basal and luminal subtypes) using 2D-DIA. 

(A) The total number of identified protein groups that were human-only (green), from either 

human or mouse (yellow) or mouse-only (orange). The number of proteins with a 

quantification CV < 20% (dashed bars). (B) Volcano plot showing the Fold Change and the 

p-values (t test) between the basal and luminal subtypes. The known breast cancer markers 

were highlighted in red. (C) Hierarchical clustering analysis for protein expression between 

the basal and luminal subtypes. (D) Gene ontology analysis of up- and down-regulated 

proteins in the basal vs luminal subtype.
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Table 1.

Optimization of DIA Parameter According to MS2 Resolution and Number of DIA Window

index MS1 resolution MS2 resolution no. DIA window cycle time (sec) data points per peak no. protein ID

1 120 K 15 K 44 5 <3 4000

2 15 K 30 3.04 4 4342

3 15 K 24 2.25 6 4431

4 30 K 14 1.67 7 3800
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