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A cellular perspective of bias at G protein-coupled receptors
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Abstract

G protein-coupled receptors (GPCRs) modulate cell function over short- and

long-term timescales. GPCR signaling depends on biochemical parameters that

define the what, when, and where of receptor function: what proteins mediate

and regulate receptor signaling, where within the cell these interactions occur,

and how long these interactions persist. These parameters can vary signifi-

cantly depending on the activating ligand. Collectivity, differential agonist

activity at a GPCR is called bias or functional selectivity. Here we review

agonist bias at GPCRs with a focus on ligands that show dramatically different

cellular responses from their unbiased counterparts.
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1 | INTRODUCTION

G protein-coupled receptors (GPCRs) are a superfamily
of membrane-bound signaling proteins that upon activa-
tion change the cellular program. Agonist binding to a
GPCR activates signaling and regulatory molecules to
produce a stereotypical response.1,2 Many of these pro-
teins have been identified in the decades long work of
molecular pharmacology, including: heterotrimeric G
proteins, GPCR kinases (GRKs), β-arrestins, adenylyl
cyclases, ion channels, kinases, and trafficking proteins.
This abbreviated list only scratches the surface, and it is
clear that new proteins await discovery.3–6 In addition to
“what” proteins function with GPCRs, it is increasingly
clear that the cellular response to an agonist is shaped
by “where” and “when” protein interactions occur
(Figure 1).7–10 Yet, these biochemical parameters are not
inviolable. Structurally different agonists acting on the
same receptor can alter these parameters and, as a conse-
quence, change the downstream signaling and regulatory
processes of the cell.11,12 This phenomenon is called func-
tional selectivity or biased agonism. Agonists exist on a
continuum of bias and more strongly biased compounds
are being developed.13,14 Thus, it is important to deter-
mine the possible cellular responses to a biased agonist.

For cases of extreme bias, how different are the cellular
pathways of GPCR signaling and regulation?

2 | CLASSICAL PHARMACOLOGY
AND AN INTRODUCTION TO BIAS

2.1 | Full, partial, and biased agonism

An important step from the early concept of a “receptive
substance” to modern receptor theory was the recogni-
tion of partial agonism.15–17 The differing capability of
agonists to cause a response is called efficacy. Agonists
can be classified based on relative efficacy with a full ago-
nist causing a maximum response while a partial agonist,
despite saturating concentrations, only stimulating a sub-
maximal response. The above definition of efficacy is
monodynamic. The cellular response to GPCR activation,
however, is composed of the simultaneous, competitive,
and sequential action of different proteins. The biased
agonism hypothesis has two key tenets: (a) biased ago-
nists stabilize receptor conformations distinct from full
agonists and the result is differential coupling to receptor
interacting proteins; (b) the response to GPCR activation
arises from many cellular pathways and differential

Received: 27 February 2020 Revised: 10 April 2020 Accepted: 10 April 2020

DOI: 10.1002/pro.3872

Protein Science. 2020;29:1345–1354. wileyonlinelibrary.com/journal/pro © 2020 The Protein Society 1345

https://orcid.org/0000-0001-7881-7502
mailto:lobingib@ohsu.edu
http://wileyonlinelibrary.com/journal/pro


coupling to G proteins, GPCR kinases (GRKs), and
β-arrestins can preferentially activate one pathway over
another.12,18,19 Recent biophysical, structural, and cell
biological studies have provided important support to this
model.20–25 Thus, a G protein biased agonist will have
greater relative efficacy in activation of the hetero-
trimeric G protein and subsequent signaling cascades.26

In contrast, an arrestin biased agonist will have greater
relative efficacy for the GRK/β-arrestin pathway, which
includes: phosphorylation of the receptor by GRKs, for-
mation of a GPCR/β-arrestin complex, and β-arrestin
terminating G protein signaling, acting as an adaptor
for endocytosis, and scaffolding additional signaling
events.1,11,27

2.2 | Receptor reserve and system bias

Another important development in receptor theory was
the recognition that full agonists need not occupy all

receptors to drive a maximum response.15,16 These unoc-
cupied receptors are called spare receptors or receptor
reserve. Receptor reserve represents a technical challenge
when studying partial or biased agonists because of the
inherent amplification in GPCR signaling combined with
the fact that each tissue/cell type has a limited maximal
response. With a large receptor reserve, lower efficacy
agonists can appear as full agonists for G protein activ-
ity.28,29 However, not all GPCR pathways are signal
amplifying: binding of β-arrestin to the phosphorylated
receptor and subsequent endocytosis requires a one-to-
one interaction.27 Thus, receptor reserve can differ
between G protein and GRK/β-arrestin pathways and
care must be taken in investigation of bias.30 Receptor
reserve is not the only variable between cell types. System
bias describes the concept that the expression of any com-
ponent in the GPCR pathway can vary between tissues.19

Thus, an agonist/receptor pair can produce distinct activ-
ities in different cell types. In this review, we will note if
agonists are considered full, partial, or biased with the
recognition that these are system-dependent terms.

2.3 | Other forms of bias: Location bias
and kinetic bias

Biased agonists can change the duration and location of
receptor signaling by altering GPCR coupling to the G
protein or GRK/β-arrestin pathways. However, these
changes do not encapsulate the extent to which ligands
can bias the location and timing of GPCR activity. Two
recently described types of bias involve these where and
when variables: location bias and kinetic bias. Location
bias is a two part phenomenon: (a) GPCRs can activate
signaling events from intracellular compartments as well
as the plasma membrane; (b) certain ligands can prefer-
entially drive GPCR activity from intracellular compart-
ments or restrict activity to the plasma membrane and, as
consequence, change signaling.9,10 One type of intracellu-
lar signaling occurs at compartments such as the Golgi or
nucleus. GPCRs at these compartments are activated by
agonists which are actively transported into the cell or
are inherently capable of passive diffusion through the
cell membrane.31–34 A second type of intracellular signal-
ing occurs at endosomes following agonist-induced endo-
cytosis.9,10 Importantly, intracellular GPCR activation
can drive distinct signaling events compared to agonists
which restrict receptor activity to the cell surface.34–40

Kinetic bias (also called temporal bias or kinetic context)
highlights the interplay of ligand binding rates and the
duration of GPCR signaling and regulatory path-
ways.7,8,41 For example, when ligands with slow dissocia-
tion rates are examined for efficacy in transient signaling

FIGURE 1 Cellular dimensions of GPCR function. Different

ligands acting at the same receptor can alter the “what,” “where,”
and “when” parameters of GPCR function. Panel 1 shows an

extracellular agonist (orange) activating a GPCR (purple) and

subsequent coupling to intracellular proteins (red and blue). Panel

2 highlights intracellular locations including endosomes (magenta)

and Golgi (green) where GPCRs may function. Panel 3 provides a

hypothetical example comparing activity of two ligands (black and

red traces). Observed efficacy (y-axis) can be dependent on when

(x-axis) an assay is performed. Ligands which show agonist bias,

location bias, or kinetic bias can change these parameters

compared to their unbiased counterparts. Panel 2 was adapted from

Lobingier and von Zastrow 2019.10
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events, the degree and even the direction of bias can
change depending on when the assay takes place after
agonist stimulation. Examples include serotonin and
dopamine receptors while opioid receptors provide a
counterexample.42–44 Together, agonist bias, location
bias, and kinetic bias can all shape the cellular response
to GPCR activation.

3 | A “CELLULAR PERSPECTIVE”
OF GPCR SIGNALING:
PHOSPHOPROTEOMICS
AND TRANSCRIPTOMICS

3.1 | Phosphoproteomics

GPCR activation stimulates cellular kinases. Activity of
these kinases can be probed with phospho-specific anti-
bodies or genetically encoded reporters.45 What these
approaches miss is the breadth of cellular remodeling
evoked by GPCR activation. Phosphoproteomics is an
alternative approach to understand how GPCR activation
changes kinase and phosphatase activity in the cell. One
advantage to phosphoproteomics is that it can be used to
detect and identify thousands of phosphosites; thus,
examining GPCR activity from the “cellular perspec-
tive.” For example, GPCR activation is estimated to
change 1–10% of all phosphorylation sites in the
cell.46–49 As a comparison, an estimated 16–20% of pho-
sphosites can be regulated upon receptor tyrosine kinase
(RTK) stimulation.50,51

Before discussing examples in which biased agonists
change the targets of GPCR signaling when compared to
their unbiased counterparts, it is important to highlight
an example demonstrating that this is not always the
case. Tsvetanova et al. compared the cellular phospho-
proteome of HEK293 cells endogenously expressing
β2-adrenergic receptor (β2AR) when stimulated by the
full agonist isoproterenol compared to a partial agonist
with G protein bias, salmeterol.48,52,53 The authors found
that salmeterol induced changes in the same phosphory-
lation sites as isoproterenol and the only difference was
that the changes were smaller in magnitude with sal-
meterol.48 In contrast, a pair of highly complementary
studies examined the cellular phosphoproteome down-
stream of the angiotensin II type 1 receptor (AT1R) when
activated by the endogenous agonist angiotensin II
(AngII) or a biased agonist, SII (Sar1, Ile4, Ile8-angioten-
sin).46,47 AngII is a full agonist that activates Gαq and
GRK/β-arrestin pathways while SII is a partial agonist for
GRK/β-arrestin and shows minimal activation of
Gαq.54–57 Both studies employed HEK293 cells stably
overexpressing AT1R. Together, these papers

demonstrated that one-third of phosphosites responding
to AT1R activation were linked to GRK/β-arrestin activity
(observed with both SII and AngII), while two-thirds
were linked to Gαq (observed with only AngII).46,47 Thus,
the majority of the cellular phosphorylation sites
remodeled by AngII were untouched by SII-mediated
AT1R signaling. Additionally, the authors noted it was
unlikely that SII caused AT1R to gain to new signaling
targets.47

A more recent study examined how the cellular phos-
phoproteome was remodeled by activation of the
protease-activated receptor-1 (PAR1) with thrombin or
anticoagulant protease (APC).49 Thrombin cleavage of
PAR1 causes coupling to Gα12/13, Gαq, and β-arrestin
while APC causes PAR1 to couple to β-arrestin.58–61

Phosphoproteomic comparison of PAR1 signaling in
endothelial cell derived EA.hy926 cells revealed broadly
different targets of thrombin and APC-induced activity.49

Targets of thrombin activated PAR1 signaling were
enriched in proteins linked to endothelial barrier func-
tion and adherens junctions while APC-induced signal-
ing modulated phosphorylation of proteins linked to
gene transcription.49 Additionally, APC modulated a
much smaller number of phosphosites than the full ago-
nist thrombin.47,49 Thus, certain biased agonist/GPCR
pairs can greatly change the cellular phosphoproteome—
and consequently cellular function—compared to their
unbiased counterparts.

3.2 | Transcriptomics

GPCR signaling can alter gene transcription and cause
persistent changes to the proteome. Multiple methods,
including RT-qPCR and transcriptional reporters, allow
study of transcription factor activity or levels of specific
mRNAs. Yet analogous to what was discussed above,
these transcriptional assays cannot capture the breadth of
changes induced by GPCR activation. Microarrays and
RNAseq provide an alternative approach to more holisti-
cally capture how GPCR activation changes the cell. Such
approaches show that GPCR signaling can activate the
transcription of hundreds of genes.39,62–64 As a point of
comparison, activation of RTKs can induce changes to
the transcription of ~1,000 genes.65–67 Christensen et al.
compared how the full agonist AngII and the biased ago-
nist SII changed transcription downstream of AT1R.62

They observed that SII regulated only 12% of the 212 tran-
scripts that were regulated by AngII, and had no addi-
tional transcriptional targets. They also observed kinetic
bias: AngII-induced transcription returned to basal after
48 hr of stimulation while SII induced transcripts
remained upregulated at 48 hr.62 In an investigation of
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location bias, endogenous β2AR-induced transcription in
HEK293 cells was compared under normal conditions or
when signaling was restricted to the cell surface by inhi-
bition of endocytosis.39 Fifty-five genes were found to be
induced by activation of β2AR, and transcription of over
half of these targets was suppressed by inhibition of
endocytosis.39 In these two studies, agonist bias or loca-
tion bias caused a strong reduction in the number of tran-
scribed genes.

3.3 | Bias in GPCR signaling

As more holistic methods, transcriptomics and proteo-
mics provide a cellular perspective of agonist bias at
GPCRs. 39,47,49,62 These studies provide insight about
whether biased agonists cause GPCRs to gain new signal-
ing targets or simply change the number/magnitude of
full agonist targets. In several cases, biased agonists
strongly reduced the number of targets while in one case
bias caused GPCR signaling to target new pho-
sphosites.47–49,62 Why this occurs is not currently under-
stood and these phenomena deserves further study.
Together, these data raise the question: if the cellular
state induced by GPCR signaling can differ significantly
between full agonists and biased agonists, how then can
GPCR regulation be effected by bias?

4 | REGULATION OF GPCR
SIGNALING

4.1 | GPCR kinases: Partial agonism
and changes in GRK/GPCR pairing

Acute termination of GPCR signaling—called
desensitization—requires GRKs to phosphorylate the
agonist-activated receptor. Genetic or chemical inhibition
of GRK function, or mutation of GPCR Ser/Thr phosphor-
ylation sites, inhibits desensitization.68,69 Nonvisual GRKs
are grouped into two subfamilies by sequence homology:
GRK2/3 and GRK4/5/6.68 Two important questions
remain incompletely resolved: (a) why GRKs pair with
certain GPCRs; (b) what are the consequences of these
pairings? A critical difference between GRKs is the mecha-
nism by which they are recruited to activated GPCRs.
GRK2/3 proteins contain a pleckstrin homology
(PH) domain which directly binds free Gβ/Gγ while
GRK4/5/6 proteins lack this PH domain and are instead
membrane associated through palmitoylation or direct lipid
binding.27 Thus, a component of GRK2/3 recruitment

requires GPCR signaling to liberate free Gβ/Gγ.25 Addition-
ally, it has been shown that GRKs can phosphorylate non-
receptor proteins and the targets of this “extramural”
activity appear to be GRK-specific.68,70 Here we review stud-
ies in cultured cells showing how partial and biased ago-
nists can change the GPCR/GRK pairing.

Studies of agonist-driven phosphorylation of β2AR in
model human cells demonstrated that both GRK2 and
GRK6 are required to obtain full phosphorylation of
β2AR.71–73 RNAi-mediated knockdown of GRK6 reduced
agonist-driven phosphorylation of two sites in β2AR
(Ser355 and Ser356) while GRK2 knockdown reduced
phosphorylation on the other six (Thr360, Ser364, Ser396,
Ser401, Ser407, and Ser411).73 Intriguing, the ligand
carvedilol—an inverse agonist for the G protein pathway
and partial agonist for the GRK/β-arrestin pathway—was
shown to only stimulate phosphorylation of the
GRK6-sensitive sites, Ser355/Ser356.73,74 One possible con-
sequence of ligand-specific GPCR phosphorylation was
defined in the “bar-code” hypothesis: differential patterns
of GPCR phosphorylation cause distinct activities of
β-arrestin and/or preferential coupling to different signal-
ing pathways.73,75–78 Thus, in cultured cells, a full agonist
at β2AR can activate both GRK2 and GRK6 while car-
vedilol drives a partial version of the same response and
only activates GRK6.73

The mu opioid receptor (MOR) provides a contrasting
example of the cellular response to partial/biased
agonism. In cultured cell models, the full agonist
DAMGO was shown to cause GRK2/3-mediated phos-
phorylation of MOR phosphorylation sites: S356, T357,
T370, S375, T376, and T379.79–84 This result was com-
pared with the lower efficacy agonist morphine, which is
typically considered a partial agonist in vitro although
with systems-dependent efficacy.44,85–88 Morphine caused
phosphorylation of S375 in MOR, produced minimal
phosphorylation of T370, T376, and T379, and thus drove
5- to 15-fold-less multiphosphorylation of MOR.79–84

Unexpectedly, and in contrast to β2AR, morphine caused
a switch to GRK5 (part of the GRK4/5/6 subfamily) as the
kinase primarily required for phosphorylation of MOR in
cultured cells.80,82 Importantly, agonist-dependent and
GRK-specific phosphorylation of MOR is largely conserved
in animal models. GRK3 knockout mice, but not GRK5
knockout mice, showed reduction in MOR phosphoryla-
tion stimulated by higher efficacy agonists.80,89 In compari-
son, MOR phosphorylation driven by morphine was
reduced in both GRK5 and GRK3 knockout mice.80,89

These data suggest that the lower efficacy agonist mor-
phine can cause a fundamental re-wiring of GRK/GPCR
pairing compared to higher efficacy opioids.
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4.2 | Atypical regulation of opioid
receptors via PKC and JNK

The canonical mechanism for homologous desensitiza-
tion of GPCRs involves GRKs and β-arrestin. However,
not all agonists efficiently recruit these proteins. How do
GPCRs desensitize under these conditions? A series of
observations demonstrated that lower efficacy opioid
ligands can fundamentally re-write the mechanisms of
cellular desensitization and physiological tolerance.90

Here we refer to this process as atypical regulation to dif-
ferentiate it from canonical homologous regulation
involving GRK/β-arrestin.

In cultured cells, desensitization of MOR caused
by the full agonist DAMGO was sensitive to dominant
negative mutants of GRK2 but not PKC inhibitors.83,91

In contrast, MOR desensitization driven by the partial
agonist morphine was sensitive to PKC but not GRK
inhibition.83,91 These findings were extended to electro-
physiological recordings in the locus coeruleus (LC) from
acute brain slice.92,93 Cell-type differences play a role in
atypical desensitization of MOR: the PKC dependence of
morphine induced desensitization could be seen in naive
HEK293 or AtT20 cells while neurons assayed in brain
slice required co-activation of PKC or pretreatment of the
animal with morphine.83,91–96 Thus, morphine opens the
door to an atypical mode of GPCR regulation but cell-
type specific parameters determine if it occurs. One
model suggests that the mechanism of MOR desensitiza-
tion exist on a continuum informed by ligand efficacy and
shaped by cell-type specific parameters.90 In this model,
morphine and DAMGO occupy ends of the continuum,
and primarily use either PKC or GRK, while other opioids
may be able to use both mechanisms.90,92,97,98

In vitro studies have provided insight into how PKC
may be mediating atypical regulation. Efficient β-arrestin
binding to a GPCR is thought to require three or more
correctly spaced phosphorylations in the receptor.12 In
cultured cell models, PKC activity can drive phosphoryla-
tion of two residues in MOR, S363 and T370.81,99,100

Thus, it is possible that the desensitizing activity of PKC
may not occur exclusively at the receptor but at other
points in the pathway.90 In support of this model, a
mutant MOR lacking all phosphorylation sites in its
carboxy-terminal tail was shown to still be able to desen-
sitize in response to morphine.83 Additionally, it has been
demonstrated that Gαi is directly phosphorylated by PKC
downstream of morphine-activated MOR and this phos-
phorylation contributed to atypical regulation.101

Development of opioid tolerance in vivo can also
occur through opioid-specific mechanisms involving
canonical pathways (GRK) or atypical pathways (PKC or
JNK).102,103 Here we will discuss behavioral assays

comparing opioid analgesic activity when combined with
genetic or chemical inhibition of GRKs, PKC, or JNK.
Such experimental paradigms are powerful but have
potential caveats: (a) opioids have different pharmacoki-
netic/pharmacodynamic properties such that dosing can
vary significantly between compounds; (b) tissue-specific
expression of proteins in the opioid receptor pathway
means opioids can behave differently between physiologi-
cal assays; (c) kinases phosphorylate many proteins and
thus the kinase inhibitors will be pleiotropic in their
effects as well as having potential off-target activities.
With these caveats in mind, data from multiple groups
suggest the mechanisms for development of opioid toler-
ance differ between the lower efficacy agonist morphine
and higher efficacy opioids.

In a GRK3 KO mouse, tolerance to the high efficacy
agonist fentanyl but not the lower efficacy agonist mor-
phine was attenuated in the hot plate assay for analge-
sia.97,104 In a separate study, GRK/β-arrestin function
was disrupted by mutation of S375 in MOR.105 S375 is
the initiating site for MOR multiphosphorylation and
mutation of this site to alanine reduced overall MOR
phosphorylation, β-arrestin recruitment, and agonist-
dependent MOR endocytosis.79,82,84 In a S375A-MOR
knock-in mouse, development of tolerance to high effi-
cacy opioids was reduced while development of tolerance
to morphine was retained in the electrical tail root assay
for analgesia.105 In conjunction with these genetic stud-
ies, kinase inhibitors have provided insight into the
pathway(s) by which tolerance to morphine can develop
in the animal. Inhibitors to PKC were shown to inhibit
the development of tolerance to morphine in both the
tail-flick and hot plate assays for analgesia.98,106–108

Importantly, PKC inhibitors did not inhibit the develop-
ment of tolerance to the high efficacy agonist DAMGO in
assays for opioid-induced analgesia.98 In addition to PKC,
inhibition of JNK has been broadly reported to inhibit
the development of morphine tolerance but not affect tol-
erance to higher efficacy opioids.104,109,110 Consistent
with the model that JNK activity is involved in the devel-
opment of morphine tolerance, a JNK2 knockout mouse
was shown to have reduced tolerance to morphine in tail-
flick and hotplate assays of analgesia.104,111 However, it is
important to underscore pathway/tissue specific differ-
ences in opioid efficacy and mechanisms of desensitiza-
tion. For example, in opioid-induced respiratory
depression, PKC inhibitors—but not JNK inhibitors—
reduced the development of morphine tolerance.112

Together these in vitro data examining MOR desensitiza-
tion and in vivo data studying development of tolerance
suggest that the cell contains the ability to muster different
homeostatic responses to opioid receptor activation: a
“canonical” response utilizing GRK/β-arrestin and an
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“atypical” response which utilizes kinases such as PKC
or JNK.

Is atypical regulation a broader phenomenon observed
with other GPCRs? While not conclusively resolved, evi-
dence suggests that D2 dopamine receptor, CB1 cannabi-
noid receptor, and 7A serotonin receptor may undergo
analogous types of regulation.113–116 Another intriguing
example involves kappa opioid receptor (KOR). Nor-
binaltorphimine (nor-BNI) was originally identified as a
KOR antagonist.117 It was subsequently recognized that
nor-BNI, as well as the KOR antagonists JDTic and 50-
GNTI, had properties of biased agonists in that they
inhibited G protein signaling but activated JNK signaling
through KOR.118 Additionally, several atypical properties
were noted about these KOR ligands: (a) they evoked
long-lasting (~3 weeks) antagonism of the G protein path-
way in vivo without any sign of covalently modifying the
receptor; (b) inhibition of JNK blocked long-term inactiva-
tion of KOR; (c) inhibition of PKC blocked phosphoryla-
tion of JNK, implying that PKC was part of atypical
KOR regulation.104,115,118,119 A recent study identified an
increased association between KOR and Gαi after nor-BNI
treatment, and proposed a mechanism for nor-BNI medi-
ated inactivation of KOR proceeding through loss of G
protein palmitoylation via a JNK-mediated increase in
local reactive oxygen species production.115

5 | THE BOUNDARIES OF
LIGAND BIAS AT GPCRS

Much is still unknown about how agonist bias, location
bias, and kinetic bias shape GPCR activity. In this review,
we have highlighted examples in which biased agonists
can substantially change the targets of GPCR signaling or
the mechanisms by which GPCRs are regulated. While it
is clear that not all biased ligands evoke such distinct cel-
lular responses compared to their unbiased counterparts,
the examples reviewed here help to draw boundaries
around what is possible in a cellular response to GPCR
activation. It is noteworthy that many of the biased ago-
nists discussed in this review are, in fact, partial agonists
for the pathway(s) they activate. This raises the intriguing
question of how to disentangle partial agonism from dif-
ferential pathway efficacy (e.g., bias)? Toward that point,
a recent paper investigating bias at opioid receptors
developed an approach to minimize the effects of system
bias and receptor reserve and found that many opioids
previously described as biased agonists are in fact low
efficacy partial agonists without significant bias.88 In this
same paper, they show that many of these low efficacy
partial agonists have an improved therapeutic window
for analgesia compared to higher efficacy opioids.88 Thus,

further study of partial agonism and bias in all its forms
will be necessary to define the boundaries of what is pos-
sible and harness those understandings for improved
GPCR-targeting therapeutics.
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