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Abstract

To achieve accurate and fast deformable image registration (DIR) for pulmonary CT, we proposed 

a Multi-scale DIR framework with unsupervised Joint training of Convolutional Neural Network 

(MJ-CNN). MJ-CNN contains three models at multi-scale levels for a coarse-to-fine DIR to avoid 

being trapped in a local minimum. It is trained based on image similarity and deformation vector 

field (DVF) smoothness, requiring no supervision of ground-truth DVF. The three models are first 

trained sequentially and separately for their own registration tasks, and then are trained jointly for 

an end-to-end optimization under the multi-scale framework. In this study, MJ-CNN was trained 

using public SPARE 4D-CT data. The trained MJ-CNN was then evaluated on public DIR-LAB 

4D-CT dataset as well as clinical CT-to-CBCT and CBCT-to-CBCT registration. For 4D-CT inter-

phase registration, MJ-CNN achieved comparable accuracy to conventional iteration optimization-

based methods, and showed the smallest registration errors compared to recently published deep 

learning-based DIR methods, demonstrating the efficacy of the proposed multi-scale joint training 

scheme. Besides, MJ-CNN trained using one dataset (SPARE) could generalize to a different 

dataset (DIR-LAB) acquired by different scanners and imaging protocols. Furthermore, MJ-CNN 

trained on 4D-CTs also performed well on CT-to-CBCT and CBCT-to-CBCT registration without 

any re-training or fine-tuning, demonstrating MJ-CNN’s robustness against applications and 

imaging techniques. MJ-CNN took about 1.4 s for DVF estimation and required no manual-tuning 

of parameters during the evaluation. MJ-CNN is able to perform accurate DIR for pulmonary CT 

with nearly real-time speed, making it very applicable for clinical tasks.
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1. Introduction

Deformable image registration (DIR) plays an important role in medical image analysis, 

which aligns paired images by establishing accurate dense deformation vector field (DVF). 

Conventional DIR iteratively optimizes the transformation model parameters to minimize 

predefined dissimilarity metrics and to enforce the DVF smoothness, which is technically an 

optimization problem. The registration process usually requires intensive computing and 

intricate parameter-tuning for the testing cases, making it time-consuming and user-

dependent.

In recent years, deep learning-based methods have been introduced to address the limitations 

of conventional methods. Those methods can be divided into two categories: (1) integrated 

deep learning (Wu et al 2016, Yang et al 2017, Kearney et al 2018), and (2) end-to-end deep 

learning (Cao et al 2017, Eppenhof and Pluim 2017, Sokooti et al 2017, Shan et al 2017, 

Balakrishnan et al 2018, de Vos et al 2019, Eppenhof and Pluim 2018a).

For the first category, deep learning-based methods have been integrated into the 

conventional iterative optim ization-based DIR methods to improve their performance. Wu 

et al (2016) proposed a convolutional stacked autoencoder to learn the low-dimensional 

feature representation, which was integrated into the conventional registration methods to 

improve the DIR accuracy for brain magnetic resonance imaging (MRI). For the head and 

neck CBCT to CT registration, Kearney et al (2018) used a deep convolution inverse graphic 

networks to learn the feature representation and fed the features into the DIR framework. 

Yang et al (2017) introduced a fast DIR method based on an encoder-decoder model to 

predict the large deformation diffeomorphic metric mapping (LDDMM) momentum-

parameterization for brain MRI registration.

For the second category, deep learning-based methods have been developed to completely 

replace the conventional iterative optimization-based methods to achieve an accurate and 

fast DVF prediction. These methods can be classified into supervised learning and 

unsupervised learning.

The supervised learning-based methods train the models to minimize the difference between 

the predicted DVF and the ground truth DVF (Eppenhof and Pluim 2017, 2018b, Cao et al 
2017, Sokooti et al 2017). One challenge for supervised learning is that the ground truth 

DVF is hard to obtain for real patients. A typical solution is to train the model on synthetic 

deformations (Sokooti et al 2017, Eppenhof and Pluim 2018a). For example, a recent study 

reported by Eppenhof et al (Eppenhof and Pluim 2018b) introduced a three-dimensional 

(3D) U-Net to directly predict DVF from the input paired volumes, where the ground truth 

was the synthetic random transformations. Performance of such methods is highly 
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dependent on the accuracy of the ground truth DVF synthesized. In addition, it is 

challenging to generate realistic synthetic deformation for different anatomical sites.

Compared to the supervised learning-based methods, unsupervised learning-based methods 

do not need ground truth DVF during the training process. Instead, these methods train the 

models to minimize the dissimilarity between the deformed source image and the target 

image and to penalize the local spatial variations in the DVF domain. An unsupervised 

model for DIR consists of two parts: a convolutional neural network (CNN) for feature 

extraction and DVF estimation, and a spatial transformer layer for warping the source 

images to match the target images. Shan et al (2017) proposed an unsupervised end-to-end 

strategy for 2D CT/MRI registration by estimating dense DVF between paired images using 

CNN. However, deformations in medical images are usually not limited to 2D slices. To 

explore the 3D context, Balakrishnan et al (2018) introduced an unsupervised learning-based 

solution (VoxelMorph) for 3D MRI DIR, in which the CNN model was trained for the dense 

DVF estimation. Yet their network was designed on a single scale. To register large and 

complex deformations, the multi-scale scheme is generally needed to avoid being trapped in 

a local minimum. Recently, a deep learning image registration (DLIR) framework was 

proposed by de Vos et al (2019) for medical image registration using a multi-scale strategy. 

In their work, CNN models were trained for either affine image registration or DIR based on 

B-Spline. By stacking multiple models at multi-scale levels, a coarse-to-fine DIR was 

performed. The multi-scale framework used in the DLIR achieved fast and decent 

registration for various sites. However, as shown in their results of pulmonary 4D-CT 

registration, the DLIR method had large registration errors for cases with large 

deformations.

In this study, we proposed a Multi-scale DIR framework with unsupervised Joint training of 

CNN (MJ-CNN) for pulmonary DIR. In the proposed multi-scale framework, three CNN 

models are cascaded, and each works on its own scale level. Each CNN model registers the 

3D images by minimizing the dissimilarity between the warped source and the target data 

and enforcing DVF smoothness, which is technically unsupervised learning. The MJ-CNN 

network predicts an end-to-end free-form DVF, warping the source data to match the target. 

To initialize the MJ-CNN, we first trained the three models for their own DIR tasks, 

sequentially and separately. And then we trained them jointly to achieve an optimal end-to-

end registration performance.

To validate MJ-CNN’s robustness against the datasets acquired by various scanners and 

imaging protocols, the MJ-CNN was trained using a public 4D-CT dataset from the SPARE 

challenge, and then it was tested using the 4D-CT data from the public DIR-LAB dataset, 

which has landmarks identified on inspiratory and expiratory phases. The registration 

accuracy of the MJ-CNN was compared to the iterative optimization-based methods 

including Elastix (Staring et al 2010) and a commercial deformable multi-pass B-Spline 

algorithm provided in Velocity AI (version 3.2.1, Varian Medical Systems, Palo Alto, CA, 

hereafter referred to as the ‘Velocity’), as well as other recently published deep learning-

based methods for DIR (Eppenhof and Pluim 2018b, de Vos et al 2019). Furthermore, to 

further validate the generalization of the MJ-CNN across different tasks and imaging 

techniques, we evaluated the trained MJ-CNN on the clinical CT-to-CBCT and CBCT-to-
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CBCT registration, and compared it against the Velocity on the same testing data as a 

baseline comparison. Note that once the MJ-CNN was trained on the SPARE 4D-CTs, no re-

training or fine-tuning was performed for all the evaluations mentioned above.

2. Materials and methods

2.1. Problem formulation

The DIR problem can be described as finding a function f to estimate the DVF between the 

source image data S and the target image data T so that

argmin
f

D ϕ ⋅ S, T + * R ϕ (1)

where ϕ is the DVF between S and T, ϕ · S is the S deformed by ϕ, D is the dissimilarity 

between ϕ · s and T, R is a regularization item to penalize the local spatial variations in the 

ϕ. λ is the trade-off parameter for different tasks. And large λ encourages smooth DVFs.

Instead of a computationally-expensive optimization process for each test data, in this study, 

the function f is defined as a network of cascaded CNN models to estimate DVF at multi-

scale levels, and it is optimized during the training process.

2.2. Multi-scale DIR framework with unsupervised Joint training of CNN models (MJ-CNN)

2.2.1. The Multi-scale Framework of MJ-CNN—The multi-scale strategy has shown 

effectiveness in many previous studies for flow estimation (Caballero et al 2017, Sokooti et 
al 2017, de Vos et al 2019). In this study, multiple CNN models were chained and they took 

paired data of multiple resolutions as input to estimate DVF under a multi-scale framework, 

as shown in figure 1.

A coarse-to-fine multi-scale DIR is performed by the proposed MJ-CNN. (1) Scale 1: paired 

input data S and T are concatenated in the channel dimension and down-sampled by a factor 

of 4. And then they are fed into the first CNN model for initial DVF estimation. The output 

of the initial DVF estimation in scale 1 is up-sampled to the original dimension of the input 

data, and is used to deform the input source data to generate the initially warped source 

image (ϕ1 · S). (2) Scale 2: the CNN model in this scale focuses on registering the residual 

DVF between the warped source image from scale 1 registration and the target image. 

Specifically, the warped source image (ϕ1 · S) and the original target image (T) are 

concatenated and down-sampled by a factor of 2, and are then used as the input of the CNN 

model in scale 2. The residual DVF estimated by scale 2 model is up-sampled to the original 

input data dimension and is then added to the scale 1 DVF to yield the final scale 2 DVF (ϕ2 

= ϕ1 + Δϕ1 as shown in figure 1). The scale 2 DVF is used to deform the source image to 

generate the warped source image (ϕ2 · S). (3) Scale 3: the CNN model in this scale focuses 

on registering the residual DVF between the warped source image from scale 2 and the 

target image. Specifically, the warped source image (ϕ2 · S) and the original target image (T) 

are concatenated and fed into the CNN model in scale 3. The estimated residual DVF is 

added to the scale 2 DVF to yield the scale 3 DVF which is the final DVF output of the 

framework (ϕ3 = ϕ2 + Δϕ2 as shown in figure 1).
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2.2.2. Architecture of the CNN model for the DVF estimation—In this study, a 

CNN model consisting of convolution, up-sampling, and concatenation layers was proposed 

to estimate dense DVF between the input paired data. The architecture of the model is 

shown in figure 2. As indicated by figure 2(A), the model is trained in an unsupervised 

method, in which no supervised information such as ground truth DVF is required. The 

model takes 3D paired image data as input and extracts features to estimate the DVF 

between them. The DVF is then used to deform the source volume to match the target 

volume using a spatial transformer layer. Thus, the model can update its parameters based on 

the loss of the dissimilarity between the deformed source and target data under a DVF 

smoothness constraint.

The CNN model for DVF estimation consists of a contraction path, an expansion path, and 

the output, as shown in figure 2(B). The contraction path is composed of stacked fully-

connected convolution blocks. Convolution with stride 2 is used for the data down-sampling. 

There are two steps in the expansion path. The first step is a 4 × 4 × 4 up-sampling followed 

by concatenation with the correspondingly down-sampled features from the contraction 

path. The second step is a 2 × 2 × 2 up-sampling operation followed by a convolution block, 

a concatenation with features from the first convolution block in the contraction path, and 

another convolution block. In each convolution block, a convolutional layer is followed by a 

leaky rectified linear layer (LeakyRelu) with a leaky rate of 0.2. The output is a 

convolutional layer without any activation layers. It contains three channels with each 

representing a 3D vector field component.

Similar to the U-Net (Ronneberger et al 2015), a contraction path is used to extract features 

at multi-scale inception fields with the down-sampling, and in the expansion path, features 

are up-sampled with concatenating features from the corresponding contraction point to 

reserve the high-frequency information. However, instead of an expansion path symmetric to 

the contraction path as adopted in the U-Net, a simple two-step up-sampling path is used in 

the proposed model to collect features extracted at multi-scale levels from the contraction 

path, and one convolution is performed at the original resolution at last. And then two 

convolution operations follow to transform features from the image domain to the 

deformation vector domain to yield the final DVF.

The initial-DVF model in scale 1 and the residual-DVF model in scale 2 and 3 of the MJ-

CNN (as shown in figure 1) have the same architecture as presented in figure 2(B). However, 

compared to the initial-DVF estimation model, the residual-DVF model has more filters in 

each convolutional layer to deal with the more complicated residual deformation errors.

2.2.3. Joint Training in the MJ-CNN—An important feature of the proposed MJ-CNN 

is the joint training of the three CNN models at multi-scale levels. Instead of training each 

CNN model separately, the network trains all three CNN models jointly to minimize the 

composite loss at multi-scale levels to achieve an overall end-to-end optimal performance.

To initialize the MJ-CNN, models at multi-scale levels were trained, sequentially and 

separately, to minimize the loss of a weighted sum of a dissimilarity metric and a constraint 
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on DVF smoothness, as shown in equation (2). Variables in equation (2) were defined in 

equation (1) already.

Loss = D ϕ ⋅ S, T + * R ϕ . (2)

The scale 1 model was first trained for an initial DVF estimation to match large anatomies. 

The scale 2 model was then trained to correct residual deformation errors, while fixing the 

weights of the scale 1 model. The scale 3 model was trained at last to further fine-tune DVF 

with weights frozen for the scale 1 and 2 models.

After the initialization, all the weights in the MJ-CNN were set to open to update. And a 

joint training of the individual CNN models in the multi-scale framework was performed in 

an end-to-end way to synergistically minimize the composite loss at multi-scale levels which 

is defined as

Loss = μ1 * D ϕ1 ⋅ S, T + μ2 * D ϕ2 ⋅ S, T + μ3 * D ϕ3 ⋅ S, T + * R ϕ3 (3)

where S, T, D, R and λ have been defined in equation (1), and ϕ1, ϕ2 and ϕ3 indicate the 

DVF at scale 1, 2 and 3, respectively, as shown in figure 1, and μ1, μ2, μ3 are weighting 

factors of the dissimilarity metrics at multi-scale levels.

2.2.4. Configuration of the MJ-CNN—The network proposed in this study learns the 

deformation mapping between paired image data. During the training process, weights in the 

network are optimized by minimizing the loss function using Adam (Kingma and Ba 2015) 

with a learning rate of 10−4.

In equation (2) and (3), the dissimilarity metric D was set to the negative normalized cross 

correlation, and the DVF regularization item R was set to the l2-norm DVF gradients 

(Balakrishnan et al 2018). λ was empirically set to 3. For the joint training of the MJ-CNN, 

μ1, μ2 and μ3 in equation (3) were empirically set to 0.05, 0.05 and 0.9, respectively.

2.3. Experiment design

The proposed MJ-CNN was trained on the public SPARE 4D-CT data. During the sequential 

training process for initialization, epoch numbers for scale1, 2, and 3 were set to 100, 150, 

and 150, respectively. During the joint training of the multi-scale framework, 2 cases from 

the public DIR-LAB dataset were used as validation data to monitor the training process to 

avoid overfitting.

Performance of the trained MJ-CNN was evaluated both qualitatively and quantitatively on 

the inter-phase registration of the 4D-CT data from the public DIR-LAB dataset, and on the 

CT-to-CBCT and CBCT-to-CBCT registration using clinical breath-hold lung patient data. 

Note that once the MJ-CNN was trained on the SPARE 4D-CTs and validated on 2 DIR-

LAB cases, no re-training or validation was performed for the evaluations on various 

datasets and applications.
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2.3.1. Training dataset—In this study, training data included 4D-CT of 22 patients with 

lung cancers which were randomly chosen from the public AAPM SPARE Challenge 

dataset. Paired image data of the inspiratory and expiratory phases of the 4D-CT were used 

as the input. Lung regions were manually cropped for each 4D-CT and were resized to 

volumes of dimension 256 × 256 × 96. Data intensities were clamped to [−1000, −200] HU 

and scaled to [0, 0.2] to have the model focus on the pulmonary anatomy. By then, a training 

dataset containing 44 samples (two samples of inspiration-to-expiration and expiration-to-

inspiration for each patient) was constructed.

2.3.2. Evaluation on the DIR-LAB 4D-CT—The DIR-LAB dataset was used to 

evaluate the registration accuracy of the proposed MJ-CNN. It contains ten thoracic 4D-CT 

data, and each data has a coordinate list of 300 corresponding anatomical landmarks 

identified on the inspiratory and expiratory phases. Case 3 and case 8 were selected as the 

validation data, and the other 8 cases were used for evaluation.

The proposed network took paired data of 4D-CT inspiratory and expiratory phases as input, 

and predicted the DVF as output. Registration accuracy was evaluated by calculating the 

landmark registration errors. For quantitative evaluation, registration error (RE) is defined as 

the l2-norm of the difference between the deformed landmark and its corresponding 

reference landmark, as shown in equation (4).

RE l = lt + v − ls (4)

where ls and lt are the corresponding landmarks on the source and target phase, and ν is the 

predicted DVF at the position of the lt. Jacobian determinant for every point in the DVF was 

calculated to evaluate the image folding. A negative Jacobian determinant indicated the 

singularity where the image folding occurred.

To validate the effects of the number of scale levels as well as the base model in each scale, 

experiments were performed on various network framework settings. First, with 3 scale 

levels, base model was set to (1) the U-Net model proposed in VoxelMorph (Balakrishnan et 
al 2018) and (2) our proposed model mentioned in section 2.2.2 to evaluate how the base 

model influenced the network performance. And then, using the base model with superior 

performance, scale level number was set to 2, 3, and 4 to study the relationship between the 

scale levels and the network performance. Detailed configurations of the compared network 

frameworks can be found in Appendix A.

To validate the improvements made by the proposed network, results recently reported by 

two other deep learning methods including the DIR-3D-UNet (Eppenhof and Pluim 2018a) 

and the DLIR (de Vos et al 2019) were included. Registration errors of the conventional 

iterative optimization-based methods, including Elastix (Staring et al 2010) and Velocity, 

were used as the comparison baseline. Note that, to avoid bias in the comparison, we did not 

reproduce the results for the DIR-3D-UNet (Eppenhof and Pluim 2018a) and the DLIR (de 

Vos et al 2019), as they may not be consistent with the best results reported in the original 

papers due to the impact of various factors affecting the model performance. Instead, we 

cited the reported results of the comparing methods from their original papers for a direct 
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comparison. Registration results of the Elastix included in this study were reported in 

Eppenhof and Pluim (2018b), in which Elastix performed the registration using the 

parameters published by Staring et al (2010).

2.3.3. Evaluation on the Registration of CT-to-CBCT and CBCT-to-CBCT—To 

validate the generalization of the features extracted by MJ-CNN across various applications 

and imaging techniques, registrations between the clinical planning CT and on-board CBCT 

as well as between on-board CBCTs from different days were performed. In this study, we 

enrolled 6 lung cancer patients at our institution treated with breath-hold and scanned with 

3D planning CT and 3D CBCT. For each patient, data including a planning CT and two 

CBCTs from different days were collected under an IRB-approved protocol.

Rigid transformation was first performed between the planning CT and on-board CBCT as 

well as the CBCTs from different days. And then the source and target data were 

concatenated in the channel dimension and were fed into the proposed network for DVF 

estimation. Deformed source image data were directly output by the network, and the target 

image data were used as the ground truth for evaluation. Registration results were evaluated 

in both the DVF domain and the image domain. Qualitatively, structure alignment and image 

folding were inspected visually. Quantitatively, structure similarity (SSIM) (Jiang et al 
2019), peak signal-to-noise ratio (PSNR) (Jiang et al 2019) and normalized cross correlation 

(NCC) (Zhang et al 2015) were calculated within the pulmonary regions to evaluate the 

similarity between the deformed source and the target images, and Jacobian determinant of 

DVF was calculated to evaluate the degree of image folding.

For the image similarity evaluation, instead of calculating the metrics from the whole sparse 

lung regions, we extracted patches of dimension 17 × 17 × 3 centered at the feature points 

on the lung tissues. For each testing case, 1000 feature points were automatically extracted 

on the target images within the clinical lung contours using a corner feature extraction 

algorithm (Harris and Stephens 1988) provided by Matlab 2019a. Besides, metrics were 

calculated for the clinical PTV to evaluate the tumor region alignment.

As the comparison baseline, the Velocity, a commercial iterative optimization-based multi-

pass DIR algorithm, was performed on the same testing data.

3. Results

3.1. DIR-LAB landmark errors

3.1.1. Evaluations on network framework settings—Case 3 and case 8 in the DIR-

LAB dataset were used for validation, and landmark registration errors of the other eight 

testing cases were shown in table 1. Results in the base model section (column 3 and 4) 

showed that, as the base models of the 3-scale network, our proposed model demonstrated 

superior registration accuracy compared to the U-Net for all the testing cases. Thus, the base 

model of the MJ-CNN was set to the proposed model in this study. Results in the scale level 

section (column 5, 6 and 7) showed that registration accuracy improved with the scale level 

number increased, especially from 2-scale to 3-scale for the cases with large initial 

deformations over 10 mm. The 3-scale and 4-scale networks showed an overall comparable 
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registration accuracy. Yet the 4-scale network consumed much more computing resources 

than the 3-scale network. As a result, the MJ-CNN was set to 3 scale levels using the 

proposed model as the base model. Representative slices are shown in figures 3 and 4.

3.1.2. Comparison with other DIR methods—Landmark registration errors of the 

ten cases in the DIR-LAB dataset were shown in table 2. Results showed that landmark 

errors were considerably reduced after the DIR for all cases with all the methods listed in the 

results. Compared to the Elastix-using-mask which is an iterative DIR method aided by the 

lung mask, MJ-CNN achieved comparable registration accuracy while requiring no lung 

mask during the evaluation. And compared to the iterative DIR methods without using lung 

masks, including the Elastix-no-mask and the Velocity, MJ-CNN demonstrated smaller 

registration errors. Compared to the other two deep learning-based DIR networks of the 

DIR-3D-UNet and the DLIR, MJ-CNN showed superior DIR accuracy in the average 

landmark registration accuracy for all the ten cases, demonstrating the effectiveness of the 

proposed multi-scale framework with joint training.

For the DIR-3D-UNet, its results were not evaluated on the original data dimension, since 

the method required resizing the input data to dimensions of 128 × 128 × 128. Even though 

the study demonstrated that resizing the data had little effect on the registration accuracy on 

the Elastix (Staring et al 2010), no evaluation on the resizing effect for the DIR-3D-UNet 

was conducted. In contrast, our proposed MJ-CNN can take data of any dimensions as input, 

and the results in this study were evaluated on the original data resolution. What’s more, MJ-

CNN’s average registration errors of the Case 2, 4 and 9 were even smaller than the reported 

results of DIR-3D-UNet which was trained on the DIR-LAB dataset itself.

Compared to the DLIR method, the proposed MJ-CNN showed substantial improvements in 

the registration accuracy especially for the cases with large initial deformations over 10 mm. 

Note that the DLIR was trained and tested on the DIR-LAB dataset using the leave-one-out 

strategy, while the proposed MJ-CNN was trained on the SPARE dataset, validated on two 

cases and tested on the other eight cases of the DIR-LAB dataset. This demonstrated the 

superior generalization and robustness of the proposed MJ-CNN against scanners and 

imaging protocols.

3.2. Registration of CT-to-CBCT and CBCT-to-CBCT

Pairs of CT and CBCT as well as CBCTs from different days were pre-aligned using rigid 

registration and were then fed into the proposed network. Deformed source image data was 

directly output by the network and was compared to the target. Deformable registrations for 

the same input were also performed by Velocity using the deformable multi-pass B-Spline 

algorithm, serving as the comparison baseline.

Figure 5 showed the CT-to-CBCT and CBCT-to-CBCT registration results. Quantitatively, 

MJ-CNN showed superior performance to the Velocity in the feature point patch and the 

PTV analysis for both the CT-to-CBCT and the CBCT-to-CBCT registration.

Qualitatively, lung tissues were well matched for all the methods. Figure 6 showed a 

representative slice of the registration between the planning CT and the on-board CBCT. 
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Figure 7 showed a representative slice of the registration between the on-board CBCTs from 

different days. All the methods deformed the tumor to the correct position, yet MJ-CNN 

showed less error within the PTV as well as around the lung vessels.

In this evaluation, to focus on the registration within the pulmonary regions, the outside-lung 

regions were cropped using the clinical lung mask for quantitative analysis and visual 

inspection. Quantitative results showed that, compared to the Velocity, an overall 

improvement in the registration accuracy was made by the proposed MJ-CNN in both 

structure similarity and HU differences. Qualitative results indicated that, compared to the 

Velocity, MJ-CNN deformed source data showed less error around lung tissues, and MJ-

CNN demonstrated more accurate tumor alignment, which are supported by figure 5.

3.3. Image folding of the deformation

Image folding was detected when the Jacobian determinant of the DVF is negative. For all 

the testing cases in this study, the proposed MJ-CNN yielded less than 0.1% voxels that 

showed image folding. Most folding voxels showed up at the lung boundaries where sliding 

motion can occur. The results indicated the excellent anti-folding performance of the 

proposed multi-scale network.

3.4. Runtime

The network was implemented in Python (v3.5) with Keras (v2.2.4) framework using 

TensorFlow (v1.11.0) backend, and experiments were performed on a computer equipped 

with a GPU of NVIDIA Quadro P4000 and CPU of Intel Xeon with 64GB memory. The 

prediction including estimating DVF and deforming the source data took around 1.4 s on 

GPU for paired volumes of dimension 256 × 256 × 96, and the prediction time is linear to 

the size of the input data. The prediction is nearly real-time and requires no manual-tuning 

of parameters, making the proposed MJ-CNN very applicable for clinical tasks.

4. Discussion

Intra-patient pulmonary CT registration is an important clinical practice for effective 

diagnosis and treatment of the lung diseases, which aligns the lung and its internal 

structures. In this study, we presented a multi-scale DIR framework with unsupervised joint 

training of CNN for pulmonary CT registration, which extracts features from the input 

paired 3D data and directly learns the dense DVF between them in an end-to-end method.

The proposed network showed good accuracy for 4D-CT inter-phase, CT-to-CBCT and 

CBCT-to-CBCT deformable registration. Compared to the conventional iterative 

optimization-based methods, it has two major advantages. Firstly, it replaces the 

computationally-expensive and time-consuming optimizing process for the individual testing 

case with a network optimization over a dataset during the training process. Instead of 

iteratively searching for an optimal deformation pattern for each test data, the proposed 

method directly applies the learned pattern to predict the DVF for the test data with nearly 

real-time speed. Secondly, to achieve accurate DIR accuracy, manual-tuning of parameters is 

often required for individual testing case in some conventional iterative optimization-based 

methods (Avants et al 2009, Modat et al 2010), making the methods user dependent and 
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time-consuming. For the proposed MJ-CNN, the parameterization is optimized during the 

training process. And once the network is trained, no manual-tuning of parameters is 

required for each testing case, making the registration process fully automatic, user-

independent and fast.

The proposed MJ-CNN was tested using the public DIR-LAB dataset, and its registration 

accuracy was quantitively evaluated on the registration landmark errors (table 2). Compared 

to the conventional iterative optimization-based methods, the proposed MJ-CNN 

substantially reduced the registration time to a few seconds (section 3.4) with comparable or 

even superior DIR accuracy. Compared to the two recently published deep learning-based 

DIR methods of the DIR-3D-UNet (Eppenhof and Pluim 2018b) and DLIR (de Vos et al 
2019), the proposed MJ-CNN achieved the smallest registration errors. Such preferable 

performance of MJ-CNN may result from the following facts.

For comparison with the DIR-3D-UNet, the DIR-3D-UNet is a supervised learning-based 

method, and therefore its accuracy is affected by the accuracy of the ground truth DVF 

synthesized for training. And the model was trained to minimize the difference between the 

predicted DVF and the ground truth DVF without a regularization constraint. In comparison, 

the proposed MJ-CNN was directly optimized based on the endpoint of minimizing the 

dissimilarity between the warped source and the target images, based on unsupervised 

learning. And a regularization constraint on the DVF smoothness was used during the 

training process of the MJ-CNN, making the predicted DVF more realistic. Besides, the 

DIR-3D-UNet performed the DIR on a single scale, which is more prone to local minimums 

for the pulmonary regions with complicated and large deformations. Such problem can be 

alleviated by the multi-scale framework adopted by the MJ-CNN.

For comparison with the DLIR, although DLIR also adopted the multi-scale framework, its 

registration accuracy for the pulmonary cases with large deformations is limited, as shown in 

table 2. Potential reasons are in two aspects. (1). The DLIR method predicts the DVF at 

control points using a patch-based approach, where paired image patches are extracted from 

the source and target images and are used to estimate the control point deformation vectors 

located at the center of patches. In such patch-based methods, the patch size needs to be 

optimized based on the deformation magnitude. And the performance of the DIR models can 

be degraded when the patches are too small compared to the deformation magnitude, leading 

to insufficient context for the registration, or too large with much distant information, 

leading to an inaccurate representation of the local deformation at the center point 

(Eppenhof and Pluim 2018b). However, the deformation magnitude is unknown before the 

registration and varies within individual cases as well as over different cases. As a result, 

predefined patch sizes are often not optimal, leading to errors in the registration. Besides, the 

control points in the DLIR method are located uniformly throughout the images, which may 

not sample the DVF finely enough at regions with a high gradient of deformation, leading to 

errors in the dense DVF generation afterward. In contrast, the proposed MJCNN adopted 

CNN models for free-form dense DVF estimation based on the entire volumes. Image 

information available for estimating deformation vector at each voxel is no longer limited to 

a predefined patch range. As shown in table 2, MJ-CNN is robust in registering both small 

and large deformations. (2). In the training process of the DLIR, the CNN model at each 
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resolution level was trained sequentially and separately. Although each model may be 

trained to achieve the optimal performance at the corresponding resolution level, their 

overall performance when combined in the framework may not be optimized to achieve the 

accurate end-to-end registration results. In the proposed MJ-CNN, a joint training was 

performed to train the CNN models at multi-scale levels together to improve the end-to-end 

registration accuracy.

The generalization of the features extracted by the proposed MJ-CNN was evaluated on the 

registration between the planning CT and on-board CBCT as well as on-board CBCTs from 

different days. Note that, during this evaluation, no re-training or fine-tuning was conducted 

for the MJ-CNN which was trained on the 4D-CT. Since lung tissues are relatively sparse, 

the metrics calculated from the entire lung regions are not sensitive to the DIR errors. To 

address this, small patches centered at the lung tissue feature points were extracted for the 

evaluation. MJ-CNN trained on the 4D-CT dataset performed well on the registration 

between data scanned on different days using different imaging techniques with various 

resolutions and noise levels. Although only six patients with 12 image pairs were included in 

this study due to the limited clinical data access, the results preliminarily demonstrated the 

generalizing ability of the proposed MJ-CNN across various applications and imaging 

techniques, indicating that MJ-CNN was able to extract the underlying features for the 

deformation prediction.

The proposed MJ-CNN was optimized on a composite loss composed of similarity in the 

image domain as well as the smoothness in the DVF domain. However, sliding motion 

around the lung boundary yielded folding in the DVF, which competed against the DVF 

smoothness regularization term R in equations (2) and (3). In future studies, the sliding 

effect around the lung boundary can be specifically modeled to further improve the DIR 

performance. For example, adaptive weights of the DVF bending energy penalty around the 

lung boundaries can be incorporated in the loss function.

5. Conclusion

The proposed multi-scale DIR framework with unsupervised joint training of CNN is 

effective and efficient in 4D-CT, CT-to-CBCT and CBCT-to-CBCT deformable registration, 

and requires no manual-tuning of parameters during prediction. It can become a very 

valuable tool for various clinical tasks.
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Appendix

Figure 1 of the manuscript shows an overall framework of the proposed Multi-scale DIR 

framework with unsupervised Joint training of CNN models (MJ-CNN). All the compared 

networks were trained on the public SPARE dataset, validated on case 3 and case 8 of the 
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DIR-LAB dataset, and tested on the other 8 cases of the DIRLAB dataset. Detailed 

configurations are as follows.

A.1. Evaluation on the base model of the MJ-CNN

For the 3-scale MJ-CNN(U-Net), the base model for every single scale was set to the U-Net 

proposed in the VoxelMorph (Balakrishnan et al 2018). Other configurations were the same 

as mentioned in Section II.B of the manuscript. For the training, sequential training for 

initialization took 100, 150 and 150 epochs for scale 1, 2 and 3, respectively, and the joint 

training process took 150 epochs and was monitored by the validation data.

For the 3-scale MJ-CNN(proposed), the configurations were in the section 2.2 of the 

manuscript. For the training, sequential training for initialization took 100, 150 and 150 

epochs for scale 1, 2 and 3, respectively, and the joint training process took 150 epochs and 

was monitored by the validation data.

A.2. Evaluation on the scale level number of the MJ-CNN

For the 2-scale MJ-CNN, base model for scale 1 was set to the initial-DVF estimation 

model, and base model for scale 2 was set to the residual-DVF estimation model, shown in 

figure 2(B) of the manuscript. Down-sampling factors were set to 2 and 1 for scale 1 and 2, 

respectively. In the loss function, μ1 and μ2, the weighting factors of the dissimilarity metrics 

at multi-scale levels were set to 0.1 and 0.9, respectively. Other configurations were the 

same as mentioned in section 2.2 of the manuscript. For the training, sequential training for 

initialization took 100 and 150 epochs for scale 1 and 2, respectively, and the joint training 

process took 150 epochs and was monitored by the validation data.

Configurations of the 3-scale MJ-CNN can be found in the section 2.2 and 2.3 of the 

manuscript.

For the 4-scale MJ-CNN, base model for scale 1 was set to the initial-DVF estimation 

model, and base model for scale 2, 3 and 4 was set to the residual-DVF estimation model, 

shown in figure 2(B) of the manuscript. Down-sampling factors were set to 8, 4, 2 and 1 for 

scale 1, 2, 3 and 4, respectively. In the loss function, μ1, μ2, μ3 and μ4, the weighting factors 

of the dissimilarity metrics at multi-scale levels were set to 0.03, 0.03, 0.04 and 0.9, 

respectively. Other configurations were the same as mentioned in section 2.2 of the 

manuscript. For the training, sequential training for initialization took 100, 150, 150 and 150 

epochs for scale 1, 2, 3 and 4, respectively, and the joint training process took 150 epochs 

and was monitored by the validation data.
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Figure 1. 
Overall framework of the proposed Multi-scale DIR framework with unsupervised Joint 

training of CNN models (MJ-CNN), where T indicates the target image, S indicates the 

source image, ϕ indicates the DVF, ϕ · S indicates the S deformed by ϕ, and Δϕ indicates the 

residual DVF between ϕ·S and T.
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Figure 2. 
(A) Overall architecture of the proposed CNN model for DVF estimation. R is the 

regularization on the DVF, and D is the dissimilarity between paired volumes. Details of the 

DVF estimation model is shown in figure (B). (B) Layers in the proposed CNN model for 

DVF estimation. In the convolutional layer, filter number is expressed as initial-/residual-

DVF estimation model filters. Rectangles represent the output feature maps of the 

corresponding operations.
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Figure 3. 
Representative slice of the DIR-LAB Case 6 registration results of (a)–(c) before 

registration, and the 3-scale MJ-CNN with base model of (d)–(f) U-Net and (g)–(i) the 

proposed model, with the (deformed) source phase in pink and the target phase in green. 

Display range is set to [−1000, −200] HU to focus on the lung tissues.
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Figure 4. 
Representative slice of the DIR-LAB Case 6 registration results of (a)–(c) before 

registration, (d)–(f) 2-scale, (g)–(i) 3-scale and (j)–(l) 4-scale MJ-CNN, with the (deformed) 

source phase in pink and the target phase in green. Display range is set to [−1000, −200] HU 

to focus on the lung tissues.
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Figure 5. 
Results of CT-to-CBCT and CBCT-to-CBCT registration in error-bar expressing mean ± 

standard deviation. (A1) is the results of the CT-to-CBCT feature point patches analysis, 

(A2) is the results of CT-to-CBCT PTV analysis, (B1) is the results of the CBCT-to-CBCT 

feature point patches analysis, and (B2) is the results of the CBCT-to-CBCT PTV analysis.
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Figure 6. 
Representative slices of the registration between the planning CT and on-board CBCT. (a) is 

the planning CT, (b) is the CT deformed by Velocity, (c) is the CT deformed by the proposed 

network (MJ-CNN), (d) is the target CBCT, and (e)–(g) are the corresponding difference 

images between (a)–(c) and the target (d). Clinical PTV is highlighted in red solid lines for 

reference. Red arrows indicate image details for visual inspection. Display range of (a)–(e) 

is [−1000, 200] HU, and display range of (f)–(i) is [0, 300] HU.
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Figure 7. 
Representative slices of the registration between the on-board CBCT from different days. (a) 

is the source CBCT, (b) is the source deformed by velocity, (c) is the source deformed by the 

proposed network (MJ-CNN), (d) is the target CBCT, and (e)–(g) are the corresponding 

difference images between (a)–(c) and the target (d). Clinical PTV is highlighted in red solid 

lines for reference. Display range of (a)–(d) is [−1000, 200] HU, and display range of (e)-(g) 

is [0, 300] HU.
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Table 1.

Results of the evaluations on network framework settings using DIR-LAB dataset. Registration errors are 

expressed as average ± standard deviation in units of mm.

Base model
a

Scale levels
b

Case Before registration U-Net Proposed 2-scale 3-scale 4-scale

1 3.89 ± 2.78 1.53 ± 0.81 1.20 ± 0.63 1.19 ± 0.64 1.20 ± 0.63 1.15 ± 0.61

2 4.34 ± 3.90 1.42 ± 0.89 1.13 ± 0.56 1.17 ± 0.62 1.13 ± 0.56 1.12 ± 0.60

4 9.83 ± 4.85 2.56 ± 1.66 1.55 ± 0.96 1.63 ± 1.06 1.55 ± 0.96 1.59 ± 1.01

5 7.48 ± 5.50 2.61 ± 1.79 1.72 ± 1.28 1.84 ± 1.30 1.72 ± 1.28 1.71 ± 1.25

6 10.89 ± 6.96 3.79 ± 2.62 2.02 ± 1.70 2.58 ± 2.24 2.02 ± 1.70 1.92 ± 1.59

7 11.03 ± 7.42 3.41 ± 2.62 1.70 ± 1.03 1.92 ± 1.33 1.70 ± 1.03 1.71 ± 1.02

9 7.92 ± 3.97 3.89 ± 2.49 1.51 ± 0.94 1.52 ± 0.82 1.51 ± 0.94 1.53 ± 0.77

10 7.30 ± 6.34 2.54 ± 2.14 1.79 ± 1.61 1.89 ± 1.75 1.79 ± 1.61 1.72 ± 1.47

All 7.83 ± 6.00 2.72 ± 2.18 1.58 ± 1.19 1.72 ± 1.39 1.58 ± 1.19 1.56 ± 1.13

a
Results of the evaluations on the effects of base model with scale level number of 3.

b
Results of the evaluations on the effects of scale level numbers with base model of superior performance. In this study, the base model was set to 

our proposed model in section 2.2.2.
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Table 2.

Registration errors evaluated on the DIR-LAB dataset. More results from the published literatures are provided 

on the DIR-LAB official site (www.dir-lab.com/Results.html). Results are expressed as average ± standard 

deviation in units of mm.

Elastix DIR-3D-UNet

Case Before registration Using mask
a

No mask
b

Velocity
c

CREATIS
d

DIR-LAB
e

DLIR
f Proposed MJ-CNN

1 3.89 ± 2.78 0.99 ± 0.57 1.04 ± 0.51 1.53 ± 0.64 1.45 ± 1.06 — 1.27 ± 1.16 1.20 ± 0.63

2 4.34 ± 3.90 0.94 ± 0.53 1.20 ± 0.96 1.42 ± 1.13 1.46 ± 0.76 1.24 ± 0.61 1.20 ± 1.12 1.13 ± 0.56

3 6.94 ± 4.05 1.13 ± 0.64 1.76 ± 1.49 1.89 ± 1.23 1.57 ± 1.10 — 1.48 ± 1.26 1.30 ± 0.70
g

4 9.83 ± 4.85 1.49 ± 1.01 1.73 ± 1.57 2.33 ± 1.23 1.95 ± 1.32 1.70 ± 1.00 2.09 ± 1.93 1.55 ± 0.96

5 7.48 ± 5.50 1.77 ± 1.53 2.42 ± 2.74 2.26 ± 1.73 2.07 ± 1.59 — 1.95 ± 2.10 1.72 ± 1.28

6 10.89 ± 6.96 1.29 ± 0.85 1.98 ± 1.59 2.67 ± 2.20 3.04 ± 2.73 — 5.16 ± 7.09 2.02 ± 1.70

7 11.03 ± 7.42 1.26 ± 1.09 2.90 ± 3.68 3.78 ± 4.39 3.41 ± 2.75 — 3.05 ± 3.01 1.70 ± 1.03

8 14.99 ± 9.00 1.87 ± 2.57 5.10 ± 7.48 5.71 ± 6.12 2.80 ± 2.46 — 6.48 ± 5.37 2.64 ± 2.78
g

9 7.92 ± 3.97 1.33 ± 0.98 1.81 ± 1.51 2.94 ± 2.03 2.18 ± 1.24 1.61 ± 0.82 2.10 ± 1.66 1.51 ± 0.94

10 7.30 ± 6.34 1.14 ± 0.89 1.79 ± 1.95 2.72 ± 2.64 1.83 ± 1.36 — 2.09 ± 2.24 1.79 ± 1.61

All 8.46 ± 6.58 1.32 ± 1.24 2.17 ± 3.22 2.73 ± 3.07 2.17 ± 1.89 — 2.64 ± 4.32 1.66 ± 1.44

a
Results of the Elastix using lung mask.

b
Results of the Elastix without lung mask.

c
Results of the Velocity AI (version 3.2.1, Varian Medical Systems, Palo Alto, CA) using a deformable multi-pass B-Spline algorithm.

d
Results of the DIR-3D-UNet trained on the CREATIS dataset.

e
Results of the DIR-3D-UNet trained on the DIR-LAB dataset.

f
Results of the DLIR trained on the DIR-LAB dataset using leave-one-out scheme.

g
Results of the validating cases.

Phys Med Biol. Author manuscript; available in PMC 2021 January 13.

http://www.dir-lab.com/Results.html

	Abstract
	Introduction
	Materials and methods
	Problem formulation
	Multi-scale DIR framework with unsupervised Joint training of CNN models (MJ-CNN)
	The Multi-scale Framework of MJ-CNN
	Architecture of the CNN model for the DVF estimation
	Joint Training in the MJ-CNN
	Configuration of the MJ-CNN

	Experiment design
	Training dataset
	Evaluation on the DIR-LAB 4D-CT
	Evaluation on the Registration of CT-to-CBCT and CBCT-to-CBCT


	Results
	DIR-LAB landmark errors
	Evaluations on network framework settings
	Comparison with other DIR methods

	Registration of CT-to-CBCT and CBCT-to-CBCT
	Image folding of the deformation
	Runtime

	Discussion
	Conclusion
	Appendix
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.

