1	Molecular Detection of SARS-CoV-2 in Formalin Fixed Paraffin Embedded Specimens
2	Jun Liu ¹ , April M. Babka ¹ , Brian J. Kearney ¹ , Sheli R. Radoshitzky ¹ , Jens H. Kuhn ² , and
3	Xiankun Zeng ^{1,*}
4	¹ United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick,
5	Maryland 21702, USA; ² Integrated Research Facility at Fort Detrick, National Institute of
6	Allergy and Infectious Diseases, National, Institutes of Health, Fort Detrick, Frederick, MD
7	21702, USA
8	
9	*Correspondence: xiankun.zeng.ctr@mail.mil (X.Z.): United States Army Medical Research
10	Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD
11	21702, USA. Phone: +1-301-619-3401; Fax: +1-302-619-4627
12	

13 Conflict of interest statement: The authors have declared that no conflict of interest exists.

Liu et al.

14 Abstract

15 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of human coronavirus disease 2019 (COVID-19), emerged in Wuhan, China in December 2019. The virus 16 rapidly spread globally, resulting in a public-health crisis including more than one million cases 17 and tens of thousands of deaths. Here, we describe the identification and evaluation of 18 commercially available reagents and assays for the molecular detection of SARS-CoV-2 in 19 infected formalin fixed paraffin embedded (FFPE) cell pellets. We identified a suitable rabbit 20 polyclonal anti-SARS-CoV spike protein antibody and a mouse monoclonal anti-SARS-CoV 21 nucleocapsid protein (NP) antibody for cross detection of the respective SARS-CoV-2 proteins 22 23 by immunohistochemistry (IHC) and immunofluorescence assay (IFA). Next, we established 24 RNAscope *in situ* hybridization (ISH) to detect SARS-CoV-2 RNA. Furthermore, we established a multiplex fluorescence ISH (mFISH) to detect positive-sense SARS-CoV-2 RNA and negative-25 26 sense SARS-CoV-2 RNA (a replicative intermediate indicating viral replication). Finally, we developed a dual staining assay using IHC and ISH to detect SARS-CoV-2 antigen and RNA in 27 the same FFPE section. These reagents and assays will accelerate COVID-19 pathogenesis 28 29 studies in humans and in COVID-19 animal models.

Liu et al.

30 Introduction

31 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agents of human coronavirus disease 2019 (COVID-19), initially emerged in Wuhan, Hubei Province, China in 32 December 2019 (1-3). As of April 9, 2020, 1,436,198 cases of COVID-19, including 85,522 33 deaths have been reported worldwide (4). 34 SARS-CoV-2 has a nonsegmented, linear, positive-sense, multicistronic genome and produces 35 enveloped virions (5). The virus is classified as a betacoronavirus (*Nidovirales: Coronaviridae*) 36 together with the other two highly virulent human pathogens severe acute respiratory syndrome 37 coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) (6). 38 39 The SARS-CoV-2 genomes shares 79.6% and 50.0% nucleotide sequence identity with the genomes of SARS-CoV and MERS-CoV, respectively (5). Similar to SARS-CoV, SARS-CoV-2 40 41 virions use their spike (S) glycoproteins to engage host-cell angiotensin I-converting enzyme 2 (ACE2) to gain entry into host cells and host-cell transmembrane serine protease 2 (TMPRSS2) 42

43 for S priming (7).

Bats are speculated to be the natural reservoir of SARS-CoV-2 because numerous other

betacoronaviruses are of chiropteran origin (8, 9). However, although the COVID-19 pandemic

46 may have begun with a bat-to-human transmission event, it appears that close to all human

47 infections trace back to respiratory droplets produced by infected people and fomites (respiratory

48 droplet landing sites) (<u>10</u>, <u>11</u>). Human infections lead to various degrees of disease severity,

49 ranging from asymptomatic infection or mild symptoms to fatal pneumonia. Older patients or

50 patients with chronic medical conditions are more vulnerable to becoming critically ill with poor

51 prognosis (<u>12</u>). The most common symptoms and clinical signs of COVID-19 are fever, cough,

52	dyspnea, and myalgia with medium incubation period of 4 days (<u>13-15</u>). Ground-glass opacity is				
53	the most common radiologic finding on chest CT upon admission (<u>13-15</u>). Bilateral diffuse				
54	alveolar damage, alveolar hemorrhage and edema, interstitial fibrosis and inflammation, and type				
55	II pneumocyte hyperplasia are observed in post-mortem human lungs (<u>16-18</u>).				
50	At the time of writing, there are no animal models that trails minis the discose anostrong and				
56	At the time of writing, there are no animal models that truly mimic the disease spectrum and				
57	pathogenesis of COVID-19. However, small animals (e.g., human ACE2 transgenic laboratory				
58	mice $(\underline{19})$, cats $(\underline{20})$, domestic ferrets $(\underline{20}, \underline{21})$, golden hamsters $(\underline{22})$), and nonhuman primates				
59	(e.g., rhesus monkeys (23, 24), crab-eating macaques (25)), are used to study SARS-CoV-2				
60	infection as alveolar damage, interstitial inflammation, and viral shedding occur in these animal				
61	models to various degree. It is hoped that further development of these and other animal models				
62	will help overcome the current roadblock to evaluating the efficacy of candidate medical				
63	countermeasures (MCMs) against and the pathogenesis of COVID-19.				
63 64	countermeasures (MCMs) against and the pathogenesis of COVID-19. Detection of viral antigen using IHC or IFA techniques and detection of viral nucleic acids using				
64	Detection of viral antigen using IHC or IFA techniques and detection of viral nucleic acids using				
64 65	Detection of viral antigen using IHC or IFA techniques and detection of viral nucleic acids using ISH within infected, but inactivated, human or animal model tissues greatly facilitates detection				
64 65 66	Detection of viral antigen using IHC or IFA techniques and detection of viral nucleic acids using ISH within infected, but inactivated, human or animal model tissues greatly facilitates detection of viral infection and thereby pathogenesis and MCM efficacy studies. These techniques become				
64 65 66 67	Detection of viral antigen using IHC or IFA techniques and detection of viral nucleic acids using ISH within infected, but inactivated, human or animal model tissues greatly facilitates detection of viral infection and thereby pathogenesis and MCM efficacy studies. These techniques become paramount in particular for studies of a potential pathogen that does not cause overt, or causes				
64 65 66 67 68	Detection of viral antigen using IHC or IFA techniques and detection of viral nucleic acids using ISH within infected, but inactivated, human or animal model tissues greatly facilitates detection of viral infection and thereby pathogenesis and MCM efficacy studies. These techniques become paramount in particular for studies of a potential pathogen that does not cause overt, or causes only mild, disease, such as SARS-CoV-2 in the currently available animal models. Viral antigen-				
64 65 66 67 68 69	Detection of viral antigen using IHC or IFA techniques and detection of viral nucleic acids using ISH within infected, but inactivated, human or animal model tissues greatly facilitates detection of viral infection and thereby pathogenesis and MCM efficacy studies. These techniques become paramount in particular for studies of a potential pathogen that does not cause overt, or causes only mild, disease, such as SARS-CoV-2 in the currently available animal models. Viral antigenbased immunostaining has been used to detect SARS-CoV-2 antigen in both post-mortem human				
64 65 66 67 68 69 70	Detection of viral antigen using IHC or IFA techniques and detection of viral nucleic acids using ISH within infected, but inactivated, human or animal model tissues greatly facilitates detection of viral infection and thereby pathogenesis and MCM efficacy studies. These techniques become paramount in particular for studies of a potential pathogen that does not cause overt, or causes only mild, disease, such as SARS-CoV-2 in the currently available animal models. Viral antigenbased immunostaining has been used to detect SARS-CoV-2 antigen in both post-mortem human and animal tissues (1, 16, 22, 25). However, the antibodies used in these studies were produced				

- 74 Here, we describe the evaluation of a rabbit polyclonal anti-SARS-CoV S antibody and a mouse
- 75 monoclonal anti-SARS-CoV NP antibody that are commercially available and, in IHC and IFA,
- recognized respective SARS-CoV-2 proteins in FFPE specimens. We also identify two
- commercially available ISH assays that can be used to efficiently detect SARS-CoV-2 RNA in
- such specimens and develop a dual staining assay using IHC and ISH to detect SARS-CoV-2 S
- and RNA in the same FFPE section.

Liu et al.

80 **Results**

81	Identification of antibodies suitable for detection of SARS-CoV-2 by IHC and IFA in FFPE
82	specimens. To identify antibodies that can be used to detect SARS-CoV-2 in human and animal
83	tissues, we searched for commercially available SARS-CoV antibodies that recognize epitopes
84	that are likely conserved in SARS-CoV-2. We identified six antibodies, including three rabbit
85	polyclonal antibodies, against SARS-CoV S, one rabbit polyclonal antibody against SARS-CoV
86	nucleocapsid protein (NP), and one rabbit and one mouse monoclonal antibody against SARS-
87	CoV NP that may cross react with SARS-CoV-2 (Supplemental Table 1). Additionally, we also
88	identified a rabbit monoclonal antibody against SARS-CoV-2 S (Supplemental Table 1). To
89	evaluate whether these six antibodies can recognize SARS-CoV-2 in FFPE specimens, we
90	performed IHC on FFPE pellets of Vero 76 cells infected with SARS-CoV-2. We identified one
91	rabbit polyclonal antibody against SARS-CoV S (Sino Biological, Chesterbrook, PA, USA;
92	#40150-T62-COV2) and a mouse monoclonal antibody against SARS-CoV NP (Sino Biological,
93	40143-MM05) that did not stain uninfected, but stained SARS-CoV-2-infected FFPE cell pellets
94	(Figure 1A–D). Furthermore, we did IFA using these two antibodies. Interestingly, in
95	comparison to relatively concentrated detection of SARS-CoV-2 NP (red) in cytoplasmic
96	membrane, the SARS-CoV-2 S (green) is more confined in perinuclear inclusion bodies (Figure
97	1E).
98	Detection of SARS-CoV-2 RNA by ISH in FFPE tissues. We have previously reported the
99	development of RNAscope ISH assays to detect various high-consequence viruses including
100	Ebola virus (EBOV; Filoviridae: Ebolavirus), Marburg virus (MARV; Filoviridae:

101 Marburgvirus), Lassa virus (LASV; Arenaviridae: Mammarenavirus), and Nipah virus (NiV;

102 *Paramyxoviridae: Henipavirus*) in FFPE animal tissues (<u>26-29</u>). Here we report the successful

103	use of the RNAscope ISH assay to detect SARS-CoV-2 RNA in FFPE cell pellets using three
104	probes: two probes binding the SARS-CoV-2 positive-sense (genomic) RNA and one probe
105	binding the negative-sense (replicative intermediate) RNA (Figure 2A–F, Supplemental Table 2).
106	As expected, the forty ZZ positive-sense RNA probe 2 binding to SARS-CoV-2 positive-sense
107	RNA resulted in a stronger signal than the twenty ZZ positive-sense RNA probe 1 (Figure 2A-
108	D). Interestingly, in contrast to the wide cytoplasmic distribution of SARS-CoV-2 positive-sense
109	RNA (Figure 2B and D), SARS-CoV-2 negative-sense (replicative intermediate) RNA, detected
110	using negative-sense RNA probe 1 was more specifically localized in perinuclear inclusion
111	bodies (Figure 2F).
112	Detection of SARS-CoV-2 replication in FFPE specimens using mFISH. Single-stranded RNA
113	viruses, such as SARS-CoV-2, have to generate a replicative intermediate RNA as a template to
114	synthesize progeny genomic RNAs. We have previously reported the use of mFISH to detect
115	EBOV, MARV, and NiV replication in FFPE tissues (26, 28, 29). Here, we tested mFISH to
116	detect SARS-CoV-2 replication in FFPE specimens using positive-sense RNA probe 2 and
117	negative-sense RNA probe 2 (Supplemental Table 2). Consistent with the RNAscope ISH
118	results, positive-sense viral RNA was widely distributed in the cytoplasm, whereas negative-
119	sense RNA (replicative intermediate) was confined to perinuclear inclusion bodies (Figure 3A-
120	B).
121	Dual staining to detect SARS-CoV-2 antigen and RNA in the same FFPE section. To more

122 precisely detect SARS-CoV-2, we developed a dual staining assay to recognize both SARS-

- 123 CoV-2 antigen and RNA in the same FFPE section. IHC was performed using the identified
- rabbit polyclonal anti-SARS-CoV S antibody following ISH using positive-sense RNA probe 2.

- 125 Consistently, SARS-CoV-2 antigen was detected along with positive-sense RNA in the
- 126 cytoplasm of most of the infected, but not in uninfected, cells (Figure 4A–B).

Liu et al.

127 Discussion

128 As worldwide infectious disease researchers are racing to understand the pathogenesis of and to develop and evaluate MCMs against COVID-19 to contain the ongoing pandemic, assays that 129 determine SARS-CoV-2 distribution in tissues and specific cellular targets of infection are 130 urgently needed. Here we evaluated commercial reagents and assays to detect SARS-CoV-2 131 antigens or RNA in FFPE specimens. We identified one rabbit polyclonal antibody and one 132 mouse monoclonal antibody that reacts with SARS-CoV-2 S and N, respectively, and 133 134 demonstrated that these two antibodies can be used to detect SARS-CoV-2 by IHC and IFA in FFPE specimens. Additionally, we characterized two RNAscope ISH assays that can be used to 135 136 detect SARS-CoV-2 positive- and negative-sense RNAs in FFPE specimens. Furthermore, we developed a dual staining assay using IHC and ISH to detect SARS-CoV-2 S and RNA in the 137 same FFPE section. These reagents and assays are all commercially available and therefore can 138 139 be applied readily to detect SARS-CoV-2 in both human and animal FFPE tissues. 140 Detection of viral antigen by IHC and IFA has been widely used to detect infection of 141 high-consequence viruses, including SARS-CoV, EBOV, MARV, LASV, and NiV in human and animal FFPE tissues (26, 28-32). Although various antigen retrieval methods can help to restore 142 143 the immunoreactivity of epitopes in FFPE tissues, in our experience it remains more challenging to identify antibodies that binds their targets in FFPE tissues compared to frozen section tissues. 144 145 The FFPE specimen-compatible rabbit and mouse anti-SARS-CoV-2 antibodies we characterized here can be used to map the cellular targets of SARS-CoV-2 in various organs 146 using multiplex IFA in addition to detecting viral infection. RNAscope ISH is a relatively novel 147 148 ISH platform with high-sensitivity and low-background due to its unique "ZZ" probe design (33). This platform has been widely used to detect viruses both in human and animal tissues (27, 149

150	<u>34-36</u>). Single-stranded RNA viruses have to produce a replicative intermediate, antigenomic
151	RNA, as a template to synthesize new genomic RNAs. Presence of such replicative intermediate
152	RNA in tissues indicates ongoing viral replication (26, 28, 29). The commercially available
153	RNAscope ISH assays, including chromogenic and fluorescent assays, we characterized here,
154	can be applied to detect viral RNA in both human and animal tissue samples. The dual staining
155	we developed to detect SARS-CoV-2 viral antigen and RNA in the same FFPE section can more
156	precisely detect SARS-CoV-2 because a positive IHC or ISH signal alone may originate from
157	remaining free viral antigen or degenerating RNA fragments rather than from viral particles.
158	Because SARS-CoV-2-infected animal tissues were not available at the time of this study, we
159	were restricted to evaluate FFPE pellets of Vero 76 cells as a surrogate. However, we prepared
160	FFPE cell pellets using the same process used for FFPE tissues preparation. Additionally, FFPE
161	cell pellets have been widely used to evaluate antibodies and ISH assays and other reagents for
162	FFPE tissue analysis and have been largely predictive of reactivity with genuine tissues (33, 37,
163	38). We are therefore confident that the SARS-CoV-2 IHC, ISH, mFISH, and dual staining
164	assays we developed and characterized will be highly useful to study pathogenesis of SARS-
165	CoV-2 infection in both human and animal models.

Liu et al.

166 Methods

167	Cells and virus. Grivet (Chlorocebus aethiops) Vero 76 kidney epithelial cells (American Type
168	Culture Collection [ATCC], Manassas, VA; #CRL-1587) were maintained in Eagle's minimum
169	essential media (EMEM; Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
170	10% heat-inactivated FBS (Hyclone, Logan, UT, USA), 1% GlutaMax (Thermo Fisher
171	Scientific) and1% non-essential amino acid solution (MilliporeSigma, Temecula, CA, USA), at
172	37°C in a 5% CO ₂ atmosphere. The SARS-CoV-2 USA-WA1/2020 strain (GenBank
173	#MN985325.1) was obtained from the US Centers for Disease Control and Prevention (CDC,
174	Atlanta, GA, USA). Virus was added to Vero 76 cell cultures in T-75 flasks in biosafety level 3
175	(BSL-3) containment at a multiplicity of infection (MOI) of 0.01. Cells were then incubated for 1
176	h for virus adsorption, washed with EMEM, and maintained in EMEM with 10% FBS. Cells
177	were fixed at 24 h post-inoculation in 10% neutral buffered formalin for 24 h and then moved
178	from the BSL-3 to a BSL-2 suite. Uninfected Vero 76 were processed as a control.
179	<i>Cell pellet embedding</i> . Fixed cells were scraped off flasks after being rinsed twice in PBS
180	(Thermo Fisher Scientific). Scraped cells were spun down at 2,500 rpm and the pellets were
181	mixed with liquefied Histogel (Thermo Fisher Scientific). Pellets were solidified at 4°C and
182	further processed for paraffin embedding using an automated Tissue Tek VIP processor (Sakura
183	Finetek, Torrance, CA, USA).
184	IHC. IHC was performed using the Envision system (Dako Agilent Pathology Solutions,
185	Carpinteria, CA, USA). Briefly, after deparaffinization, peroxidase blocking, and antigen
186	retrieval, sections were covered with a primary antibody at a 1;1000, 1:2000, or 1:4000 dilution
187	(Supplemental Table 1) and incubated at room temperature for 45 min. Subsequently, sections

188	were rinsed, and the peroxidase-labeled polymer (secondary antibody) was applied for 30 min.
189	Slides were rinsed and a brown chromogenic substrate DAB solution (Dako Agilent Pathology
190	Solutions) was applied for 8 min. The substrate-chromogen solution was rinsed off the slides,
191	and slides were counterstained with hematoxylin and rinsed. The sections were dehydrated,
192	cleared with Xyless II (Valtech, Brackenridge, PA, USA), and then coverslipped.
193	IFA. After deparaffinization and reduction of autofluorescence, tissues were heated in citrate
194	buffer, pH 6.0 (MilliporeSigma), for 15 min to reverse formaldehyde cross-links. After rinsing
195	with PBS, pH 7.4 (Thermo Fisher Scientific), sections were blocked overnight with CAS-Block
196	(Thermo Fisher Scientific) containing 5% normal goat serum (MilliporeSigma) at 4°C. Sections
197	were then incubated with rabbit polyclonal antibody against SARS-CoV S (Sino Biological,
198	#40150-T62-COV2) at dilution 1:500 and mouse monoclonal antibody against SARS-CoV NP
199	(Sino Biological, 40143-MM05) at a dilution 1:500 for 2 h at room temperature. After rinsing in
200	PBST (PBS + 0.1% Tween-20, MilliporeSigma), sections were incubated with secondary goat
201	IgG Alexa Fluor 488-conjugated anti-rabbit antibody and with goat IgG Alexa Fluor 561-
202	conjugated anti-mouse antibody (Thermo Fisher Scientific) for 1 h at room temperature. Sections
203	were cover-slipped using VECTASHIELD antifade mounting medium with DAPI (Vector
204	Laboratories, Burlingame, CA, USA). Images were captured on an LSM 880 Confocal
205	Microscope (Zeiss, Oberkochen, Germany) and processed using open-source ImageJ software
206	(National Institutes of Health, Bethesda, MD, USA).
207	ISH. To detect SARS-CoV-2 genomic RNA in FFPE tissues, ISH was performed using the
208	RNAscope 2.5 HD RED kit (Advanced Cell Diagnostics, Newark, CA, USA) according to the
209	manufacturer's instructions. Briefly, forty ZZ ISH probes (#854841, positive-sense RNA probe

1) with C1 channel and twenty ZZ ISH probes (#848561, positive-sense RNA probe 2) with C1

Liu et al.

211	channel targeting SARS-CoV-2 positive-sense (genomic) RNA and twenty ZZ ISH probes
212	(#845701, negative-sense RNA probe 1) with C1 channel targeting SARS-CoV-2 negative-sense
213	(replicative intermediate) RNA were designed and synthesized by Advanced Cell Diagnostics
214	(Supplemental Table 2). Tissue sections were deparaffinized with xylene, underwent a series of
215	ethanol washes and peroxidase blocking, and were then heated in kit-provided antigen retrieval
216	buffer and digested by kit-provided proteinase. Sections were exposed to ISH target probe pairs
217	and incubated at 40°C in a hybridization oven for 2 h. After rinsing, ISH signal was amplified
218	using kit-provided Pre-amplifier and Amplifier conjugated to alkaline phosphatase and incubated
219	with a Fast Red substrate solution for 10 min at room temperature. Sections were then stained
220	with hematoxylin, air-dried, mounted, and stored at 4°C until image analysis.
221	Multiplex fluorescence ISH. Multiplex fluorescence ISH (mFISH) was performed using the
222	RNAscope Fluorescent Multiplex Kit (Advanced Cell Diagnostics) according to the
223	manufacturer's instructions with minor modifications. In addition to positive-sense RNA probe 1
224	(red), another forty ZZ probes with C3 Channel (green, #854851-C3, negative-sense RNA probe
225	2) targeting negative-sense (replicative intermediate) SARS-CoV-2 RNA was designed and
226	synthesized by Advanced Cell Diagnostics (Supplemental Table 2). FFPE-tissues sections
227	underwent deparaffinization with xylene and a series of ethanol washes and treatment with 0.1%
228	Sudan Black B (Sigma-Aldrich, St. Louis, MO, USA) to reduce autofluorescence. Tissues were
229	heated in kit-provided antigen retrieval buffer and digested by kit-provided proteinase. Sections
230	were exposed to mFISH target probes and incubated at 40°C in a hybridization oven for 2 h.
231	After rinsing, mFISH signal was amplified using company-provided Pre-amplifier and Amplifier
232	conjugated to fluorescent dye. Sections were counterstained with DAPI (Thermo Fisher
233	Scientific), mounted, and stored at 4°C until image analysis. mFISH images were captured on an

- LSM 880 Confocal Microscope (Zeiss, Oberkochen, Germany) and processed using open-source
- 235 ImageJ software (National Institutes of Health, Bethesda, MD, USA).
- 236 *Dual staining*. Sections were covered with rabbit polyclonal anti-SARS-CoV S antibody diluted
- at 1:250 (Sino Biologicals, #40150-T62-COV2, Supplemental Table 1) overnight at 4°C,
- following the Fast Red substrate ISH procedure described above using positive-sense RNA probe
- 239 2 (Supplemental Table 2). One day later, sections were rinsed, and the peroxidase-labeled
- 240 polymer (secondary antibody) was applied for 45 min. Slides were rinsed and a brown
- 241 chromogenic substrate, 3,3'-iaminobenzidine (DAB) solution (Dako Agilent Pathology
- 242 Solutions), was applied for 8 min. Sections were then stained with hematoxylin, air-dried, and
- 243 mounted, and stored at 4°C until image analysis.

- Author contributions: X.Z. conceived and designed the experiments. J. L., A.M.B., B.J.K.,
- S.R.R., and X.Z. performed experiments. S.R.R., J. H.K., and X.Z. interpreted the data and wrote
- the manuscript with input from all authors.

Liu et al.

247 Acknowledgments

We thank Lynda Miller and Neil Davis (USAMRIID, Frederick, MD, USA) for histology
assistance and Paul Facemire and Kathleen Gibson at USAMRIID for coordinating the cell
infection study.

251 This work was funded by Defense Health Program (DHP). JHK's participation was funded, in 252 part, through Laulima Government Solutions, LLC prime contract with the US National Institute 253 of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of 254 Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. The views and 255 conclusions contained in this document are those of the authors and should not be interpreted as 256 257 necessarily representing the official policies, either expressed or implied, of the US Department 258 of the Army, the US Department of Defense, the US Department of Health and Human Services, or of the institutions and companies affiliated with the authors. In no event shall any of these 259 260 entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The US departments do not endorse any products or 261 262 commercial services mentioned in this publication..

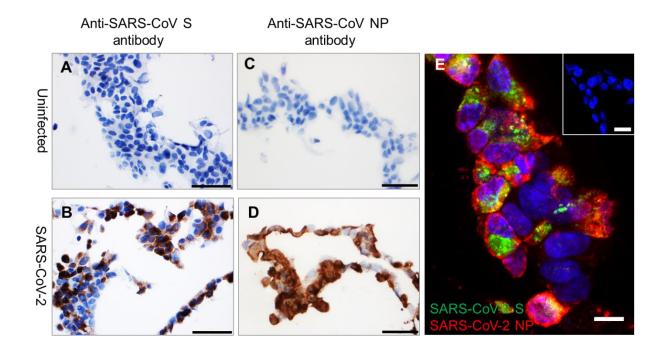
Liu et al.

263 **References**

264	1.	Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus
265		associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.
266	2.	Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak
267		associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3.
268	3.	Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from
269		patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.
270	4.	World Health Organization. Coronavirus (COVID-19). https://who.sprinklr.com/. 2020.
271	5.	Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and
272		epidemiology of 2019 novel coronavirus: implications for virus origins and receptor
273		binding. Lancet. 2020;395(10224):565-74.
274	б.	Gorbalenya AA, Baker SC, Baric RS, De Groot RJ, Drosten C, Gulyaeva AA, et al. The
275		species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV
276		and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44.
277	7.	Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al.
278		SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically
279		proven protease inhibitor. Cell. 2020.
280	8.	Drexler JF, Corman VM, and Drosten C. Ecology, evolution and classification of bat
281		coronaviruses in the aftermath of SARS. Antiviral Res. 2014;101:45-56.
282	9.	Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, and
283		Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV)
284		rejects the hypothesis of emergence as a result of a recent recombination event. Infect
285		Genet Evol. 2020;79:104212.

286	10.	Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface
287		environmental, and personal protective equipment contamination by severe acute
288		respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA.
289		2020.
290	11.	van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN,
291		et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N
292		Engl J Med. 2020.
293	12.	Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of
294		critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered,
295		retrospective, observational study. Lancet Respir Med. 2020.
296	13.	Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of
297		coronavirus disease 2019 in China. N Engl J Med. 2020.
298	14.	Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, et al. Clinical findings in a
299		group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of
300		Wuhan, China: retrospective case series. BMJ. 2020;368:m606.
301	15.	Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. Covid-19
302		in critically ill patients in the Seattle region - case series. N Engl J Med. 2020.
303	16.	Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, et al. Histopathologic changes and
304		SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med.
305		2020.
306	17.	Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of
307		COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med.
308		2020;8(4):420-2.

309	18.	Luo W, Yu H, Gou J, Li X, Sun Y, Li J, et al. Clinical pathology of critical patient with
310		novel coronavirus pneumonia (COVID-19). Preprints. 2020;2020020407
311	19.	Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, et al. The pathogenicity of SARS-CoV-2
312		in hACE2 transgenic mice. <i>bioRxiv</i> . 2020:2020.02.07.939389.
313	20.	Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats,
314		dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020:eabb7015.
315	21.	Kim Y-I, Kim S-G, Kim S-M, Kim E-H, Park S-J, Yu K-M, et al. Infection and rapid
316		transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020.
317	22.	Chan JF-W, Zhang AJ, Yuan S, Poon VK-M, Chan CC-S, Lee AC-Y, et al. Simulation of
318		the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in
319		golden Syrian hamster model: implications for disease pathogenesis and transmissibility.
320		Clin Infect Dis. 2020.
321	23.	Deng W, Bao L, Gao H, Xiang Z, Qu Y, Song Z, et al. Ocular conjunctival inoculation of
322		SARS-CoV-2 can cause mild COVID-19 in Rhesus macaques. <i>bioRxiv</i> .
323		2020:2020.03.13.990036.
324	24.	Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, et
325		al. Respiratory disease and virus shedding in rhesus macaques inoculated with SARS-
326		CoV-2. <i>bioRxiv</i> . 2020:2020.03.21.001628.
327	25.	Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, de Meulder D, et al.
328		Comparative pathogenesis of COVID-19, MERS and SARS in a non-human primate
329		model. <i>bioRxiv</i> . 2020:2020.03.17.995639.


330	26.	Zeng X, Blancett CD, Koistinen KA, Schellhase CW, Bearss JJ, Radoshitzky SR, et al.
331		Identification and pathological characterization of persistent asymptomatic Ebola virus
332		infection in rhesus monkeys. Nat Microbiol. 2017;2:17113.
333	27.	Cashman KA, Wilkinson ER, Zeng X, Cardile AP, Facemire PR, Bell TM, et al.
334		Immune-mediated systemic vasculitis as the proposed cause of sudden-onset
335		sensorineural hearing loss following Lassa virus exposure in cynomolgus macaques.
336		<i>mBio</i> . 2018;9(5):e01896-18.
337	28.	Coffin KM, Liu J, Warren TK, Blancett CD, Kuehl KA, Nichols DK, et al. Persistent
338		Marburg virus infection in the testes of nonhuman primate survivors. Cell Host Microbe.
339		2018;24(3):405-16 e3.
340	29.	Liu J, Coffin KM, Johnston SC, Babka AM, Bell TM, Long SY, et al. Nipah virus
341		persists in the brains of nonhuman primate survivors. JCI Insight. 2019;4(14):e129629.
342	30.	Shieh W-J, Hsiao C-H, Paddock CD, Guarner J, Goldsmith CS, Tatti K, et al.
343		Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-
344		associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in
345		Taiwan. Hum Pathol. 2005;36(3):303-9.
346	31.	Martines RB, Ng DL, Greer PW, Rollin PE, and Zaki SR. Tissue and cellular tropism,
347		pathology and pathogenesis of Ebola and Marburg viruses. J Pathol. 2015;235(2):153-74.
348	32.	Gary JM, Welch SR, Ritter JM, Coleman-McCray J, Huynh T, Kainulainen MH, et al.
349		Lassa virus targeting of anterior uvea and endothelium of cornea and conjunctiva in eye
350		of guinea pig model. Emerg Infect Dis. 2019;25(5):865-74.

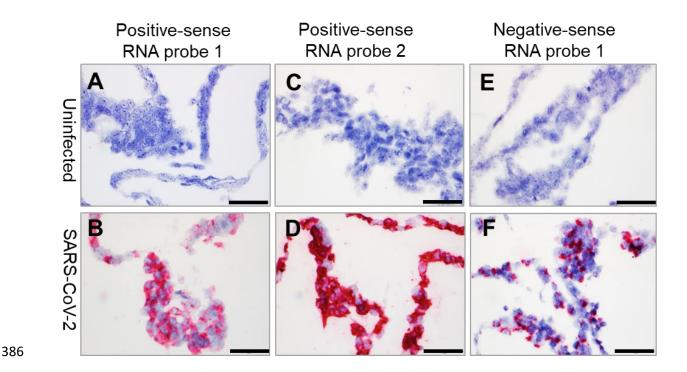
351	33.	Wang F, Flanagan J, Su N, Wang L-C, Bui S, Nielson A, et al. RNAscope: a novel in situ
352		RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn.
353		2012;14(1):22-9.
354	34.	van der Eijk AA, van Genderen PJ, Verdijk RM, Reusken CB, Mögling R, van Kampen
355		JJ, et al. Miscarriage associated with Zika virus infection. N Engl J Med.
356		2016;375(10):1002-4.
357	35.	Cooper TK, Huzella L, Johnson JC, Rojas O, Yellayi S, Sun MG, et al. Histology,
358		immunohistochemistry, and in situ hybridization reveal overlooked Ebola virus target
359		tissues in the Ebola virus disease guinea pig model. Sci Rep. 2018;8(1):1250.
360	36.	Smith DR, Shoemaker CJ, Zeng X, Garrison AR, Golden JW, Schellhase CW, et al.
361		Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within
362		granulomas of non-human primates with latent tuberculosis. PLoS Pathog.
363		2019;15(9):e1008050.
364	37.	Rhodes A, Jasani B, Couturier J, McKinley MJ, Morgan JM, Dodson AR, et al. A
365		formalin-fixed, paraffin-processed cell line standard for quality control of
366		immunohistochemical assay of HER-2/neu expression in breast cancer. Am J Clin Pathol.
367		2002;117(1):81-9.
368	38.	Knudsen BS, Zhao P, Resau J, Cottingham S, Gherardi E, Xu E, et al. A novel
369		multipurpose monoclonal antibody for evaluating human c-Met expression in preclinical
370		and clinical settings. Appl Immunohistochem Mol Morphol. 2009;17(1):57-67.
371		

Liu et al.

372 Figures and Figure legends

373 Figure 1

374


Figure 1. Detection of SARS-CoV-2 antigens by IHC and IFA in FFPE cell pellets. (A–B) In
comparison to uninfected control FFPE cell pellets (A and C), SARS-CoV-2 S (brown, B) and
SARS-CoV-2 NP (brown, D) can be detected in FFPE SARS-CoV-2-infected cell pellets. Nuclei
are stained blue (hematoxylin). (E) Immunofluorescence staining to detect SARS-CoV-2 S
(green) and NP (red) in FFPE SARS-CoV-2-infected cell pellets. Inset of (E) is uninfected
control FFPE cell pellets. Nuclei are stained blue (DAPI). Scale bar, 50 µm in (A–D), 20 µm in
inset of (E), and 10 µm in (E).

382

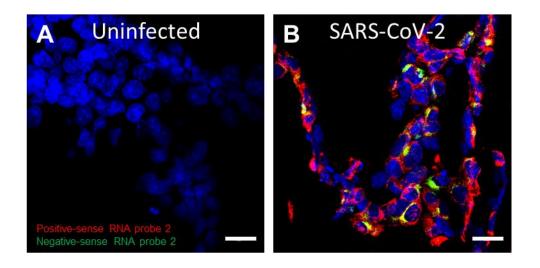
383

Liu et al.

385 **Figure 2.**

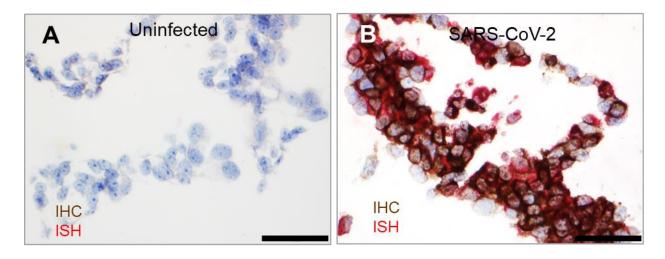
Figure 2. Detection of SARS-CoV-2 RNA by ISH in FFPE cell pellets. (A–B) SARS-CoV-2

positive-sense RNA can be detected by ISH using positive-sense RNA probe 1 in infected FFPE


cell pellets (**B**), but not in uninfected control FFPE cell pellets (**A**). (**C–D**) SARS-CoV-2

- positive-sense RNA can be detected by ISH using positive-sense RNA probe 2 in infected FFPE
- cell pellets (**D**), but not in uninfected control FFPE cell pellets (**C**). (**E**–**F**) SARS-CoV-2
- negative-sense RNA can be detected by ISH using negative-sense RNA probe 1 in infected FFPE
- cell pellets (E), but not in uninfected control FFPE cell pellets (F). Nuclei are stained blue
- 394 (hematoxylin). Scale bar, 50 μ m in (A–F).

395


396

398 Figure 3

400	Figure 3. Detection of SARS-CoV-2 replication in FFPE cells using multiplex fluorescence
401	ISH. (A–B) Compared to uninfected control (A), SARS-CoV-2 negative-sense RNA (green), a
402	replicative intermediate that indicates viral replication, can be detected in infected FFPE cell
403	pellets in addition to positive-sense (red) RNA (B). Nuclei are stained blue (DAPI). Scale bar, 20
404	μm in (A – B).
405	
406	
407	
408	
409	
410	
411	

412 Figure 4

413

414 Figure 4. Dual staining to detect SARS-CoV-2 antigen and RNA in the same FFPE section.

- 415 (A–B) Compared to uninfected control FFPE cell pellets (A), SARS-CoV-2 S (brown) and
- 416 positive-sense RNA (red) were detected in the same section (**B**). Nuclei are stained blue
- 417 (hematoxylin). Scale bar, 50 μ m in (A–B).

418 Supplemental Tables

419 Supplemental Table 1. Antibodies tested for detecting SARS-CoV-2 in FFPE specimens

Antibody	Source	Catalog	Immunogen	Clonality	IHC Suitability
		number			(FFPE
					Specimen)
Rabbit anti-	Novus	NB100-56048	SARS-CoV S residues	Polyclonal	No
SARS-CoV	Biologicals,		288–303		
spike	Littleton, CO,				
glycoprotein	USA				
(S)					
Rabbit anti-	Novus	NB100-56578	SARS-CoV S residues	Polyclonal	No
SARS-CoV	Biologicals,		1124–1140		
spike	Littleton, CO,				
glycoprotein	USA				
(S)					

Rabbit anti-Sino 40150-R007 Recombinant Monoclonal No SARS-CoV-Biological, SARS-CoV-2 S subunit Chesterbrook, 2 spike **S**1 glycoprotein PA, USA Rabbit anti-Sino 40150-T62-Recombinant Polyclonal Yes SARS-CoV Biological, COV2 SARS-CoV S subunit S1 Chesterbrook, glycoprotein PA, USA Recombinant Rabbit anti-Sino 40143-R001 Monoclonal No SARS-CoV Biological, SARS-CoV NP nucleocapsid Chesterbrook,

(S)

spike

(S)

protein (NP)

PA, USA

Rabbit anti-	Thermo	PA1-41098	SARS-CoV NP residues	Polyclonal	No
SARS-CoV	Fisher		399–411		
nucleocapsid	Scientific,				
protein (NP)	Waltham,				
	MA, USA				
Mouse anti-	Sino	40143-MM05	Recombinant	Monoclonal	Yes
SARS-CoV	Biological,		SARS-CoV NP		
nucleocapsid	Chesterbrook,				
protein (NP)	PA, USA				

421 Supplemental Table 2. RNAscope ISH probes suitable for detecting SARS-CoV-2 RNA in FFPE specimens

Probe	Catalog number (Advanced Cell Diagnostics, Newark, CA, USA)	Probe length	Channel	Target
Positive-sense RNA probe 1	848561	20 ZZ	C1	Genomic RNA fragment 21631-23303 (RefSeq #NC_045512.2)
Positive-sense RNA probe 2	854841	40 ZZ	C1	Genomic RNA fragment 21571-25392 (GenBank #LC528233.1)
Negative-sense RNA probe 1	845701	20 ZZ	C1	Reverse complement of genomic RNA fragment 21631-23303 (RefSeq #NC_045512.2)
Negative-sense RNA probe 2	854851	40 ZZ	C3	Reverse complement of genomic RNA fragment 290-10849 (GenBank #LC528233.1)