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Abstract

EmbedSOM is a simple and fast dimensionality reduction algorithm,
originally developed for its applications in single-cell cytometry data
analysis. We present an updated version of EmbedSOM, viewed as an
algorithm for landmark-directed embedding enrichment, and demonstrate
that it works well even with manifold-learning techniques other than the
self-organizing maps. Using this generalization, we introduce an
inwards-growing variant of self-organizing maps that is designed to mitigate
some earlier identified deficiencies of EmbedSOM output. Finally, we
measure the performance of the generalized EmbedSOM, compare several
variants of the algorithm that utilize different landmark-generating functions,
and showcase the functionality on single-cell cytometry datasets from
recent studies.
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(:5755:0 Amendments from Version 1

This version improves upon the main issues raised by the reviewers: We have added an useful comparison with

other dimensionality reduction methods (results on a toy dataset can be compared in Figure 1, performance of the
EmbedSOM implementation is compared with UMAP, tSNE and TriMap in Figure 2), and a slightly technical overview
of the differences in a separate section. We have fixed several wording problems and corrected minor mistakes and
difficulties throughout the text, mainly in the description of Wong dataset (mainly providing a cleaner explanation of the
phenomenon with ydTCR T cells, noticed by the reviewers).

Any further responses from the reviewers can be found at the end of the article

Introduction

EmbedSOM is a dimensionality reduction (DR) algorithm for single-cell cytometry data, designed for high scalability,
computational efficiency and performance'. The design is based off FlowSOM’, which utilizes unsupervised
manifold learning by self-organizing maps (SOMs) to find structure in the high-dimensional data, and process the
result into a meaningful and easily interpretable clustering of the dataset. So far, FlowSOM and SOMs in general
seem to be the manifold learning and clustering method of choice for all kinds of cytometry based on protein-targeting
antibodies, surpassing other clustering methods in precision, speed and scalability’. EmbedSOM utilizes the same
manifold learning method to extract information about the topology of an approximate manifold that describes
the high-dimensional cell expression space, and uses it to quickly compute low-dimensional image of the cells
that is suitable for visualization.

In this work, we focus on fixing inconsistencies and problems of the first version of EmbedSOM: First, we
describe an updated version of EmbedSOM that improves the approximation to achieve mathematical smooth-
ness of the projection. The brief description of EmbedSOM provided in the original paper is supplemented here by
fully commented pseudocode, in order to aid scrutinization and interpretation of the method. Second, we review
EmbedSOM as a generalized function for enriching a projection of selected landmarks to a projection of entire spaces.
We demonstrate this by replacing the original SOMs with less-demanding t-SNE on random landmarks. Addition-
ally, we describe GQTSOM, a novel variant of growing self-organizing maps (GSOMs, described e.g. by Rauber
et al’) that was designed to alleviate precision and overcrowding problems of the original EmbedSOM.
GQTSOMs utilize quad-tree space-partitioning structure to grow inwards, thus allowing the training algorithm to
increase the resolution of manifold approximation on demand, and to benefit from the performance gain in early
stages of training that is common to all GSOMs.

The functionality of the new algorithm is showcased on datasets that were recently used for studying other DR
techniques. We show the differences between individual variants of landmark-generating functions, and provide
visualizations comparable to those produced by current state-of-art algorithms. Finally, we demonstrate how
the dynamic resolution of GQTSOMs aids detection of various small cell populations and rare cell types.

Methods

Landmark-directed embedding

EmbedSOM projection can be viewed as an embedding enrichment method: From a set of landmarks in the
high-dimensional space and a set of corresponding landmarks in the low-dimensional space, it produces a smooth
function that maps all points from the higher-dimensional space to the low-dimensional space and preserves
the relative neighborhoods of the landmarks. EmbedSOM was originally designed to work with simple SOM-
originating landmarks, as shown in Figure 1.

We will refer to the high- and low-dimensional landmarks as L e R™” and [ ¢ R™>. EmbedSOM embedding of
a single high-dimensional point is achieved by reducing it to a collection of coordinates of its projections into
subspaces that are generated by affine combinations of landmark pairs from L, and reconstructing it in low-
dimensional space by reversing the process with corresponding landmark pairs from /.

The procedure is detailed as Algorithm 1. First, the algorithm chooses k landmarks closest to X, which are expected
to give sufficient approximation. In lines 2-6 it computes scores for the k landmarks. The affine projection of X to
a space defined by a pair of landmarks from L is computed at line 12 as d, its value is used to create a linear
equation which has solutions at positions that would project to the same position d in the affine space generated
from corresponding landmarks in /. After adding all parts of the approximation together, the linear system stored in
M is very unlikely to remain singular. The position of embedded point is then obtained by simply solving the
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Figure 1. Overview of EmbedSOM interaction with landmarks on a toy dataset. Embedding process starts by
reducing the input dataset (data flow is visualized as orange arrows) to landmarks (black arrows and dots) in high-
dimensional (top row) and low-dimensional space (middle row). EmbedSOM quickly places the relatively large amount
of individual input points into matching neighborhoods of the low-dimensional landmarks. The landmark-generating
methods from left: A simple grid from SOM algorithm, a random selection of input points with 2-D topology reconstructed
by t-SNE, and a GQTSOM-based grid. GQTSOM landmarks are labeled by their level in the quadtree. Visualizations from
other methods®* (bottom row) are presented with computation time (f) for comparison. R code that produces the plots
is available in Supplementary material.

Algorithm 1. EmbedSOM projection from D-dimensional Euclidean space to 2-D using n landmarks.
1: procedure EvBepSOM(Xe R”, Le R™P, [e R™? ke {4...n}, m>0, a>0)
¢ < asequence of ¢,= ((X- L)) forie{1...n}
8 0 « indexes of k smallest elements of ¢ in order
4: ne . c(k' > estimate the distribution of landmark distances
<7,
Con— M ¥
5: O« Zisk [%)
b-(u—c,; @i =C
6: S asequenceof S, =exp(ﬂ—())~ 1—exp—2 O | forje{1.. K I> compute scores
(o m-C,;,
0 00 ) .
7 M o olo > accumulator for the linear equation system
fori'e{1... k-2}do > iterate through pairs of k — 1 closest landmarks
9: forj/e{i+1... k- 1}do
10: i« o(i") > obtain non-permuted landmark indexes
11: je<o()
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(X-L,L,-L)

12: ‘“_7(@ Ly > projection position in the affine space
13: hel -1 > helper values

y«d+ {hl)
14: )

o)
15: se1+{m) e T -S,-S,, > score for this pair of landmarks
T

M<—M+s~(hhh v h‘J
16: «n) | y-h, > add this approximation to the linear system
17: end for
18: end for
19: return solution (x,, x, ) of the linear system in M
20: end procedure

linear equation of 2 variables. Alternatively, one can view the algorithm as a minimization of the total squared error
in all projected d:

xR G

Since the squared term is linear in x, the inner function is a quadratic form that can be minimized algebraically
by finding zero of its derivation. This procedure gives the formulas used in the algorithm.

The algorithm can be easily expanded to embedding into general P-dimensional spaces by taking the
low-dimensional landmarks / from R™", increasing the size of the matrix M for a linear equation of P variables,
and solving a larger linear system at the end.

Notably, the initial reduction of the input data to one-dimensional projections to affine spaces (d in the algo-
rithm) prevents various complications from fitting the high-dimensional distances into low-dimensional
space, avoiding many problems that arise from dimensionality overhead in other DR algorithms. Similar
approach has been taken e.g. by TriMap’, where the transferred information is reduced to mere binary relations
between point distances.

Embedding parameters The embedding procedure admits several tunable parameters: k is the number of nearest
landmarks used for the approximation, m > 0 is an arbitrary parameter that selects the steepness of score decay
for distance order approaching k, b > 0 chooses the steepness of score decay for landmarks far from X, and
a lowers the score of approximations to pairs of relatively far low-dimensional landmarks.

Parameter m is specifically designed to lower the score of landmarks with distances that approach k-closest
landmark. As a result, small changes in the input point X can not cause sharp changes in the scores assigned
to individual parts of the approximation. Consequently, EmbedSOM function is smooth in X.

Values of parameters k, m, and a must be chosen to avoid singularities and near-singularities when computing
the final approximation, which may happen if the set of S, contains insufficient number of higher-than-negligible
scores. That may be caused mainly by setting too low values of k or m, or too high value of b. Argu-
ment setting of k—\/i |, m =10, b = ¢! and a = 1 worked well in a majority of tested use cases and can be
considered a good default.

Embedding complexity To compute a P-dimensional projection of a single point from a D-dimensional space,
EmbedSOM projection conducts the following operations: |L| measurements of distances in high-dimensional space,
sorting the k smallest elements of the distance vector of size |L|, and conversion of k distances to scores. On the
landmark pairs, it conducts at most k> computations of scores s, the same number of computations of d from
2 dot-products in high-dimensional space, and computation of a partial P-by-(P + 1) matrix for solving the linear
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system in R”. Finally, the linear system is solved using Cramer’s rule. The total of computation times is thus, in
respective order,

O(D|L|) + O (log k-|L]) + K (O (1) +O(D)+ O(P*))+ O(PY).

Assuming the default parameter setting and P e {2, 3}, this complexity sums to O(D - |L|). The procedure can
be trivially repeated for any number of input points.

Different distance measures We have assumed that the metric used in both high-dimensional and
low-dimensional spaces is Euclidean. Generally, EmbedSOM behaves well even if the distance measure used for
the scoring function is swapped for any function that acts as a metric on vector spaces, including the popular L'
and L~ metrics.

Nevertheless, the computation of ‘projections’ using dot-products may then be viewed as a rather questionable
reinterpretation of the point coordinates in an inner product space. Fortunately, the minimal-distance projection to
a fixed subspace is a linear operator under both L' and L~°, which is sufficient for EmbedSOM computation even
without requiring the inner product property.

Relation to other dimensionality-reduction algorithms The currently used non-linear dimensionality reduc-
tion methods are most often constructed from optimization tasks that optimize the embedding of the data
points into the low-dimensional space, attempting to preserve selected properties from the high-dimensional
space. The methods include t-SNE (optimizes Kullback-Leibler divergence between transformed distances in
high-dimensional k-neighborhoods”), UMAP (optimizes the cross-entropy between topological representations
of the data®), TriMap (optimizes the preservation of distance ordering in triplets of data points’, MDS (optimizes
the mean squared error between dissimilarity and distance matrices), isomap (optimizes walk-like distances on
k-neighborhood graph used as dissimilarities in MDS), PHATE (uses a dissimilarity based on heat transfer potential
in MDS?), Kamada-Kawaii algorithm (uses simulation to optimize a spring model of a graph) and many others.
Performance of such methods is most impacted by the necessity to examine a large subset of the (}) relations
between the n input data points.

This computationally expensive optimization can be traded off by first creating a smaller model of the data, and
using it to find approximate embedding of the data points. This is used e.g. by scvis, which trains an autoencoder to
represent the data by 2 variables; using the variables as the embedding'’. The simplification in the model and result-
ing approximation may produce suboptimal results especially in ‘local’ microstructure of the data, but the strict
separation brings more beneficial properties: The necessary generalization prevents overfitting and thus improves
the applicability of the model to newly incoming data. Performance of the algorithm is usually improved, because
fitting of the data to the constant trained model can be trivially accelerated by parallelization.

In EmbedSOM, the model consists of the pairs of the corresponding high- and low-dimensional landmarks
(L and [) created by any suitable algorithm (including SOMs, autoencoders, and any of the optimization-based
dimensionality reduction described above); fitting of the data into the model is then performed by minimizing the
total projection error for each data point separately.

The geometrical interpretation of EmbedSOM bears similarity to linear dimensionality reduction methods
— the projection is locally linear, and the non-linearity is caused only by the non-linear weighting of landmark
influences (scores S in Algorithm 1). With SOMs, the result can thus be viewed as many local PCA projections
smoothly stitched together. For extreme parameter settings (4 landmarks generated by a 2x2 SOM, k = |L| = 4,
a=>b=0and m = ), EmbedSOM produces results almost identical to PCA.

Generalized landmarks and GQTSOMs

While the SOMs are a great method to generate landmarks L and / that carry various beneficial properties that
simplify human interpretation of the result (notably the regularity of /), other methods are admissible as well, as
long as they can cover the input space sufficiently by L and generate the corresponding landmarks / in the low-
dimensional output space so that the topology is similar to L.

For example, the embedding process can be simplified to a great extent by completely removing SOMs: Instead of
constructing L in a complicated way so that it reflects the input space topology, we can take only
a small random sample of input points as the landmarks, and use a general DR method to find its
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topology and arrange landmarks / in a matching way, as shown in Figure 1 on an example with t-SNE. While
this is often sufficient, for the purposes of embedding it is more beneficial to find a smaller set of landmarks
that provide better description of the various features in the input space than the random sampling.

Many variants of the SOM algorithm have been created to optimize this metric: For example, the Growing SOMs
(GSOMs) by Dittenbach et al.'', start with a simple 2x2 SOM grid, and dynamically add new SOM grid vertices
at the SOM perimeter only if it is necessary to keep the total quantization error low. A hierarchical variant of GSOM
called GHSOM introduced by Rauber et al.* aims to improve the description of small details in the input data
space that were not described sufficiently by GSOMs. Depending on the heuristic, the vertices of GHSOM grid
are converted to small independent versions of GHSOMs, which map the corresponding local parts of the input
space; this continues recursively to create a layered structure of SOMs that describe increasingly fine and subtle
details in the data.

GQTSOMs Although the GHSOMs improve the classification of small-scale features in the datasets, the hypertree
structure complicates their use as landmarks for planar visualization with EmbedSOM. We propose the
Growing QuadTree-structured SOMs (GQTSOMs) to alleviate this problem: The GQTSOMs grow by recursively
splitting the nodes to form a hypertree, but unlike GHSOMs the hypertree shape is restricted to a quadtree, which
possesses straightforward interpretation as a 2-dimensional structure'”.

The nodes in GQTSOMs are identified by their position and depth in the quadtree, represented as an integer triple
(L, x, y). The corresponding 2-dimensional coordinates are obtained as (2x + 1, 2y + 1) - 27%. Initial nodes in training
occupy positionson a regular grid with L = 0. Upon growing, a node (L, x, y) is split into 4 nodes
identified as (L +1, 2x, 2y), (L +1, 2x +1, 2y), (L +1, 2x +1, 2y +1), and (L +1, 2x, 2y +1). Figure 1 shows an
example of 3-level GQTSOM in a 2-dimensional space, where the initial 3x3 SOM grew 7 times to produce
30 landmarks.

GQTSOM training proceeds by batches as in the usual batch SOM training. After each epoch, several nodes with
greatest position change in the input data space are split, so that the total number of nodes grows linearly during
the whole training. Initial positions for the new nodes are interpolated from the topological SOM neighborhood,
using the same neighborhood function as for training the SOM (e.g. a Gaussian). To avoid overcrowding of the
map by small nodes and promote their specialization to fine details, the nodes are penalized by a factor of L™ in
the growing heuristic, and by a factor of 4% applied to their neighborhood volume in both input space and SOM
space.

Implementation

The current version of EmbedSOM is available as R package EmbedSOM from http://github.com/exaexa/
EmbedSOM, together with the customized versions of SOM and GQTSOM algorithms. The implementations are
conducted in C++ independent of the R wrapping, and can be reused in other environments. The integration into
R serves mostly as a bridge to the large number of cytometry-oriented packages in the ecosystem.

Low-level implementation has provided several ways to improve the performance of the algorithms
when compared to the original implementation: For example, cache-efficient version of the SOM training has
improved the performance by up to 15x on SOMs larger than 40x40; SIMD-based acceleration of the vector
operations by up to 4%, and parallelization of the batch SOM training and embedding by a factor roughly
equivalent to the number of used CPUs.

Overall, the computation time required for typical datasets was reduced by a factor greater than 10x on commonly
available hardware, and often more than 30x in case of processing complicated datasets using very large SOMs on
highly parallel hardware.

Operation

For single-cell analysis, EmbedSOM is best used from R environment; the package can be downloaded from GitHub
using R command devtools::install github (’exaexa/EmbedSOM’). The package installation will
automatically compile the code that uses the SIMD capabilities if they are enabled on the target platform.

Generally, the SOM and embedding process can be executed on any real matrix with individual data points
in rows, and parameters in columns. This expectation is consistent with many other DR or clustering
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packages, including FlowSOM, Rtsne and umap. For example, a user may obtain an embedding of
the Iris dataset as such:

library (EmbedSOM)

d <- iris[,1:4]

map <- SOM(d)

e <- EmbedSOM (map=map, data=d)

In the code, the landmarks are first created using a SOM and saved in the map, which is then passed to the
EmbedSOM function that produces the final 2-column matrix e with embedded coordinates. These can be plotted
e.g. using the standard plot function.

On data larger than Iris dataset, GQTSOMs may be used to generate the landmarks and a map usable with
EmbedSOM function in a similar way:

map <- GQTSOM(d, target codes=500, parallel=T)

Here, target codes chooses the desired final number of the landmarks in the fully grown SOM, and
parameter parallel=T allows the computation to use multiple available CPUs. Functions SOM and EmbedSOM
support parallelization as well, using the same parameter.

Other DR methods may create the landmarks. For example, the following code generates a map object with
500 landmarks projected with t-SNE, suitable for t-SNE-directed embedding:

library (Rtsne)
landmark idx <- sample (nrow(d) , 500)
map <- list(codes=d[landmark idx,], grid=Rtsne (d[landmark idx,])s$Y)

The parameters of the SOM, GQTSOM and EmbedSOM functions are extensively documented in the supplied
R manual pages.

Use cases

The primary purpose of EmbedSOM is to produce quickly available and highly comprehensible data visualization
in situations where processing speed and efficiency is critical. The embedding time of the demonstration datasets
was measured on an AMD Ryzen 7 2700U CPU with 16GB of RAM running Debian Linux (Bullseye), R version
3.6.2 compiled with gec version 9.3; the timing is reported in the corresponding figures as #, together with number
of cells (n) and landmarks (|L|). Comparison of embedding speed with other popular dimensionality-reduction
methods can be seen in Figure 2. As the main result, the measurements show that a high-quality visualization of
a data file from a common experiment (around 300 thousand cells) can be obtained in less than 10 seconds using
common office hardware.

Here, we demonstrate EmbedSOM functionality on two use-cases: First, using the described variants of
landmark-generating functions, we reproduced the visualizations by Becht er al.® of a dataset that maps spe-
cific trafficking and cytokine signatures of human T cells across tissues, created by Wong et al.””. Second, we
visualized a human gastrointestinal disorders dataset by van Unen er al."* using GQTSOMs, showing that
EmbedSOM provides a viable alternative to the semi-interactive analysis of rare cell types using the HSNE
algorithm".

Alternative landmark-generating methods improve visualization

To visualize the Wong dataset, we have run EmbedSOM algorithm with the SOM landmarks, t-SNE generated
landmarks, and GQTSOM-generated landmarks. As seen in Figure 3, the original EmbedSOM implementation has
managed to separate and visualize both the different cell types and their layout according to source organ.
However, the result may seem unsatisfactory due to overcrowding and loss of both detail and global layout,
especially when compared to UMAP visualizations of the same dataset [6, Figure 1a,b]. Despite the overcrowding,
it is still possible to identify clusters of CD69*CD103* Trms (resident-memory T cells) in all organs except cord
blood, and naive (CD69*CD45RA"), central memory (CCR7*CD62L*) and effector memory T cells (CD45RA~
CD45RO*CCR7-CD62L") within both CD4 and CD8 T cell types; this is in agreement with findings of van
Unen et al. [14, Figure 3a,b]. Plots of all marker expressions are available in Supplementary figures.
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Figure 2. Performance of EmbedSOM variants compared with other dimensionality reduction methods. The
speed is represented in cells per second. EmbedSOM-based algorithms show almost perfect linear scaling with
growing dataset size, and even minor speed improvements when sufficient data is available for saturating the parallel
computation. As expected from their asymptotic complexities, performance of UMAP, TriMap and t-SNE decreased with
additional data. t-SNE was not executed on datasets larger than 50 thousand cells because of time constrains.

Improved methods of landmark positioning have successfully alleviated both overcrowding and layout problems.
In particular, the layout of MAIT (mucosal-associated invariant T) and 5 T cells in the embedding with t-SNE-
generated landmarks reflects the expected properties of cell populations, and the individual population clusters are
clearly separated by low-density areas with intermediate cell states and noise. The usefulness of the smoothness
property can be observed on the cluster of ¥5 T cells, where EmbedSOM shows a similarity of the gut-originating
part of ¥0 T cells to both gut-originating CD8* T cells and other types of ¥ T cells, even though this is neglected
by the underlying t-SNE. In comparison, this connection is preserved by all tested types of SOMs, but neglected by
both plain t-SNE and UMAP, which show the population separated to 3 resp. 2 separate clusters [6, Figure 1a].

The embedding based on GQTSOM landmarks has provided similar global layout of the output as the one with t-SNE
landmarks, additionally capturing the continuity of 5 T cell cluster and its similarity to MAIT and NK cells, and
providing separation of individual clusters differentiated by tissue of origin comparable to that of UMAP.
Compared to the SOM used with the original EmbedSOM approach, GQTSOM generates a smaller amount of
more precise landmarks, which resulted in significant computation speed increase (around 50%) and better descrip-
tion of the small and rare cell populations by landmarks. In particular, the small subpopulations of 5 T cells were
assigned roughly twice the number of landmarks by GQTSOM than by the standard SOM, which resulted in
spatially correct separation of the cell subtypes in the embedding.

GQTSOM landmarks improve display of rare cell types

We showcase the ability of GQTSOM landmark generation method to capture and display various rare cell types
using a dataset by van Unen er al.'"* The dataset was created as such: A total of 5.2 million single cells were
collected from duodenum biopsies, rectum biopsies, perianal fistulas, and PBMC from patients undergoing vari-
ous gastrointestinal disorders and healthy individuals (as controls). The gastrointestinal disorders included celiac
disease (CeD), refractory celiac disease type-II (RCDII), enteropathy associated T-cell lymphoma type II
(EATLII), and Crohn’s disease. Cells were stained using 32 metal conjugated monoclonal antibodies to identity
cells within the innate and adaptive immune system. This dataset was later reanalyzed by van Unen ef al."” using
a hierarchical version of t-SNE algorithm called HSNE, showing that the hierarchical dissection of the data
was able to identify several rare cell types within the innate lymphoid cell (ILC) compartment.

For the purpose of demonstration, we preprocessed the same dataset by removing debris, doublets and dead
cells based on simple thresholds on the DNA, Event length and Viability parameters. The 32 antibody markers of
the 4.14 million cleaned cells were then transformed by hyperbolic arcsine and used to train the GQTSOM and
produce an embedding. The result in Figure 4 allows easy observation of both the ILC compartment and the
CD4* T cell subset, corresponding to the observations produced by second-level HSNE [15, Figures 3 and 5].
Additionally, the embedding shows presence of many clusters from lower levels of the hierarchical dissection:
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Figure 3. Comparison of EmbedSOM visualizations of the Wong dataset using different landmarks. Top row:
cells embedded using 3 different landmark-generating methods, colored by the tissue of sample origin. Middle row:
The same embedding colored by major cell types. The colors used for annotation are purposefully reproduced from
the article of Becht et al.® to simplify comparison. Bottom row: visualizations of the low-dimensional landmark images,
colored by their corresponding marker expressions.

In the figure, it is possible to identify clusters of CD4*CD28 CCR7-CD56~ and CD4*CD28 CCR7CD56*
rare cell types within the CD4* compartment, and of the CD127-CD45RA-CD56P ! cluster within the ILC
(CD7*CD3") compartment. These clusters were identified by HSNE at 4" resp. 3 levels of dissection
[15, Figures 5b and 3c]. Recently, Belkina et al.'® showed that the opt-SNE algorithm can additionally identify
CD4*CD28 CCR7*CD56 rare cell type, which is also clearly separated by the GQTSOM-based embedding,
using much less computational resources than optSNE.

The plot of cells separated by disease status in Figure 4 confirms the observation that the rare CD4*CD28 CD56*
phenotype is enriched in the samples from patients with Crohn’s disease. Moreover, the plot gives a useful
overview for identifying cell types specific for the other diseases, showing two specific and one enriched
cluster for RCDII, a single specific cluster of CD8*CD56*CD127*c-KIT* cells for EATLII, and one specific
and some enriched cell types in patients with CeD.
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Figure 4. Display of clusters of rare cell types in GQTSOM-based embedding. Top left: Overview of the cleaned
and embedded Unen dataset, colored by expression of main cell lineage markers. The contour based on Gaussian
difference is added for easier identification of changes in cell density. Labels mark the rare cell types identified by van
Unen et al.’®, Belkina et al.’®: (a) CD4*CD28 CCR7+, (b) CD4*CD28 CCR7-CD56", (c) CD4*CD28-CCR7-CD56*, and
(d) CD7+CD3CD127-CD45RACD56rP>", Top right: Expressions of separate markers used for the identification. Bottom:

Cells color-coded by sample origin (left) and separated by disease status of the patient (right).

Summary

We have presented an improved and generalized version of EmbedSOM, supported by the new model of
quadtree-structured growing self-organizing maps. The functionality of the new algorithm was demonstrated on data
and analyses from recent studies, showing that the new combination provides superior embedding speed and good
rendering of various cell types, including tissue-specific and rare phenotypes.

Software availability

e Source code available from: https://github.com/exaexa/EmbedSOM
* Archived source code available from: https://doi.org/10.5281/zenodo.3568980
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¢ Software license: GNU GPLv3

Data availability
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The used datasets are freely available from FlowRepository.org under accession IDs:
* FR-FCM-ZZTM (Wong dataset; the data was preprocessed exactly as described by Becht et al.®)

e FR-FCM-ZYRM (Unen dataset)

Supplementary code and visualizations of the embedded datasets are available on FigShare, under DOI 10.6084/

m9.figshare.11328035
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The authors present an improved version of EmbedSOM that was optimized for speed to address extra
large single cell data sets. In addition, a novel way of growing SOM based on quad-tree was proposed.

Dimension reduction of large single cell RNAseq and flow cytometry data sets is very challenging due to
the crowding problem and algorithm scalability issues. Therefore, developing methods alternative to the
current golden standards such as PCA, tSNE and UMAP is of high importance. More specifically, tSNE
and UMAP are capable of preserving only local structure while PCA keeps the global structure
information. However, no method is currently available that can preserve both local and global structure.

Self-Organizing Maps (SOMs) and the modified EmbedSOM that are discussed in the manuscript
represent an interesting and promising algorithm in this respect. However, | would like to raise a few
questions and concerns to be addressed by the authors.

First, based on the cost function mentioned on the page 3, the algorithm seems to resemble MDS / PCA
type of dimension reduction. Therefore, | would like to see a comparison of EmbedSOM with MDS / PCA.
If a connection between the gamma-delta T cells and CD8 T cells was not captured by tSNE and UMAP
as it is mentioned on the page 8, probably due to the lack of global structure preservation by tSNE and
UMAP, was this connection captured by MDS / PCA?

Second, what would be the benefit of using EmbedSOM compared to PCA / MDS, tSNE and UMAP? Do
we discover any new biology using EmbedSOM that is not captured by PCA /tSNE / UMAP? Do we
benefit from the computational speed of EmbedSOM compared to PCA /tSNE / UMAP? If so, is it really
faster (and how much faster) than PCA? | would like to see a clear formulation of the role of the
EmbedSOM among other dimension reduction methods.

Third, | was really impressed by the Figure 1 and how well GQTSOM-based embedding was able to
reconstruct the original 3D S-shaped non-linear manifold. To my experience, tSNE / UMAP and especially
PCA / MDS would have difficulty reconstructing the 3D S-shaped manifold as 2D embeddings. | have not
found any links to the codes for reproducing this embedding and would be very curious to see whether
GQTMSOM / EmbedSOM is really capable of capturing the internal 2D structure of the 3D S-shaped
non-linear manifold.

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
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Yes
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational Biology, Bioinformatics, Mathematical Statistics and Machine
Learning

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Author Response 16 Apr 2020
Miroslav Kratochvil, Department of software engineering, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Thank you for the review and for pointing out the deficiencies. We believe that the raised points
should be addressed -- especially regarding the comparison of EmbedSOM with other
dimensionality reduction methods (adding some helpful hints for the readers to decide whether
they should use EmbedSOM) and the code that produces the Figure 1 and processes the other
dataset (thus improving availability and reproducibility). We plan to submit the extended version of
the article in several days.

Competing Interests: No competing interests were disclosed.

Reviewer Report 11 February 2020
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© 2020 Newell E et al. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Evan Newell

Fred Hutchinson Cancer Research Center, Seattle, WA, USA
Hugh MacMilan

Fred Hutchinson Cancer Research Center, Seattle, WA, USA

The authors generalize their EmbedSOM approach to examine two additional ways of selecting the
respective sets of landmarks in the high- and low-dimensional spaces, beyond the standard SOM, to
address. Example data analyses are appreciated.

That selection is the first stage in the embedSOM approach. The second stage is the actual embedding
enrichment process.

The authors explain: "EmbedSOM projection can be viewed as an embedding enrichment method: From
a set of landmarks in the high-dimensional space and a set of corresponding landmarks in the
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low-dimensional space, it produces a smooth function that maps all points from the higher-dimensional
space to the low-dimensional space and preserves the relative neighborhoods of the landmarks."

Testing:

We followed the paper’s guidance on some in-house fcs files and had success with embedSOM
and the GQTSOM function.

Some naming confusion:

By "generalized EmbedSOM” the authors refer to using different ways of generating landmarks,
other than the original (self-organizing map) SOM approach.

It seems preferable to drop the “SOM” rather than refer to these variants as "generalized
EmbedSOM” methods. The authors might use the more general notion of landmarks, rather than
SOM. As they note, the random-sampling, followed by tSNE, version of “generalized EmbedSOM”
doesn’t use SOMs at all.

Re “compacting noise"

The first reference of the manuscript includes some background on differences between the
“generalized EmbedSOM” approach and what the authors call “plain tSNE and UMAP,” and
attributes these differences to the respective designs of the algorithms.

In that background paper, the authors explain: “neither UMAP nor tSNE aim to preserve local
linearity of the transformation, which allows them to take apart the clusters with noisy data and
attach the residual noise to nearest clusters.”

They concluded in that paper: “Compacting the residual or unexplained noise is desirable for
providing a clean display of the data for publication. On the contrary, almost-immediate availability
of all information about very large datasets, including the (often informative) noise, is more
important for producing comprehensive graphics for high-throughput analysis."

This paper marks an attempt to explore those differences, and the apparent trade-offs, in more
detail, so it would benefit from discussing these tradeoffs in the context of the algorithm designs.

The authors noted in the first reference, "While the observed cluster separation may be desirable if
the embedding is expected to approximate the population boundaries, it may be inappropriate if
the population environment is relevant for analysis."

GQTSOMs:

The manuscript introduces a new landmark-generating algorithm that simplifies a hierarchical
variant of an adaptive SOM approach, namely, growing quad tree SOMS (GQTSOMs) as a
simplified growing hierarchical SOM (GHSOM), which is in turn a variant of growing SOMs
(GSOMs).

The aim is to identify and incorporate features in the input space more efficiently than random
sampling, by using a "layered structure of SOMs". This is a natural thing to do to improve on SOM.

On page 8 the authors report that GQTSOM leads to using a “smaller amount of more precise
landmarks” and thus faster computation, and appears to be a nice contribution.
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Cellular immunology

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Miroslav Kratochvil, Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech
Republic

Thank you for the review and comments. We will wait for the additional reviews and address some
of your suggestions in the second version of the manuscript.

Regarding the name of EmbedSOM, we are aware of the issue with textual "specialization" to
SOMs which ignores the modifiable parts of the workflow, but since the package is already
published over a year and we had not been able to invent a strictly better name so far, we expect
that the name will stay. We will gratefully accept suggestions (also from readers) for a reasonably
short name that sufficiently characterizes the projection procedure.

Competing Interests: No competing interests were disclosed.
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