
Fixed and Flexible: Dynamic Prefrontal Activations and Working 
Memory Capacity Relationships Vary with Memory Demand

Ashti M. Shah1,2, Hannah Grotzinger1, Jakub Kaczmarzyk1, Lindsey Powell1, Meryem 
Yücel3, John D.E. Gabrieli1,2, Nicholas A. Hubbard1,4,*

1McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA.

2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 
MA.

3Neurophotonics Center, Boston University, Boston, MA.

4Center for Brain, Biology, and Behavior, Department of Psychology, University of Nebraska, 
Lincoln, NE.

Abstract

Prefrontal cortex (PFC) activation during encoding of memoranda (proactive responses) is 

associated with better working memory (WM) compared to reactive/retrieval-based activation. 

This suggests that dynamic PFC activation patterns may be fixed, based upon one’s WM ability, 

with individuals who have greater WM ability relying more on proactive processes and individuals 

with lesser WM ability relying more on reactive processes. We newly tested whether this heuristic 

applied when challenging an individual’s WM capacity. Twenty-two participants (N = 22) 

underwent functional near-infrared spectroscopy (fNIRS) during a modified Sternberg WM 

paradigm. We tested whether the relationship between dynamic PFC activation patterns and WM 

capacity changed, as a function of WM demands (N = 14 after quality control). Here, higher-WM 

capacity was associated with more proactive PFC patterns, but only when WM capacity was 

overloaded. Lower-WM capacity was associated with these same patterns, but only when WM 

demand was low. Findings are inconsistent with a purely fixed view of dynamic PFC activation 

patterns and suggest higher- and lower-WM-capacity individuals flexibly engage PFC processes in 

a fundamentally different manner, dependent upon current WM demands.
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Understanding variation in the limits of working memory (WM capacity) is important for 

understanding multiple memory systems, higher-order cognitive functions, and ecologically-

relevant behaviors (Cowan et al., 2005). Individual differences in WM capacity have been 

linked to specific neural signatures and substrates (e.g., McNab & Klingberg, 2008). 
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Qualitatively distinct, dynamic prefrontal cortex (PFC) activation patterns (i.e., changes in 

PFC activations to different task contexts) have also been associated with measures of WM 

performance (response time, recognition accuracy; Braver et al., 2009; Hubbard et al., 2014; 

Marklund & Persson, 2012; Rypma et al., 1999). Here, we newly assessed whether 

relationships between dynamic PFC activation patterns and WM capacity change as a 

function of WM demand.

Brain imaging research suggests dynamic PFC activation patterns during WM may be 

largely dependent upon one’s WM ability. Proactive activation patterns are reflected in 

increased PFC activation during earlier, preparatory phases of a task (e.g., initial 

presentation of memoranda) and are associated with better WM performance (Braver et al., 

2009; Hubbard et al., 2014). Reactive activation patterns are reflected in increased PFC 

activation in response to action cues (e.g., a retrieval cue), and are associated with worse 

WM performance (Braver et al., 2009; Hubbard et al., 2014; Rypma & D’Esposito, 2000; 

Rypma et al., 1999). These findings provide a useful heuristic suggesting that, during WM, 

proactive activation patterns are associated with better memory, whereas reactive activation 

patterns are generally associated with worse memory. However, this heuristic might not 

generalize to more nuanced task contexts (Burgess and Braver, 2010). For instance, higher-

WM-capacity individuals may achieve this distinction through employing proactive 

cognitive strategies, such as chunking, when the demands placed upon WM are high 

(Hubbard et al., 2014). However, this same strategy-engagement is probably not necessary or 

efficient for higher-WM-capacity individuals when WM demand is low (Braver, 2012).

Here, functional near-infrared spectroscopy (fNIRS) was used to assess dynamic dorsolateral 

PFC activation patterns during WM performance. We examined correlations between 

proactive and reactive dorsolateral PFC activation differences (hereafter, P-R differences) 

and an individual’s WM capacity. We tested whether these correlations changed when 

participants attempted to remember subcapacity, capacity, and supracapacity lists of letters. 

Importantly, P-R differences were isolated while sizes of to-be-remembered lists were 

calibrated to participants’ WM capacities. The purpose of a priori task calibration was to 

isolate brain responses irrespective of influence from ongoing WM performance differences 

or biased-levels of task difficulty (Hillary et al., 2006).

Method

Participants

Twenty-two participants (N=22; Mage=37.2 y/o; SD=15.56; 95% Male). The high male-to-

female ratio is probable because participants were recruited with hair less than three-inches 

long to strengthen the fNIRS signal (McIntosh et al., 2010). Eighty-six percent of 

participants were right handed, 95% were native or excellent English speakers, every 

participant had at least a high school education, and participants’ average Montreal 

Cognitive Assessment score was 27.4 (SD = 2.26; indicating, on average, normal cognitive 

functioning). Right and left-handed participants did not show significant differences in key 

fNIRS or WM measures. Participants reported no history of brain injury or mental illness.
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Delayed-Response WM Tasks

Two verbal, Sternberg-type WM tasks (Sternberg, 1966) were administered using automated 

presentation software. The first task estimated participants’ WM capacities (K score) and 

was completed before fNIRS imaging. The K score derived from this first WM task was 

used as an index of an individual’s WM capacity and was used to calibrate the list-size 

conditions on the second WM task, which was completed during fNIRS scanning.

Pre-fNIRS WM task.—Participants remembered lists of (3 to 7) letters over an 8-s delay 

(see Figure 1A). Each list size was presented 7 times (35 trials total). WM capacity was 

estimated by adapting a standard formula (Cowan, 2001; Supplemental). Here, K = S(H-

FA); where S was the largest list size that the participant achieved with > 50% accuracy, H 
reflected correct detections (i.e., hits), FA reflected false detections (i.e., false alarms). Two 

participants failed to meet the a priori performance criterion on this task (K<3); their data 

were excluded from analyses.

fNIRS WM task.—This task was similar to the first WM task, except: (1) 10 trials were 

added to this task to enhance the reliability of the fNIRS signal (total trials = 45); (2) to-be-

remembered list sizes were calibrated to 2 letters (subcapacity), K letters (capacity), and K
+1 letters (supracapacity); (3) these calibrated-list sizes were presented 15 times each; (4) 

inter-trial intervals were jittered at 9, 10, or 11 seconds to accommodate hemodynamic 

responses; and (5) the task was broken into two ~10 min runs (total time 20 min). The 2-

letter condition was held constant across participants to offer a low-load, easily achievable, 

subcapacity WM condition.

fNIRS Acquisition and Processing

WM-related brain activation was measured by assessing changes in oxyhemoglobin 

concentrations. Data were collected using CW6 NIRS laser diodes with emittance of 690 nm 

and 830 nm continuous wavelengths (TechEn Inc, MA, USA). fNIRS data were processed 

using HOMER2 software similar to extant reports (Jahani et al., 2017; Supplemental). 

Unreliable and noisy channels were filtered). Filtering decisions were based upon aggregate 

task responses which did not take into account list size or WM phase conditions; thus, did 

not bias hemoglobin estimates for any experimental condition of interest (i.e., list size or 

WM phase differences; Figure 2C; Supplemental). Six out of 20 participants did not 

demonstrate at least one reliable channel across runs; their data were not used in subsequent 

analyses.

Event-related fNIRS Activations.—Homer2’s ordinary-least-squares general linear 

models (GLM; Ye et al., 2009) examined task-versus-rest activations for the three different 

WM list size conditions (i.e., 2, K, K+1) × three different WM phases (i.e., encode, delay, 

retrieval cue) on hemoglobin concentration data. This yielded a 3×3 design matrix for 

explanatory factors which also included additional nuisance regressors (detailed below). 

Homer2’s modified-gamma impulse response functions, tstep=.02 s; trange=0–16 s, were 

applied to the design matrix to model demand and phase effects. Gamma functions were 

used because our previous work using the Sternberg task during fMRI used gamma-based 

canonical models to demonstrate P-R differences in group analyses (Hubbard et al., 2014). 
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The modified-gamma approach applied by Homer2 convolves a gamma basis function with 

a square-wave function of duration T, where T = 16 s here to allow for statistical 

independence between modeled hemodynamic responses from each condition onset (Rypma 

and D’Esposito, 2000). Third-order signal drifts and signals from short-separation channel 

within a maximum distance of 10 mm of a given optode were added as nuisance factors in 

these GLMs to control for potential non-neural effects (e.g., biological motion, general 

changes in superficial hemodynamics), and yield more accurate cortical hemodynamic 

estimates (Gagnon et al., 2011). GLMs produced a modeled time course of hemoglobin 

changes from baseline, statistically independent of nuisance factors and other individual task 

conditions. The sum of oxyhemoglobin concentrations (i.e., area-under-the-curve of the 

gamma-response function [Jahani et al., 2017]) within this time course was averaged across 

all channels surviving filtering. This provided a single, aggregate measure of dorsolateral 

PFC oxyhemoglobin concentration at each list-size condition × encoding or retrieval phases. 

We focused these analyses upon P-R differences, operationalized as encoding subtracted 

from retrieval oxyhemoglobin concentrations (Hubbard et al., 2014). Contrasting WM 

phases within participants would eliminate biases associated with increased activation in 

experimental conditions—which might be expected because individuals with higher-K 
scores were given larger lists during capacity and supracapacity conditions, relative to 

individuals with lower-K scores.

Results

Performance

Pre-fNIRS WM task.—Accuracy and response times (RT) demonstrated expected patterns 

with increasing list size (Figure 1B). Median K was 6 (MAD=1; Range=4–7) and the 

distribution of K-scores for the 14 participants retained in these analyses was: K4= 7.14% 

(1); K5= 21.42% (3); K6= 42.86% (6); K7= 28.57% (4).

fNIRS WM task.—Accuracy and RT demonstrated expected patterns across calibrated-list 

size conditions (Figure 2A). There were no significant relationships found between 

recognition accuracy and individual differences in K derived from the pre-fNIRS task, at any 

list size (ps > .10), indicating calibration mitigated the effects of ability on ongoing 

recognition accuracy on the fNIRS WM task. K scores were significantly related to K-letters 

and K+1-letters RTs (Spearman’s ρ(12)=.67 and ρ(12)=.56, respectively; ps < .05), but not 

the 2-letter condition (p > .35).

WM Capacity and Dynamic PFC Relationships Vary with Calibrated List Size

Hypothesis testing focused upon the extent to which P-R differences, operationalized as 

encoding subtracted from retrieval oxyhemoglobin concentrations (Hubbard et al., 2014), 

were related to individual differences in K scores. Contrasting WM phases within 

participants served to eliminate biases associated with increased activation in experimental 

conditions—which might be expected because individuals with higher-K scores were given 

larger lists during capacity and supracapacity conditions, relative to individuals with lower-K 
scores. These hypothesis tests were exploratory, thus, false-discovery-rate corrections were 
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applied to limit the probability of Type-I error when examining their correlations to behavior 

(Hochberg and Benjamini, 1990).

K scores had a significant, positive relationship with P-R differences at supracapacity list 

sizes (ρ(12)=.68; FDR-corrected p<.05; BCa-bootstrap CI95%= .23 – .89). A significant, 

negative relationship was observed at the subcapacity list size (ρ(12)= −.64; FDR-corrected 

p<.05; BCa-bootstrap CI95%= −.09 - −.93). Fisher’s z-test revealed that correlations between 

K scores and P-R differences for supracapacity and subcapacity list sizes were significantly 

different (z(14) = 3.98; p < .001). No significant relationship was observed when list size 

matched individuals’ K scores (ρ(12)=.18; FDR-corrected p>.05; BCa-bootstrap CI95%= 

−.60 – .81;see Figure 3).

Calibration was successful in mitigating potential performance or task-demand confounds 

on P-R differences. No significant correlations were observed between recognition accuracy 

on the fNIRS WM task and P-R differences (all list conditions: ps>.05). No significant 

correlations were observed between recognition RT and P-R differences during 2 or K-item 

list sizes (all ps>.05). There was a significant relationship observed between P-R differences 

and recognition RT at K+1 items list size (ρ(12)=.53, uncorrected p = .051). This 

relationship failed to reach significance after FDR correction (FDR-corrected p = .15) and it 

was influenced by the relationship between WM capacity estimates and K+1 items 

recognition RT (see above). The relationship between K+1 items recognition RT and P-R 

differences was not significant when partialing the variance accounted for our behavioral 

variable of interest, K scores (r(11)XY|Z = .13, p > .67).

Discussion

The novel finding in the present report was that the correlation between WM capacity and 

dynamic PFC activations changed under different WM-demand conditions. From previous 

brain imaging studies of WM, a heuristic could be suggested: greater WM ability is 

associated with a tendency to engage proactive PFC responses, and lesser WM ability is 

associated with a tendency to engage reactive responses (Braver et al., 2009; Hubbard et al., 

2014; Rypma & D’Esposito, 2000; Rypma et al., 1999). It has also been posited that lower-

WM capacity individuals primarily rely upon automatic (i.e., reactive), as opposed to more 

premeditated or controlled (i.e., proactive) PFC-mediated processes (Kane and Engle, 2002). 

Here, both higher- and lower-K scores were associated with greater encoding relative to 

retrieval dorsolateral PFC activation (i.e., proactive activation pattern). However, the 

tendency to emphasize a proactive or reactive activation pattern, changed as a function of 

both WM capacity and the demands placed upon an individual’s WM.

Findings suggest similar engagement of PFC-mediated cognitive processes between higher- 

and lower-WM-capacity individuals, but, under different circumstances. Proactive cognitive 

processes may reflect attentional biases toward goal-relevant material or the recruitment of 

mnemonic strategies (Braver et al., 2009; Hubbard et al., 2014). When WM demands are 

low, higher-WM-capacity individuals might not perceive advantage in engaging proactive 

cognitive processes and rely upon their superior storage capacity alone, whereas, for lower-

WM-capacity individuals, such processes might be required for encoding even low volumes 
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of information (Kane et al., 2007). Conversely, when WM demand exceeds one’s immediate 

storage capacity, higher-WM-capacity individuals may attempt to manage this larger volume 

of information using proactive cognitive processes. However, lower-WM-capacity 

individuals may be unwilling or unable to use these processes past their peak, potentially 

because they perceive a low probability of those processes being successful (Braver, 2012). 

Thus, under supracapacity WM conditions, lower-WM-capacity individuals rely upon 

reactive, PFC-based processing mechanisms; possibly reflecting late attempts to reactivate 

encoded memory patterns or later use of attention to attempt to circumvent retrieval 

interference (Braver et al., 2009; Sprague et al., 2016).

A limitation of this study was that results were derived from a relatively small and 

homogenous participant sample. Statistical analyses were therefore relatively conservative. 

Tests were exploratory and FDR corrections reduced the probability of Type-I error. The use 

of nonparametric correlations also circumvented assumptions of normality within our 

sample, which are often violated in smaller samples. Although these statistical approaches 

increase confidence in the generalizability of the present findings, future research is needed 

for further confirmation of these findings.

The present findings do offer preliminary evidence that dynamic PFC activation patterns 

during WM may be both fixed and flexible. On the one hand, dynamic PFC patterns may be 

fixed in the sense that such patterns are in fact related to one’s WM ability (e.g., capacity). 

On the other hand, these patterns may also be flexible in the sense that they vary depending 

upon current demands placed upon one’s WM. The more flexible aspect of dynamic PFC 

activation patterns is consistent with the presumed function of PFC as a hub for adaptively 

modulating neural responses in the service of ever-changing, contextually-relevant demands 

(Miller and Cohen, 2001). Conversely, the relationships observed between WM capacity and 

dynamic PFC activation patterns also suggest one’s WM ability is intimately related to the 

manner in which PFC responds, even given similar contexts (e.g., calibrated demand 

conditions [Rypma and D’Esposito, 1999]). Interestingly, together these findings imply that 

a heuristic hypothesis regarding the role of dynamic PFC activations (proactive = greater 

WM ability; reactive = lesser WM ability) might not be generalizable to differing demand 

contexts and they implore novel exploration of mediators (e.g., reward signals from 

subjective-valuation regions [Westbrook et al., 2019]) driving the relationship between WM 

ability and dynamic PFC activations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Task Example and Performance on the Pre-fNIRS WM Task.
A. Example of a single trial of the Sternberg-type working memory tasks. Varying sizes of 

lists were presented for four seconds. Participants were required to remember lists over an 8 

second delay. Then, participants responded “yes” or “no”, via “z” or “/” computer keys, 

regarding whether a retrieval-cue letter matched one in the to-be-remembered list. Accurate 

“yes” and “no” responses were balanced. Perceptual load was balanced across task epochs. 

List sizes were presented pseudo-randomly. B. Accuracy and response time as a function of 

list size on the pre-fNIRS WM task. Group means and one standard error of the mean. 

Dotted line = OLS regression line. R2 = OLS fit. Partial-eta-squared = effect size from 

repeated measures ANOVAs.
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Figure 2. 
A. Accuracy and response time as a function of calibrated list size on the fNIRS WM task. 

B. fNIRS probe configuration on cap and sensitivity index via Monte Carlo simulations of 

photon migration. Log sensitivity index values closer to zero reflect greater sensitivity for 

acquiring signals in that region (see Aasted et al., 2015). Two short- (7.5 mm from source 

[red grommets]) and 12 standard-separation (30 mm from source [blue grommets]) channels 

were placed in standardized space, and centered around left and right dorsolateral PFCs (F4 

and F3 in 10–20 system) using AtlasViewer software (Aasted et al., 2015), MNI-space 

coordinates may be found in Supplemental Table 1. Localization of dorsolateral PFC on 

individual participants was achieved by land marking inion and nasion, and then securing the 

cap which was standardized to 10–20 landmarks surrounding bilateral dorsolateral PFCs. C. 
Post-filtering channel density. Size and color of nodes reflect the percent of participants 

retained after filtering for a given channel. D. Proof-of-principle hypothesis test 

(Supplemental; pre-registered at osf.io/hzvp9/). DLPFC aggregate oxyhemoglobin 

concentrations (area-under-the-curve [AUC]) from post-filtering channels increased with 

calibrated list size. Group mean and one standard error of the mean.
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Figure 3. 
A. Working memory capacity (K score) derived from the pre-scan WM task and P-R 

differences (encoding minus retrieval) in DLPFC oxyhemoglobin concentrations (area-

under-the-curve) across the three, calibrated list-size conditions. ρ = Spearman’s rho was 

used as a nonparametric estimation of the relationship between capacity and P-R differences 

in DLPFC activation. Nonparametric tests were used because K distributions are based upon 

discrete values. p-values were adjusted for false discovery rate on the number of 

comparisons of the list size condition.
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