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Abstract
The growing interest in machine learning (ML) in healthcare is driven by the promise of improved patient care. However, howmany
ML algorithms are currently being used in clinical practice? While the technology is present, as demonstrated in a variety of
commercial products, clinical integration is hampered by a lack of infrastructure, processes, and tools. In particular, automating
the selection of relevant series for a particular algorithm remains challenging. In this work, we propose a methodology to automate
the identification of brainMRI sequences so that we can automatically route the relevant inputs for further image-related algorithms.
The method relies on metadata required by the Digital Imaging and Communications in Medicine (DICOM) standard, resulting in
generalizability and high efficiency (less than 0.4 ms/series). To support our claims, we test our approach on two large brain MRI
datasets (40,000 studies in total) from two different institutions on two different continents. We demonstrate high levels of accuracy
(ranging from 97.4 to 99.96%) and generalizability across the institutions. Given the complexity and variability of brain MRI
protocols, we are confident that similar techniques could be applied to other forms of radiological imaging.
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Introduction

In the past few years, there has been a growing interest in
machine learning (ML) for medical imaging applications [1].
Publications have flourished worldwide [2, 3], with the hope
to solve challenging problems, automate time-consuming
tasks for radiologists, and improve patient care. However,
how many of these algorithms are currently truly used in

practice? The integration of ML algorithms is challenging
for several reasons, including the diversity of hospital ecosys-
tems, radiology platforms, heterogeneity of processes, for-
mats, and protocols, among others [4].

Identifying relevant model inputs is the first and often the
most critical step for both the development and clinical inte-
gration of ML algorithms. By design, imaging algorithms ac-
cept as input one or more specific image slices or image series
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of a given modality (an acquisition usually consists of multi-
ple image slices grouped in one or more image series). Due to
the way the image series are acquired and maintained, identi-
fying particular series in a given study may not be straightfor-
ward. In many instances, this step of the workflow is a manual
process, with the user identifying the relevant series for the
algorithm. Such a process precludes the automation of model
inference upon series acquisition/persistence, as it requires a
human in the loop.

The automation of series identification and selection is
challenging for several reasons. Despite imaging acquisition
protocols being generally to some degree standardized in most
clinical practices, they are frequently tailored locally due to
several reasons, such as expert preference, and scanner limi-
tations, ultimately becoming specific to different scenarios.
Series acquisition may also include manual interventions at
the point of care (e.g., adapting protocols to patient history,
using specific nomenclatures for protocol naming).
Additionally, in the same institution, there is often significant
heterogeneity in scanner manufacturer, model, and software
versions. Due to these sources of variability, acquisition pa-
rameters and the associated metadata may vary from one pa-
tient to another, and even more so among different clinical
practices or in the same institution across time. The adoption
of the Digital Imaging and Communications in Medicine
(DICOM) international data standard [5] for medical imaging
bymanufacturers has been a first step towards standardization.
However, the lack of a uniform series naming scheme does not
make it a reliable method for the automation of series identi-
fication (see “Background”).

Given this context, we aim to develop a solution that can
automatically determine brain MRI series types within an im-
aging examination. Relying on characteristics of the image
pixels to identify a series seems the most natural way to per-
form this task (see “Previous Work”), following in part what
radiology professionals do. However, the cost for a hospital to
execute an image-based algorithm on every series of every
study for every patient for the sole purpose of series identifi-
cation would likely be computationally prohibitive. For in-
stance, for the MRI modality, an examination may include
dozens of volumetric series.

In addition to storing the pixel data, DICOM files provide
valuable information about the acquisition context, parameters
and processing. In this article, we demonstrate the feasibility
of leveraging DICOM metadata, not pixel data, for the series
categorization of brain MRI studies. We took care to design
the methodology as generically and as simply as possible to
allow its extension to other modalities and anatomies (for
future work).

The methodology includes the following parts:

– A fast and efficient series labeling process for training
(“Data Annotation Process”)

– A DICOM attributes selection strategy (“Features
Selection and Extraction”)

– A machine learning step, including the processing of the
DICOM attributes to input features and the training of a
classifier (“Method: Finding Relevant Features and
Building a Classifier”)

In the following sections of the manuscript, we provide
some background on previous work about imaging series cat-
egorization and summarize the DICOM file format and its
challenges (“Background”). Then, we present our approach
and proof of concept using brain MRI studies. We describe
the two datasets used (more than 40,000 studies in total) and
present the annotation process used to label our data
(“Material and Method”). In “Results and Discussion,” we
explain our methodology. The experiments and results are
then shown (“Results”) and discussed (“Discussion”).

Background

In this section, we provide some background on previous
works related to series categorization and on DICOM. The
latter is key to understanding the challenges related to series
identification in the clinical workflow.

Previous Work

Organizing and categorizing the acquisitions ofmedical imaging
examinations are not new topics [6, 7]. It can be performed using
either the images’metadata (such as those stored inDICOM) [8]
or the image contents [9]. In the first approach, very well curated
and standardized metadata are required but are rarely available
(see the analysis of our large datasets in “DICOM: a
Nonstandard Standard?” and “The Series Description
Attribute: Variability and Unreliability”). In the second case, it
generally consists of extracting discriminative image features
and training some classification algorithms [10–12]. A few sys-
tems propose combining both types of data [11, 13].

Some works have been proposed for modality classification.
For instance, the “ImageCLEF” 2015 and 2016 medical task
challenges [14] proposed classifying thousands of images from
very different modalities (radiology, microscopy, signals,
photos, and illustrations), extracted from publication figures.
Multiple approaches were proposed, including feature engi-
neering methods [15–17] and deep learning approaches [18,
19]. Those approaches reached accuracies in the range of 80–
90%. Image-based approaches have also been widely studied in
the case of content-based image retrieval (CBIR), which gener-
ally aims at finding images similar to a given image [20–22].
This allows comparisons of new cases with similar former cases
and helps the clinician in diagnosis. CBIR has now been studied
for decades, and a comprehensive and recent review can be
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found in [23]. Such approaches aim at defining low-
dimensional features that allow fast similarity measurement.
Those features are generally simple and compact visual descrip-
tors based on global statistics on the intensities and/or image
texture [10, 24–26], shape descriptors [27, 28], and other more
complex descriptors [6, 13] that can involve deep learning train-
ing [29]. Most of the existing CBIR systems are rarely imple-
mented in practice or are used for very specific applications [24,
28]. In addition, those approaches mainly focus on 2D objects
(while most medical images are 3D objects, such as in MRI,
CT, and PET) and more rarely on 3D objects [30, 31]. Only a
few works use real medical imaging databases [32], or they use
public databases [9]. Indeed, they imply computationally inten-
sive image processing, and they require specific PACS integra-
tion [13, 32, 33].

When looking at MRI in particular, very rare work has fo-
cused on recognizing sequence types [34, 35]. They used deep
learning models to train end-to-end systems to classify the MRI
image sequences into different types. In [34], they classify the
MRI images into 4 classes: T1-weighted, T1-weighted with
contrast, T2-weighted, and T2-weighted fluid-attenuated inver-
sion recovery (FLAIR). In [35], they also train a convolutional
neural network (CNN) to classify the MRI images into 8 clas-
ses: T1-weighted pre- and postcontrast, T1-weighted high-res-
olution, T2-weighted, magnetic transfer ON, magnetic transfer
OFF, FLAIR, and proton-density. Both works achieve very
high performance in the 99% accuracy range.

However, running image-based algorithms on every series
of every MRI exam does not seem reasonable in practice. To
our knowledge, the only work mentioning the use of an auto-
matic classifier on DICOM metadata for series identification
can be found in [35]. The authors mentioned an in-house
practice using MRI acquisition parameters from the DICOM
metadata combined with a decision tree classifier and an in-
teractive manual control. They compared two approaches: (1)
a random forest classifier taking as input acquisition parame-
ters only and (2) a CNN taking the image as input. They
obtained error rates of approximately 1.7% and 0.2%, respec-
tively. The authors used this approach in a real clinical envi-
ronment, combining both outputs from the decision tree and
the image-based deep learning algorithm, and they requested a
manual check when there was a disagreement. They men-
tioned a prediction time of 4–5 s per MRI scans. The authors
made their deep learning models available online.
Unfortunately, we were not able to test them on our data.
The two models available are configured to run on sagittal
image series with at least 30 slices. The vast majority of series
included in the two datasets we use are axial series and the
sagittal series generally have fewer than 30 slices. We tried to
resample the images, but this approach provided unsuccessful
results. These hurdles also highlight how specific image-based
approaches can be (the training and testing sets may be well
curated and not representative of the clinically available data).

DICOM: a Nonstandard Standard?

Although DICOM [5] has been internationally adopted as the
standard format for medical imaging, it has not been typically
used for definitive series identification. DICOM is highly flex-
ible, which results in important data variability not only year
after year but also across the different manufacturers (see fur-
ther for more details). In [8], for instance, the authors show
that the DICOM tag “Body Part Examined” (0018,0015) was
incorrectly filled 15% of the time.

While there is a DICOM attribute called “Series
Description” (0008,103E) that describes a series, this descrip-
tion is free text and is not standardized. The lack of a uniform
series-naming scheme makes it difficult for PACS to automat-
ically hang the imaging examinations in a standard way, such
that the radiologists often are required to manually hang se-
quences in their preferred layout for study interpretation. In
some cases, the series descriptor is not informative enough to
determine the sequence so that the radiologist must open the
series to check the contrast visually.

A DICOM data object consists of many attributes, includ-
ing the pixel data, patient demographics, the clinical site, the
image acquisition modality, and technical parameters. The
attributes are tagged as required (type 1), required but po-
tentially null (type 2), or optional (type 3), providing the
manufacturer significant flexibility. Manufacturers may also
include their own private elements. In practice, even re-
quired attributes may sometimes differ from one manufac-
turer to another. Let us take an example: the DICOM attri-
bute “ImageType” (0008,0008) is of type 1 for the DICOM
MR module (group of DICOM tags related to MRI). It con-
sists of an enumeration of values (i.e., a list) related to image
characteristics. Values 1, 2, and 3 are well defined by the
standard. However, the manufacturers generally add other
values to this list with vendor-specific values (for instance,
the name of a preprocessing package).

The Series Description Attribute: Variability
and Unreliability

The “Series Description” (SD) attribute (0008,103E) is a short
piece of text describing the series. It is an optional DICOM
attribute that is nevertheless used widely in DICOM viewers
to identify series. When loading an exam, the user (e.g., a
radiologist) usually is provided with a list containing the series
available in the exam and their descriptions, in order to open
the series in which he or she is interested (Fig. 1). However,
the SD is free text that can suffer from very high variability:

– It depends on the manufacturers.
– It can be modified by the radiology professionals.
– It can also be related to specific in-house protocols.
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To add to this variability, the SD also mixes information of
very different nature. It can combine information about the
contrast, the image orientation, the postprocessing, and more.
In Fig. 1 (left), we show a few different examples highlighting
the diversity of information an MRI study contains. At our
institution, we could identify hundreds of thousands of unique
brain MRI SD in the last years. In these conditions, it appears
challenging to rely only on simple SD mappings to properly
identify imaging series of interest.

In everyday practice, even the radiologists may suffer from
the inconsistency of the SD. Sometimes they may have to

open several series before finding the one they want. In
“Data Annotation Process,” we show that more than 10% of
SDs do not allow the radiologist to identify the sequence type.
Having a more standardized SD may also help to define hang-
ing protocols (i.e., a way of automating the ordering of image
series being displayed on the screen).

SDs are thus not always reliable enough to be used for
image categorization. However, the SD can still hold valuable
information about the series. We assume in this work that it
can be used to assist the manual labeling of our data. Indeed,
even if they are highly variable, a few unique SDs are often

Fig. 1 Content of an MRI exam (left) and examples of the variability of the series descriptions (right)

Fig. 2 Unique series descriptions
(SD) frequency over all series of
dataset A. Logarithmic scale
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commonly used for specific contrasts (e.g., “T1AXIAL POST”
is commonly used to describe a postcontrast T1-weighted axial
sequence). Looking at the distribution of the unique occur-
rences of the SD in our datasets highlighted that a few hundred
unique SD could identify a large percentage of our datasets (see
Fig. 2). In “Method: Finding Relevant Features and Building a
Classifier,” we show how we use the SD to leverage the anno-
tation process (and make it fast and easy).

Material and Method

To develop and test the proposed solution, we focused on
brainMRI images.MRI is among the modalities with the most
sequences in a single study, especially in brain imaging. Thus,
we believe that if our method works for this challenging use
case, our solution could be generalizable to less diverse mo-
dalities and anatomies. We categorized the series into eight
different classes (T1, T2, fluid attenuation inversion recovery
(FLAIR), diffusion, susceptibility and gradient echo, angiog-
raphy, localizer, and others), covering the most common con-
trast acquisitions for brain MRI.

To train, validate and test our approach, we used two dif-
ferent brain MRI datasets:

– Dataset A: one large dataset from our institution (used for
first training, validation and testing).

– Dataset B: one large dataset from another institution with
several different outpatient clinics outside the USA.

Our approach is designed to fulfill the following criteria:

1. Be easily reproducible and sufficiently generic to be ex-
tended to other anatomies and modalities

2. Be scalable (very fast inference time to facilitate integra-
tion in the clinical workflow and cost-effective)

3. Have low generalization error (to be able to be used on
data from other institutions):

a. on old studies (for cohort creation);
b. on recent studies with new machines (for deployment).

4. Provide confidence scores of each prediction to request
manual inspection if needed

Material

Data Inventory

In this work, we use brainMRI acquisitions from two different
datasets originating from different places:

– Dataset A: 32,844 studies acquired between 2007 and
2017 (see Fig. 3 for distribution across years) from hos-
pital A in our institution (the decrease in the number of
cases after 2012 is due to the methodology used for the
cohort selection of our dataset, which was based on exam
codes more commonly used before 2012, reflecting the
changes of protocols over time).

– Dataset B: 6325 studies acquired in 2017, from 39 differ-
ent clinical sites.

Note that these two datasets contain the fullMRI studies, as
they are used in a radiology environment. Dataset A is our
working dataset. It is used for training, validation, and the first
tests of our hypothesis. To this purpose, it has been split ran-
domly into training (70%), validation (10%), and testing
(20%) sets at the exam/study level. Dataset B is used to vali-
date the generalization of our classification model trained on
dataset A (it is never used for training).

In Table 1, we list the number of studies and series included
in each dataset. In Table 2, we show the number of studies
from different manufacturers in each dataset.

Despite the fact that all studies are brain MRI, they have
been collected in different patient settings. Dataset A has been
collected with a few selection criteria: the presence of four
defined sequences (T1-weighted pre- and postcontrast,
FLAIR and ADC) and the manufacturer attribute
(0008,0070) had to be specified in the DICOM file (to allow
for data analysis; it is also a required attribute). Dataset B was
collected consecutively and contained at least four sequences.

Fig. 3 Distribution of year of study for dataset A

Table 1 Dataset descriptions and figures

No. of studies No. of series No. of annotated series

Dataset A 32,844 707,040 600,069

- Training 22,850 491,822 471,329

- Validation 3430 74,091 62,871

- Testing 6564 141,127 119,869

Dataset B 6765 86,513 69,356
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Data Annotation Process

The series of each dataset are labeled into 8 different catego-
ries as follows:

– T1-weighted (labeled t1)
– T2-weighted (labeled t2)
– Fluid attenuation inversion recovery (labeled flair)
– Diffusion (labeled diffusion)
– Susceptibility-weighted and gradient echo (labeled suscgre)
– MR angiography (labeled mra)
– Localizers used for planning (labeled scout)
– Screenshots, perfusion, spectroscopy… (labeled other)

It is important to mention that these categories cover most
of the possible series types that can be found in an MRI study
of the brain.

It would be very time-consuming to label each series by
visual inspection. Thus, we leverage the SD attribute of the
series to annotate the data more efficiently.

The annotation process consists of the following steps:

1. The SD attribute of each series is extracted.
2. The most common SDs are selected for annotation (such as

to cover approximately 80% of the series in the dataset).
3. The selected SDs are labeled by a radiologist as one of the

abovementioned 8 categories or to “unknown” if it is not
possible to decide (i.e., the SD “T1 AXIAL POST” is
labeled as t1, but the SD “REFORMAT” is labeled as
unknown because it is impossible to know what type of
contrast it is just based on the SD content).

4. For the series labeled as unknown, there are two possible
options:

a. If the SD is explicit (contains meaningful contrast or
sequence information): the radiologist is presented

with 5 random examples of images corresponding to
this SD. Then, either the radiologist can decide on the
label, or if it is not possible to decide, the SD remains
labeled as unknown;

b. If the SD is not explicit (for instance “Axial” or
“REFORMAT”), the SD remains labeled as unknown.

In Table 3, we show for each dataset the number of unique
SDs they contain, how many SDs were labeled and to how
many labeled series the SD correspond to. We notice that by
labeling approximately 10% of the unique series descriptions,
approximately 80–85% of the related series can be labeled.

For dataset B, we annotated the 238 most frequent SDs and
added 90 other SDs for series from under-represented manufac-
turers (see Table 2 for the distribution). Over the 328 SDs labeled
for this dataset, more than 10% were labeled as “unknown.”

In “Series Description Variability Analysis,” we show the
figures corresponding to the SD overlap across datasets.

Method: Finding Relevant Features and Building
a Classifier

In this section, we present the two main steps of the classifier
construction. First, a few discriminating DICOM attributes are
selected (to keep the classifier as simple as possible and to
obtain a classification that is easily interpretable). Second, a
training validation process is performed. This section essen-
tially aims to explain and justify our choices. The results are
presented in the following section.

Features Selection and Extraction

Instead of retaining all possible DICOM attributes, we begin
with a simple and reasonable selection. We preselect the
DICOM attributes coming from the following modules:

– TheMR Image module: 51 attributes (type 1: 8, type 2: 7)
– The EnhancedMR Pulse Sequence Module: 18 attributes

(all type 1)
– The Image Pixel module (corresponding to the image

pixel data characteristics): 23 attributes (type 1: 19, some
are redundant with the MR image module)

– Contrast/bolus module: 1 attribute (type 2).

These DICOM attributes are extracted by scanning each
series of our datasets. We use the Python package Pydicom
[36] for reading the DICOM metadata and a MongoDB data-
base [37] to store these values.

A first filtering is applied on these attributes just by
checking if they have more than one unique value over the
training set (including the possibility of not being specified).
Otherwise, this attribute is considered as not relevant, as it has
the same value across all classes.

Table 3 Number of labeled SDs per dataset

No. of
unique SDs

No. of unique
labeled SDs

No. of labeled
series (not labeled
as “unknown”)
(% of series)

Dataset A 11,558 1023 600,069 (87%)

Dataset B 2753 328 (43 “unknown”) 67,958 (79%)

Table 2 Number of studies per manufacturer for each dataset

GE Healthcare Siemens Toshiba Philips

Dataset A 20,171 12,594 79 0

Dataset B 6281 104 277 103
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Then, the attributes are tokenized (using one hot encoding).
There are several types of attribute values that we transform in
the following way:

– Number: converted to float by default
– String: converted to binary features as follows:

& If the standard defines a finite set of predefined values,
each possible value of the standard is considered as a
binary feature.

& If there are no predefined values, the training dataset is
used to identify the possible values, and these are convert-
ed into binary features.

– List of strings: each value of the list is converted into a
binary feature (following the same procedure described
above).

– Exceptions: for the attribute “Pixel Spacing”
(0028,0030), only the first floating value is retained as
pixels in slices are generally isotropic.

For instance, the attribute “Photometric Interpretation”
(0028,0004) can have the values “MONOCHROME1,”
“MONOCHROME2,” “RGB”…We will thus consider a fea-
ture RGB that will take binary values. This also means that if
the feature RGB is set to 1, the feature MONOCHROME1
will be necessarily set to 0.

We add one feature that is not directly derived from a
DICOM attribute: the number of image instances per series
by identifying the number of files that have the same Series
Instance UID (0020,000E). This is easily computed when
parsing all DICOM files.

Classifier Training

Once the features are tokenized and selected, we are ready to
train the classifier. The training process follows classical ma-
chine learning rules:

– Training, validation, and testing datasets are defined (the
testing set being used in the final stage after classifier and
hyperparameters selection).

– For each trained classifier, a grid-search is applied to find
the best hyperparameters.

– The selection of the hyperparameters search is done by
relying on the model results on the validation set.

In this work, we use a random forest classifier [38], as it has
proved to have a very good bias and variance trade-off and is
very robust to overfitting (due to the bootstrap training of each
single tree). This classifier also allows us to derive confidence
scores that are very important to provide certainty information
on the results to the end user. This classifier is also very fast to

train and test, one of the requirements of the solution we want
to build. This also allows more flexibility and does not require
any expensive GPU resources (as is currently the trend).

Note on the Anatomical Plane Information

The anatomical plane information (sagittal, coronal, axial) is
very often specified in the SD (see the examples in Fig. 1).
However, this information can be easily derived from the
Image Orientation Patient (0020,0037) DICOM attribute.
This attribute gives the direction cosines of the first row (first
three values) and first column (last three values) of an image
with respect to the patient. The anatomical plane information
can then be computed by finding the main direction of the
normal to the slices.

Therefore, relying directly on the aforementioned attribute
is much more reliable than using information entered manu-
ally in the series description.

Technical Details

The development of each step of this work is performed using
Python open-source packages:

– Pydicom [36] for DICOM metadata extraction.
– MongoDB [37] for the data storage and organization.
– Pandas [39] for the data manipulation and filtering.
– Scikit-learn [40] for the machine learning part (classifier

training and results analysis).

All steps are performed on a standard laptop CPU with a
reasonable amount of RAM. Once the DICOM metadata is
retrieved, the preprocessing steps do not take more than a
minute to complete (on the full training dataset); the classifier
training takes seconds.

Results and Discussion

In this section, we present quantitative results for each part of
the process. We first provide a few figures describing the SD
population (“Series Description Variability Analysis”). We
then show the intermediary steps of the feature extraction
procedure (“Across Institutions”). Finally, we present the clas-
sification results for each of the datasets (“Classification”).

Series Description Variability Analysis

Across Time

We split dataset A into two chunks of approximately the same
size: series acquired before 2010 and series acquired after
2010. These datasets contain 3520 and 8949 unique SDs,
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respectively. The size of the unique SD intersection is 921
SDs.

For instance, after 2010, new SDs have been introduced,
such as “Dif,” “Dif_FA,” “Dif_ADC,” or “Ax 3D SWAN.”
New SDs can be introduced for several different reasons: ac-
quisitions from a different scanner/model/software, introduc-
tion of new sequences, and/or protocol changes.

Across Institutions

Datasets A and B contain 11,558 and 2753 unique SDs, respec-
tively. Datasets A and B have only 134 unique SDs in common.
This small SD overlap reinforces the observation that relying on
SD mapping lists alone is not generalizable at all.

Feature Extraction

For the feature extraction validation, we use dataset A.
Starting from 73 DICOM attributes (see the Appendix for
the full list), we apply the steps described in “Method:
Finding Relevant Features and Building a Classifier.” The

results after each step are given in Table 4. The final list of
DICOM attributes and the values tokenized as features are
given in Table 5.

Classification

In this section, we present the quantitative results on datasets
A and B. The classifier is trained on the training set of dataset
A and is then used on all other datasets without retraining.
This allows us to validate the robustness and generalization
capability of our approach.

Dataset A

Hyperparameter Search and Best Classifier Selection We did
not set a maximum tree depth, but we tuned the minimum leaf
size (ranging from 5 to 50). The classes are balanced to have
the same weight while training. We also compared the results
on the validation set for the following parameters: split crite-
rion (Gini vs entropy) and number of trees (from 1 to 200).

The best classification results were obtained with the ran-
dom forest classifier with minimum leaf size of 10, entropy
split criterion, and 150 trees. We use this classifier for all
subsequent experiments.

Table 4 Number of DICOM attributes remaining after each selection
and processing step

Number of DICOM attributes

Initial state 73

Keeping type 1 and type 2
DICOM attributes

35

Meaningless attributes removal 17

Number of features

Attributes tokenization to features 30

Table 5 Final list of DICOM
attributes kept for the
classification task

DICOM attribute DICOM tag DICOM values tokenized as features

Echo time (0018,0081)

Inversion time (0018,0082)

Echo train length (0018,0091)

Repetition time (0018,0080)

Trigger time (0018,1060)

Sequence variant (0018,0021) SK, MTC, SS, TRSS, SP, MP, OSP, TOF, NONE

Scan options (0018,0022) PER, RG, CG, PPG, FC, PFF, PFP, SP, FS

Scanning sequence (0018,0020) SE, IR, GR, EP, RM

MR acquisition type (0018,0023) 2D, 3D

Image type (0008,0008) ORIGINAL, DERIVED, PRIMARY, SECONDARY

Pixel spacing (0028,0030)

Slice thickness (0018,0050)

Photometric interpretation (0028,0100) RGB, MONOCHROME1, MONOCHROME2

Number of images

Contrast bolus agent (0018,0010)
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Evaluating the Robustness Across Time In this experiment, we
want to assess whether our approach is robust across time. To
test this hypothesis, we isolate the studies performed in 2017
(14,410 series) from the remainder of the dataset, and we use it
as our test set. This set is called A2017. We then build 10
datasets AN, where N is in ⟦2008, 2016⟧ and where AN holds
studies acquired before year N. Each dataset AN is split into
training and validation sets (80%, 20% respectively).



To train the random forest on these datasets, we keep the
parameters that were selected in the previous hyperparameter
search. The performance of the trained random forest is then
evaluated on the series acquired in 2017.

Figure 4 shows the accuracy on the testing dataset A2017

when training the classifier on datasets AN. The percentage
of predictions with confidence scores below 0.5 is also
given. It reflects the uncertainty of the predictions. We
observe that by continuing to add more recent studies to
the training set, the uncertainty of the predictions de-
creases, and the accuracy also increases. In particular, we
can see that after adding data from 2011, the accuracy
becomes very high and remains very high.

Figure 5 shows the precision and recall per sequence type
on dataset A2017 when training the classifier on datasets AN.
For the classes diffusion, flair, and other, we see very high
precision and recall across training sets. For the classes mra

and suscgre, the recall is very high, while the precision im-
proves when adding more recent data. In contrast, for the
classes t1, t2, and scout, the precision is very high, while the
recall improves when adding more recent data.

Results on the Full Dataset The following results are obtained
on the full testing set of dataset A (119,869 series) with the
random forest classifier trained on the training set of dataset A
(417,329 series).

The overall error rate is 0.05% (59 errors). Figure 6 shows
the confidence matrices of the absolute and the relative results
per class. The y-axes show the true label, while the x-axes
correspond to the predicted classes. For instance, all diffusion
series are classified as diffusion (first row of the confidence
matrices). The areas under the ROC curves (AUC) are 100.0,
99.99, 99.99, 99.99, 99.99, 100.0, 99.99, and 99.99 for the
classes diffusion, flair, mra, other, scout, suscgre, t1, and t2,
respectively. Figure 7 shows the probability distributions for
the correct and incorrect predictions.

Errors Analysis As mentioned earlier, the results for the test set
of dataset A are very high. However, there are a few errors (59
in total), as shown in Fig. 6. We analyzed the erroneous predic-
tions that have confidence scores above 0.5 (49 predictions, as
shown in Fig. 7) by opening the corresponding series in a
DICOM viewer and by checking the true and predicted labels.
For 32 cases (~ 65%), the second-most probable prediction was
correct. We discovered that 30 series (61%) were incorrectly
annotated and correctly classified, 8 series (16%) had ambigu-
ous annotations, 7 series (14%) were incorrectly classified but
the prediction was partially true (see below explanations), and
the remaining 4 series (8%) were simply incorrectly classified

Fig. 4 Accuracy and uncertainty on dataset A2017 when training on
datasets AN

Fig. 5 Precision and recall per sequence type on dataset A2017 when training on datasets AN
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with low confidence scores. Figure 8 shows three examples of
incorrectly annotated series. We noticed that most of the time,
this occurs when a derived series, such as a maximum intensity
projection (MIP) or a screenshot, is saved using the SD of the
original series. Interestingly, we observed that the original series
were always correctly classified. As our annotation process is
based on the SD (see “Data Annotation Process”), this type of
error may sometimes occur. Some cases were more ambiguous;
for example, four series corresponding to MIP series were gen-
erated from susceptibility images. Those series were annotated
as mra (which may be arguable because of the high prevalence
ofMIP series derived for angiogram studies in the datasets) and

classified as suscgre. For other series, some predictions were
false but not that far from the truth. The four series incorrectly
classified all correspond to a confusion between the classes t1,
mra, and other.

Dataset B

Results Table 6 shows the results for dataset B. When consid-
ering the predicted class with the highest confidence score, the
overall accuracy is 93.0%, while when taking into account
only the predictions with confidence score above 0.5, the ac-
curacy reaches 97.4%. The accuracy is also given per

Fig. 6 Absolute and relative confusion matrices on all series of dataset A, with predictions from the highest scores

Fig. 7 Confidence scores distribution for dataset A for correct (blue) and incorrect (orange) predictions. The y-axis range has been reduced to show the
distribution of incorrect predictions (the frequency of the correct predictions extends well beyond 40)

756 J Digit Imaging (2020) 33:747–762



manufacturer. The best results are obtained for manufacturers
1 and 2, ranging from 99 to 100% (which is not very surpris-
ing considering that the classifier has been trained with data
only from these manufacturers).

Figures 9 and 10 show the absolute and relative confidence
matrices given the best predicted class for all series and for all
series with confidence scores above 0.5 respectively.

Figure 11 shows the confidence scores distribution over
all of the series for correct and incorrect predictions. A few
incorrect predictions have confidence scores of 1.0. For all
of these series, we observed that the ImageType tag was
incorrectly populated with values corresponding to T2-
weighted series.

Errors Analysis Similar to dataset A, we performed a deep
analysis on the errors. We observed that the incorrect predic-
tions with high confidence scores (> 0.75) were all due to false
or very ambiguous annotations. This corresponds to 48 cases,
from which 2 cases were labeled as t2 (the SD was “CORT2
HIPOCAMPO”), but after opening those images, we

discovered that they were flair images. The remaining 40
cases were B0 diffusion maps predicted as t2, which is rele-
vant as B0 diffusion maps are T2-weighted. There were also
1290 incorrect predictions with low confidence scores (< 0.75
and > 0.5). Of those cases, 722 (56%) diffusion series were
predicted as t2 (an example is given in Table 7). This is ex-
plained by the fact that the acquisition parameters used corre-
spond to t2 series, and the ImageType attribute was not cor-
rectly filled by the manufacturers Siemens and Philips (it was
set to [ORIGINAL, PRIMARY], although it should be
[ORIGINAL, DERIVED], as the diffusion maps are derived
maps). For 553 cases (43%), postcontrast T1-weighted series
reformatted as 3D were predicted as t1, which makes some
sense. We found 6 cases (0.5%) with incorrect labels (e.g., a
series with description “SAG T1 FAT POS” was a flair series
and was predicted as such). The remaining 9 cases (0.7%)
were false predictions with very low confidence scores (close
to 0.5) and corresponded to rare sequences in our training set
(e.g., perfusion series).

Study Level Analysis Tables 7 and 8 show examples of predic-
tions for all series of two complete studies. Those examples show
the variety of SDs that can be found in two different studies (we
also notice that the series descriptions combine English and
Portuguese words), and they also show the anatomical plane
results (see “Note on the Anatomical Plane Information”) and
the confidence scores for all prediction results.

The results can also be analyzed at the study level instead
of at the series level. For each study, we can keep for each
class one series that has been labeled as such with the highest
score (meaning we would have one series for each class of
each study). We can then compute the accuracy on those se-
ries. The accuracies for flair, mra, and scout are all 100%. The
accuracies reach 98.7% for t2, 94.4% for diffusion, 89.4% for
t1, and 87.1% for suscgre.

Fig. 8 Left: series annotated as t2 (SD: “Ax T2 POST”), correctly classified as t1. Middle: series annotated as t1 (SD: “Ax T1 POST”) and classified as
other. Right: series annotated as t1 (SD: “SAG BRAVO POST RFMT”) which is a screenshot of a t1 series

Table 6 Accuracy results for dataset B, on all series and per
manufacturer

Percent of series set as
“unknown” (number)

Accuracy
(%)

Best class result 0 (0) 93.0

Best class with
confidence score > 0.5

23.4 (15,900) 97.4

Per Manufacturer (best class with confidence score > 0.5)

- GE Healthcare 23.5 99.0

- Siemens 4.7 100.0

- Toshiba 19.6 72.5

- Philips 43.2 71.6
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Computation Time

During the experiments, we also evaluated the performance of
the solution. While the classification time per series is almost
instantaneous, the overhead comes from the series metadata
reading. Once the metadata are extracted from the DICOM
file, it takes 0.4 ms per series for the features processing and
prediction (on a laptop with a dual-core Intel Xeon CPU E3-
1505M 3GHz). It is worth mentioning that this process could
be easily parallelized to achieve even faster computation.

Discussion

The results presented above allow us to answer several ques-
tions and to more thoroughly understand the advantages and
limits of our approach.

The study on SD variability across time and institutions
(“Series Description Variability Analysis”) validates our ap-
proach and clearly invalidates the SD lookup table approach.
The number of unique SDs used can change greatly across
time and location. Creating and maintaining a mapping list

would be very time-consuming and not sufficiently reliable.
Indeed, we have found that more than 10% of SDs are not
informative enough for the radiologist.

The first experiment on dataset A with training datasets
containing relatively recent studies shows the robustness of
the method (see “Evaluating the Robustness Across Time”).
Using older training data than the testing data is not a problem.
The classifier remains very robust even when the testing data
are a few years more recent than the training data. This gives
us good reason to think that we would not have to retrain a
new classifier too frequently. The slight changes that we may
observe are most likely related to changes on the manufacturer
side and in clinical practice (such as new protocols). The un-
certainty given by the algorithm also provides good clues to
what data to add in the training set to enhance the results.

The experiments on the full dataset A show the maximum
reachable accuracy when working on a dataset similar to the
training set. The accuracy achieved is almost perfect, with an
error rate of 0.05% (see “Results on the Full Dataset”). The
trained classifier can thus be used with high confidence for
cohort creation and as a component for series selection to

Fig. 9 Absolute and relative confusion matrices on all series of dataset B, with predictions from highest scores

Fig. 10 Absolute and relative confusion matrices on all series with confidence scores above 0.5 of dataset B, with predictions from highest scores
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automate inputs to algorithm routing. The error analysis (see
“Errors Analysis”) shows that approximately 60% of the er-
rors were actually due to incorrect annotations, and for all of
those cases, the predictions were effectively correct. Other
errors were due to the ambiguity of the annotations.
However, the predictions were very close to the true labels.
Only 8% of the errors were real errors (but could be explained
by the lack of relevant DICOM attributes), and all occurred
due to confusion between the classes t1, mra, and other.

The experiments on dataset B show how the classifier can
generalize to other types of datasets, coming from other insti-
tutions, from other manufacturers and from other countries.
For data from manufacturers GE Healthcare and Siemens that
were represented in dataset A, the classifier generalizes very
well (almost perfectly) for diffusion, flair, suscgre, and t2 se-
ries (between 99 and 100% accuracies). When testing on the
two other manufacturers, Toshiba and Philips, the overall ac-
curacy decreases for two main reasons: (1) confusion between

Fig. 11 Confidence scores
distribution for dataset B for
correct (blue) and incorrect
(orange) predictions

Table 7 Example of a study with bad prediction results (study from the manufacturer Philips)

Series description anatomical_plane seqfamily_manual_label seqfamily_pred seqfamily_pred_proba

SAG T1 TFE POS GD Sagittal t1 mra 0.424657

SAG FLAIR Sagittal Flair Flair 0.694975

rSAG T1_SE Sagittal t1 t1 0.578059

sReg-rDIFUSAD SENSE b1000 Axial Diffusion t2 0.719391

SAG T2 FLAIR 3D ISO Sagittal NaN Flair 0.723593

SWlp Filme Axial suscgre mra 0.451012

COR T1 3D TFE ISO POS GD coronal t1 mra 0.460067

rDIFUSAO EPI Axial Diffusion t2 0.716603

rSAG T1_SE Sagittal t1 t1 0.578059

sReg-rDIFUSAO SENSE b0 Axial Diffusion t2 0.719391

SAG T2 3D DRIVE Sagittal NaN t2 0.632825

AXI T2 MVXD Axial t2 t2 0.825407

SAG T2 3D DRIVE Sagittal NaN t2 0.632825

AXI FLAIR Axial Flair Flair 0.694975

SWIp HR Axial suscgre mra 0.370486

rSWIp Axial suscgre mra 0.447397

COR T2 MVXD Coronal t2 t2 0.832831

Reg-rDIFUSAO SENSE Axail Diffusion t2 0.716603

AXI T1 TFE POS GD Axial t1 mra 0.424657

rSAG T1 3D TFE ISO POS GD Sagittal t1 t1 t2 0.381115

dReg-rDIFUSAO SENSE MAPA ADC Axial Diffusion Diffusion 1.000000
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diffusion and t2 classes due to the incorrect usage of the
DICOM attribute ImageType and (2) contrasted T1 series (la-
beled as t1) classified as mra. Adding the recent DICOM
attribute “diffusion B-value” (type 1 tag) as a feature would
help resolve a large number of these wrong predictions. The
error analysis also shows that incorrect predictions with high
confidence scores were all due to incorrect or ambiguous an-
notations, meaning that the confidence score is very reliable
for filtering the predictions.

Although we took all of the precautions to build our ap-
proach on DICOM attributes required by the DICOM stan-
dard (which were supposedly consistent across vendors), the
results show that inconsistencies remain across vendors. Even
required attributes can be incorrectly populated and can lead
to confusion.

The computation time of this approach (0.4 ms per series)
is a considerable advantage when compared to image-based
approaches. The overhead of such an approach lies at the
DICOM content reading level and not at the inference level
(however, this is an incompressible computation time, what-
ever the chosen solution).

Conclusion

In this work, we presented an approach to automatically clas-
sify series of brain MRI studies into 8 different categories
covering the most common sequence types. The solution pre-
sented relies on DICOM metadata only, including acquisition
parameters and image-related information. The approach re-
lies on DICOM attributes that are required by the standard,
thus ensuring the best generalization capability.

A specific strategy has been employed to rapidly and effi-
ciently label the datasets based on series descriptions,
allowing us to test our solution on two different large and
diverse datasets (hundreds of thousands of series). These
datasets cover almost all of the use cases that could be found
in a real deployment environment (different institutions, man-
ufacturers, countries) and thus gives us very high confidence
in the presented results. The approach generalizes well across
time, and a few years’ difference between the training and
testing sets does not overly degrade the results. The method
proposed also generalizes very well to datasets from different
institutions, reaching an accuracy of 97.4% on predictions

Table 8 Example of a study with good prediction results (study from the manufacturer GE Healthcare) (NaN means that the series has not been
manually labeled)

Series description anatomical_plane seqfamily_manual_label seqfamily_pred seqfamily_pred_proba

Apparent diffusion coefficient (mm2/s) Axial Diffusion Diffusion 1.000000

FILT_PHA: 3D SWAN T2* Axial suscgre suscgre 0.502039

MPRO Ob_Cor_A-> P_Average_sp:3.0_th:3.0 Coronal Unknown mra 0.396210

Ph1/MASC E ANGIO VENOSA Unknown mra mra 0.448613

Ax T2 FLAIR Axial Flair Flair 0.783323

ANGIO ARTIRIAL 3DTOF Axial mra mra 0.611182

RECON ARTERIAL Unknown NaN mra 0.650378

RECON VENOSA Unknown NaN mra 0.426741

Sag T1 Sagittal t1 t1 0.385957

SAG 3D FAT POS Sagittal Unknown mra 0.431439

MASC E ANGIO VENOSA Unknown mra mra 0.448613

3D SWAN T2* Axial suscgre suscgre 0.502039

MASC E ANGIO VENOSA Unknown mra mra 0.448613

MPR Ob_Sag_L-> R_Average_sp:7.0_th:7.0 Sagittal Unknown scout 0.364711

RECON VENOSA Unknown NaN mra 0.462741

Ax FSE T2 FAT Axial t2 t2 0.789516

MPR Ob_Ax_S-> I_Average_sp:3.0_th:3.0 Axial Unknown mra 0.39210

(3526/1201/1)-(3526/1200/1) Unknown NaN mra 0.507088

PU:AX DIFUSAO Axial Diffusion Diffusion 0.673117

RECON ARTERIAL Unkown NaN mra 0.651717

AX DUFISAO Axial Diffusion Diffusion 0.637458

RECON ARTERIAL Unknown NaN mra 0.650378

PJN:ANGIO ARTERIAL 3DTOF Unknown mra mra 0.845646

COR FSE T2 FT Coronal t2 t2 0.796161

Exponential apparent diffusion coefficient Axial Diffusion Diffusion 1.000000
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with confidence scores above 0.5. The main differences in
performance are observed when testing data from different
manufacturers that were not represented in the training set
(Toshiba and Philips). An analysis of the errors shows that
DICOM metadata population deviating from the standard
could not be captured by our classifier and that some classes
can sometimes be ambiguous (t1, mra and other). Should a
screenshot of a contrasted T1-weighted series be labeled as a
t1 or other (i.e., “screenshot”)? However, we believe that this
ambiguity would depend on the use case. The confidence
scores for each class thus provide valuable information that
could be further used for different scenarios of usage.

For future improvements, we would like to add more clas-
ses to refine the class other. This class contains very different
sequence types (perfusion, spectroscopy, screenshots…) that
were not well represented in the training dataset and that
should be considered as new classes in the next experiments.

The methodology presented is sufficiently generic to be
adapted to changes and the evolution of the DICOM standard.
New DICOM attributes can be easily added for training (for
instance, the “Diffusion B-value” attribute) in future versions.
However, this supposes that the manufacturers follow the
established standard.

We hope that in the future, both medical imaging institu-
tions and manufacturers can work on the standardization of
the naming ofMRI sequences.While waiting for this progress
to occur, the solution proposed shows that leveraging the
DICOM metadata can be relevant for the categorization of
the most common MRI sequence types. To introduce more
granularity, relying on the pixel data may have to be
examined.

In any case, this solution is already a good start for the
selection of some types of sequences, even on datasets coming
from different institutions. It can be used as a first filtering step
to prevent encountering image-based inference in all series.

Appendix A

The original list of DICOM attributes was the following:
Image Type , Samples Per Pixe l , Photomet r ic

Interpretation, Bits Allocated, Bits Stored, High Bit,
Scanning Sequence, Sequence Variant, Scan Options, MR
Acquisition Type, Repetition Time, Echo Time, Echo Train
Length, Inversion Time, Trigger Time, Sequence Name,
Angio Flag, Number Of Averages, Imaging Frequency,
Imaged Nucleus, Echo Number, Magnetic Field Strength,
Spacing Between Slices, Number Of Phase Encoding Steps,
Percent Sampling, Percent Phase Field Of View, Pixel
Bandwidth, Nominal Interval, Beat Refection Flag, Low RR
Value, High RRValue, Intervals Acquired, Intervals Rejected,
PVC Rejection, Skip Beats, Heart Rate, Cardiac Number Of
Images, Trigger Window, Rate, Reconstruction Diameter,
Receive Coil Name, Transmit Coil Name, Acquisition

Matrix, In Plane Phase Encoding Direction, Flip Angle,
SAR, Variable Flip Angle Flag, DB-Dt, Temporal Position
Identifier, Number Of Temporal Positions,Temporal
Resolution, Pulse Sequence Name, MR Acquisition Type,
Echo Pulse Sequence, Multiple Sin Echo, Multiplanar
Excitation, Phase Contrast, Time Of Flight Contrast, Arterial
Spin Labeling Contrast, Steady State Pulse Sequence, Echo
Planar Pulse Sequence, Saturation Recovery, Spectrally
Selected Suppression, Oversampling Phase, Geometry Of K
Sapce Traversal, Rectilinear Phase Encode Reordering,
Segmented K Space Traversal, Coverage Of K Space,
Number Of K Space Trajectories, Pixel Spacing, Slice
Thickness, Images In Acquisition, Contrast Bolus Agent.
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