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Abstract
Automatic multi-classification of breast cancer histopathological images has remained one of the top-priority research areas in the
field of biomedical informatics, due to the great clinical significance of multi-classification in providing diagnosis and prognosis
of breast cancer. In this work, two machine learning approaches are thoroughly explored and compared for the task of automatic
magnification-dependent multi-classification on a balanced BreakHis dataset for the detection of breast cancer. The first approach
is based on handcrafted features which are extracted using Hu moment, color histogram, and Haralick textures. The extracted
features are then utilized to train the conventional classifiers, while the second approach is based on transfer learning where the
pre-existing networks (VGG16, VGG19, and ResNet50) are utilized as feature extractor and as a baseline model. The results
reveal that the use of pre-trained networks as feature extractor exhibited superior performance in contrast to baseline approach
and handcrafted approach for all the magnifications. Moreover, it has been observed that the augmentation plays a pivotal role in
further enhancing the classification accuracy. In this context, the VGG16 network with linear SVM provides the highest accuracy
that is computed in two forms, (a) patch-based accuracies (93.97% for 40×, 92.92% for 100×, 91.23% for 200×, and 91.79% for
400×); (b) patient-based accuracies (93.25% for 40×, 91.87% for 100×, 91.5% for 200×, and 92.31% for 400×) for the classi-
fication of magnification-dependent histopathological images. Additionally, “Fibro-adenoma” (benign) and “Mucous
Carcinoma” (malignant) classes have been found to be the most complex classes for the entire magnification factors.
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Introduction

Breast cancer (BC) has been recognized as one of the most
frequent cancers among females. The reports from the World
HealthOrganization (WHO) and theAmericanCancer Society
(ACS) revealed that BC is the second leading cause of death
after lungcancer [1,2].BCisaffectingabout2.1millionwomen
every year and accounted for 627,000 deaths as per the latest
report fromWHO [1]. Among advancedmedical imaging mo-
dalities (thermography, magnetic resonance imaging, comput-
ed tomography scan, ultrasound, mammography),

histopathological modality of imaging is still acknowledged
as a paragon of excellence in the diagnosis of cancer [3]. The
paucity of the pathologist is a serious barrier in the analysis of
histopathological images.There isasinglepathologist for every
100,000 and 130,000 people in sub-Saharan Africa and China
respectively [4].A similar scenario has been found in India and
the USA. In India, the availability of pathologist is one over
65,000 people, while in the USA, it is 5.7 over 100,000 people
[5]. Thus, the dearth of pathologists in the developed and de-
veloping countries gives rise to the intense burden on the avail-
able pathologist.

Digital pathology is a technology that allows digitization of
tissue samples into digital images and tries to imitate the pa-
thologist by introducing computational algorithms for analysis
[6, 7]. The computational algorithms in digital pathology are
employed to detect fine details and information that cannot
easily be determined by a human eye. Despite the emergence
of such new technologies, precise diagnosis and treatment is
still a challenge. Since the selection of treatment procedure for
BC largely depends upon the accurate classification of cancer
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from histopathological images, but lacking of a skilled and
experienced pathologist as well as over-weariness of the pathol-
ogist sometimes leads to misclassification which results in mis-
diagnosis. After the establishment of “precision medicine ini-
tiatives” by Barak Obama in 2015, the automated classification
of BC from histopathological images has become one of the
most active research areas in medicine [8, 9]. The demand to
develop an automated classification system for BC to offer a
reliable diagnosis motivates us to work in this direction.

In the classification of BC histopathological data, multi-
classification is a big challenge. Some well-known factors such as
similarity in clinical manifestations, coherency in cancerous cells of
different classes, irregularity in color distributionduring staining, and
variations in appearance of images at different resolutions belonging
to the same classes make the multi-classification task very compli-
cated [10, 11]. In the medical domain, in-depth knowledge of dis-
ease is always required to provide an accurate diagnosis. Multi-
classification assists in providing detailed information about the lo-
cation of cancer which ultimately helps in making an accurate de-
cision regardingdiagnosis. Insteadof great clinical significance, very
few contributions have been made towards multi-classification by
the research community. However, plenty of research studies have
been conducted for binary classification. So, in the present work,we
have focused on themulti-classification of the BC histopathological
data. The transfer learning is employed for automated multi-
classification of the histopathological images which utilizes two
aspects: (1) as a feature extractor and (2) as a baseline model. A
handcrafted approach has also been proposed which includes Hu
moment, Haralick texture, and colored histogram for the
abovementioned application. In this context, a comparative study
has been conducted inwhich theperformancemetrics obtained from
different classifiers for handcrafted features at various magnification
levels (40×, 100×, 200×, and 400×) are compared. In a similar
manner, the performances of transfer learning-based systems is com-
paredwith their corresponding counterparts for an in-depth analysis.
The uniqueness of this study lies in the fact that it provides a single
platform to the variety of researchers and readers with the applica-
bility of various machine learning techniques in order to resolve the
breast cancer diagnosis problem through a widely available health
informatics data in a comparative and conclusive manner.

Relevant Studies

An automated classification system is mainly composed of
data acquisition, data pre-processing, feature extraction, clas-
sification, and decision-making stage. Feature extraction is the
most crucial stage in every kind of classification system be-
cause the extracted features significantly influence the system
performance. In relevant studies, most of the proposed classi-
fication systems utilize “texture” of the images as a feature
that are based on various feature descriptors like gray-level co-
occurrence matrix (GLCM), local binary pattern (LBP) [12],
graph run length matrix (GRLM) [13], histogram of gradient

(HOG) [12], local phase quantization (LPQ), scale invariant
feature transform (SIFT), and speeded-up robust features
(SURF). The SIFT and SURF features were later
overperformed by the oriented fast and rotated brief (ORB)
method due to its comparable performance, robustness to
noise, and less requirement of computational power [14].
The morphological operations were then followed by a
wavelet-based covariance descriptor [15], wavelet neural net-
work [16], spoke LBP, and ring LBP [17]. In [18], one class
kernel principle component analysis (KPCA) model was pro-
posed in which different features were extracted from each
image in the class and one KPCA model was trained for each
extracted feature separately. The same operation was repeated
for the entire images present in other classes, and the trained
KPCA models were then ensemble to make the decision. The
KPCA method obtained 92% accuracy on BC histopatholog-
ical images and provided a new turning point in the research.

The systems proposed in above-discussed studies utilize
handcrafted features to make a classification that requires a
fairly large domain expertise. The handcrafted feature descrip-
tors extract only inadequate features which make these sys-
tems non-adaptable to the new data and incapable to provide
discriminate analysis. Eventually, a classifier is always re-
quired to make a classification decision that has the ability to
handle the acquired feature space. However, the selection of
an appropriate classifier is a very complicated task. Logistic
regression (LR), QDA [19, 20], support vector machine
(SVM) [21], artificial neural network (ANN) [12], naïve bays
(NB), k-nearest neighbor (k-NN), linear discriminate analysis
(LDA) [13], random forests (RF) [22] are some different clas-
sifiers that were used in earlier studies.

In the past few years, many efforts have beenmade to apply
convolutional neural networks (CNNs) on the histopatholog-
ical imaging modality because CNNs have already shown
impressive performance on the classification of natural images
[23–28]. CNNs are famous for their ability to learn directly
from the data in a hierarchical manner [29, 30]. In [31], a pre-
trained CNN (AlexNet) was used for binary classification of
BC tissue images (BreakHis dataset [32]) and trained from
scratch. To handle the increasing complexity of the pre-
trained model, the authors used two different methods for
patches generation: (1) random extraction, and (2) sliding
window (with 50% overlapping). Further, the results obtained
from patch generation methods were combined using three
fusion rules (sum, max, and average) and a comparative study
was given with [20]. After successful implementation of CNN
onmedical images, transfer of knowledge from natural images
to medical images became a big concern in research due to a
substantial difference between the natural andmedical images.
In [33], a pre-trained network (CaffeNet) and linear regression
were employed as a feature extractor and classifier, respective-
ly. The features were extracted from the last three layers only,
and performance was evaluated for the possible combination
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of layers in conjunction with 1, 4, and 16 patches from the
input image. In [34], the same trend was followed as in [31],
but differences lie in the number of patches extracted from the
images (12 non-overlapped patches), the dataset (BACH
[35]), and employed CNN. They proposed their own CNN
for feature extraction and used SVM as a classifier.

Fine-tuning of the pre-trained network is also one of the
key aspects of transfer learning according to which the param-
eters of pre-trained networks (like learning rate, weights, and
the layers of the network) are fine-tuned over the new task. In
the study [36], the concept of fine-tuning was incorporated. To
fine-tune the Inception and ResNet pre-trained networks, first,
they considered only the last layer of the network and then
considered the entire layers of the network. The obtained re-
sults from their study showed that the ResNet approach per-
formed effectively in cancer-type classification but with some
specific settings related to the data augmentation approach. In
[37], transfer learning was implemented as a feature extractor
for the magnification-independent binary classification using
logistic regression as a final classifier. Through their experi-
ments, the authors determined the ability of transfer learning
in the classification of histopathological images. In some stud-
ies, new models were also proposed to conduct multi-
classification of the breast cancer histopathological dataset,
for example [38, 39]. In [38], the authors proposed a new deep
network named as class structure–based deep convolutional
neural network (CSDCNN) which is capable to learn discern-
ing features in a hierarchy from the different level of represen-
tations. The authors compared the performance of the pro-
posed model with the LeNet and AlexNet (pre-trained CNNs
that were trained from scratch) and obtained the accuracy in
the range of 92 to 95% for the different magnification factors
in BreakHis dataset at both image and patient level.

In [39], a new classification framework was proposed
which consists of three stages: patch-level classification, heat
map–based post-processing and refinement model. In order to
obtain a normalized dataset, the authors employed two differ-
ent normalization techniques, (1) Macenko and (2) Vahadane
normalization, and the patches were extracted from the nor-
malized dataset. To obtain patch-level classification, Inception
V3 was utilized and the obtained predictions were then fused
to get image-level predictions by an ensemble framework
composed of majority voting (MV), gradient boosting ma-
chine (GBM), and LR. Further, to improve the sensitivity of
the system over two classes, normal and benign, dual path
network (DPN) was employed as feature extractor and extract-
ed features were ensemble using GBM, LR, and SVM. The
experimental results of this study [39] showed an accuracy of
87.5%. A research group from Australia utilizes the combina-
tion of CNN with different techniques of local features extrac-
tion (LBP, contourlet transform (CT), histogram (H), discrete
Fourier transform (DFT), and discrete cosine transform
(DCT)) and demonstrated that the CNNwith CTand H jointly

that provides the best results over the BreakHis dataset with
200× magnification factor [40]. Despite the great clinical sig-
nificance of multi-classification in providing a reliable diag-
nosis, most of the research works have been carried out only
for binary classification [12, 17, 20, 31, 33, 40]. From the
abundant studies on BC histopathological images classifica-
tion, a very small portion is devoted to multi-classification
[34, 36, 38, 39].

Contributions

In this paper, experimental work has been performed system-
atically and leads to the following contributions:

& The handcrafted approach is applied to extract the features
from the histopathological images and analyzed the clas-
sification performance for different conventional machine
learning techniques to identify the best classifier in multi-
classification of BC with the computed handcrafted
features.

& Transfer learning is employed for determining the possi-
bility of knowledge transfer from natural images to histo-
pathological images in multi-classification of BC.
Transfer learning is applied in two different ways: as a
feature extractor and as a baseline model. The utilization
of a pre-trained model as feature extractor makes this
study different from [36, 38]. In [36], single layer and
the entire layers of a pre-trained network were subjected
to fine-tuning for a magnification-independent multi-clas-
sification. However, in [38] only architecture of the pre-
trained models was employed for magnification-
dependent multi-classification and compared with the pro-
posed technique.

& The present study compares the performance of handcrafted
approaches with the transfer learning approach.
Additionally, we have demonstrated the influence of bal-
anced and unbalanced training samples on the performance
of the classification model, where the data is utilized in raw
form without any augmentation.

Handcrafted Features

The properties which are derived by exploiting the informa-
tion present in the image through a computational algorithm
are termed as handcrafted features. The classification system
based on handcrafted features is mainly composed of two
stages: the three most important attributes color, shape, and
texture are accounted to quantify the BC histopathological
images for the feature extraction stage and the conventional
classifiers such as RF, SVM, and LDA are considered for the
classification stage.
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Color (Colored Histogram)

In digital pathology, the staining process is performed before
the digitization of tissue samples to provide a detailed view of
the structures (nuclei, stroma, or cytoplasm) present in the
tissue. Hematoxylin and eosin (H&E) is a standard staining
protocol in which nuclei were dyed in blue or purple color
with hematoxylin and the remaining structures dyed in pink
color with eosin [41]. Therefore, color is a significant feature
which needs to be considered in the classification of histopath-
ological images. Color histogram is an approach which helps
in determining the distribution of colors in an image [42].
Color histogram represents the number of pixels in each bin
which have the same color for a fixed list of color ranges. The
feature vector is obtained by adding the frequency of occur-
rence for each color. For instance: a colored image consists of
three channels: red, green, and blue. If we considered a histo-
gram of 8 bins for each channel, then the length of the obtain-
ed features vector would be 8 × 8 × 8 = 512. Instead of great
importance of the color histogram in classification, this feature
alone is not adequate to quantify BC histopathological images
due to appearance variability. The factors responsible for ap-
pearance variability in histopathological images are differ-
ences in light sources or detectors employed in the scanner,
variations in protocols used for fixation and staining process
in different labs, utilization of different reagents, delays in
fixation, and discrepancy in staining conditions [7]. Thus, it
is necessary to consider other features besides color histogram
to design a robust classification system.

Shape (Hu Moment)

In pathology, the shape of cells is another important parameter
in determining the nature of cells whether cancerous or normal
[43]. Prominent and darker nucleoli, scarcity in the cytoplasm,
the chaotic arrangement of chromosomes, abnormal growth of
cells, and non-uniform shape and size of the cell are some
morphologic characteristics of cancer cells [10]. The Hu mo-
ment invariant is a widely used global shape feature descriptor
in computer vision [44]. In the present work, Hu moment is
employed to extract the features associated with the shape of
cells. The speciality of these invariants lies in their ability to
identify patterns or shapes independent of size, position, and
orientation as well as their capability to learn new patterns
[44]. In image processing, geometric moments can be defined
as [45–47]:

Mpq ¼ ∫a2a1 ∫
b2
b1x

pyq f x; yð Þdxdy ð1Þ

where Mpq is a moment of a function f(x, y) of order (p + q)
and (p, q = 0, 1, 2,….,∞). xpyq is the basic function for which
the moment is defined.Moment invariants comprise nonlinear
combinations of rotational invariant central moments. Hu

defines seven suchmoments, derived from the central moment
of order three and collectively known as Hu moment [48]. A
feature vector of size 7-d is obtained when Hu moment is
applied to an image.

Texture (Haralick Textures)

The texture is the property of an image which provides infor-
mation concerning the surface and appearance of the object
present in the image. On the basis of the degree of random-
ness, the texture can be categorized into two categories
regular and stochastic [49]. A regular texture consists of a
periodic arrangement of the elementary parts of an object,
whereas these elementary parts are organized in a random
fashion for a stochastic texture [49].

The histopathological images always come up with a sto-
chastic texture due to a random distribution of cells in the
tissue which requires computation of statistical features in
order to perform the texture analysis of histopathological im-
ages. GLCM is one of the methods to compute these statistical
features by considering the spatial relationship of pixels [50].
In 1973, Haralick et al. suggested how to employ the GLCM
in the quantification of texture [51]. The authors rendered 14
statistical matrices (angular second moment, contrast, correla-
tion, variance, inverse difference moment, sum average, sum
variance, sum entropy, entropy, difference variance, difference
entropy, info. measure of correlation 1, info. measure of cor-
relation 2, and maximum correlation coefficient) that were
computed from GLCM. However, all features were taken into
account except maximum correlation coefficient due to its
computational instability [51]. Therefore, a feature vector of
size 13-d is obtained when Haralick texture analysis is applied
to an image.

Convolutional Neural Networks (CNNs) and Transfer
Learning

CNNs are a subtype of the deep neural network, which con-
sists of mainly two parts: convolutional base and classifier.
The convolutional base is composed of a pile of
convolutional, sub-sampling, and activation layers to extract
the features from the data. The convolutional base is further
followed by the classifier which is usually composed of
dense layers. Finally, a softmax layer is added on the top
of the classifier to provide the required results [23, 52].
The sub-sampling layers in CNN reduce the number of com-
putations, learning parameters as well as the problem of
overfitting by reducing the spatial size of the network. On
the other hand, the activation layers make the network com-
putationally efficient by activating few nodes per time [53].
In addition, the concept of parameter sharing and local con-
nectivity makes CNNs computationally efficient. The stride
value, presence or absence of zero-padding, filter size, and

J Digit Imaging (2020) 33:632–654 635



number of channels are some important parameters used to
define a convolutional layer. Similar to the simple neural
network, the gradient descent (GD) algorithm is used to train
CNNs by minimizing the loss function. Stochastic gradient
descent (SGD) is a variant of the GD approach wherein for
every iteration; the cost gradient for one data sample is com-
puted to minimize the loss by updating the weights. If a
mini-batch of data samples is used instead of one; the ap-
proach is known as mini-batch GD which also helps in the
enhancement of training speed. Extensively, cross-entropy
loss (CEL) is used when softmax employed as the output
layer in the network, given as

CEL ¼ −∑N
c¼1yclog pcð Þ ð2Þ

where N is the number of classes, yc and pc denote the cor-
rect classification and predicted probability for the particular
observation, respectively. After the computation of loss, the
weights are updated to further minimize the loss and make
improvement in the classification.

CNNs exhibit significant performance for the visual data
processing [24, 54, 55]. It typically requires high-performance
graphical processing units for fast training, as the copious
annotated dataset is needed by CNNs to acquire high classifi-
cation accuracy. However, the requirement of high-
performance systems has been solved to an extent with the
following techniques like filter/channel pruning [56], kernel
sparsity, tensor decomposition [57, 58], and by developing
efficient architecture design [26, 59]. But in the medical do-
main, the collection of a large annotated dataset is very chal-
lenging due to an intricate and pricey procedure of data col-
lection from the patient [60]. A lot of medical dataset consists
of limited samples due to which the task to train CNNs from
scratch become somewhat tedious. To address these chal-
lenges, the concept of transfer learning has been employed
in which “off-the-shelf” features from a standard pre-
existing network (like ResNet, Vgg-16, Alex-Net, LeNet)
are used in solving the cross-domain but the related problem.
In transfer learning, pre-existing networks can be utilized in
three manners, namely, baseline model, feature extractor, and
fine-tuning of the pre-trained network.

Baseline Model

In this approach of transfer learning, only the architecture of
the pre-existing model is utilized and the entire model is
trained from scratch as per the new dataset by initializing the
weights randomly as shown in Fig. 1a. However, the number
of nodes in the last dense layer is made equivalent to the
number of classes in the targeted application. Here, we have
eight classes in the BreakHis dataset to classify, so the last
dense layer of the network consists of eight nodes.

Fine-Tuning of Pre-Trained Network

Weight initialization is a crucial step in the training of neural
networks which determine the performance of the network. In
fine-tuning, weights of a pre-trained network are transferred to
the targeted network. The rationale behind the application of
fine-tuning is the representation learning of CNNs as its early
layers capture low-level features that are universal to most of
the tasks related to computer vision and the high-level layers
extract task-specific features from the samples. Thus, the fine-
tuning of the few higher layers on the new application is some-
times adequate for good performance. There are two ways to
fine-tune a pre-trained network: (1) layer-wise fine-tuning, and
(2) partial training of the network. Layer-wise fine-tuning is an
effective approach to test and determine what number of layers
should be frozen and what number of layers should be trained?
In the layer-wise approach, fine-tuning is initialized with the
training of the last layer followed by other layers in a subse-
quent manner. In partial training of the network, weights of
early layers are kept as it is, while the higher layers are under-
gone for training on the new dataset as illustrated in Fig. 1b.

Feature Extractor

In this form of transfer learning, we are going to use the
convolutional base of the pre-trained network in its original
form without altering their predefined weights as depicted in
Fig. 1c. In contrast, the dense layers of the pre-trained network
are replaced with a conventional classifier. The output of the
convolutional base is fed directly to the classifiers. The con-
ventional classifier is then trained on the extracted features to
make a conclusive outcome. The pre-trained model is used as
a fixed medium to extract the most significant features from
the samples. The benefits to use the pre-trained network as a
feature extractor lie in its ability to provide relevant combina-
tions of features automatically. The feature extraction is a very
time-consuming process in hand-designed representation as it
demands domain expertise and firm decision on relevant fea-
ture selection. The consideration of pre-trained model as a
feature generator is a good choice for conventional classifiers.

BreakHis Dataset

The BreakHis dataset is the largest dataset ever reported for
histopathological images related to BC which is publicly avail-
able at https://web.inf.ufpr.br/vri/databases/breast-cancer/
histopathological-database-breakhis/. The BreakHis dataset is
a very challenging and unbalanced dataset that is composed of
7909 images containing two broad categories of BC: benign
(B) and malignant (M) [20, 31]. These two categories are fur-
ther divided into eight sub-categories of BC which includes
four sub-classes of the benign class (i.e., adenosis (A), fibro-
adenoma (FA), phyllods tumor (PT), and tubular adenoma
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(TA)) and four sub-classes of the malignant class (i.e., ductal
carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma
(MC), and papillary carcinoma (PC)) as shown in Fig. 2. Each
sub-class of BC consists of colored images of size 700 × 460
with four magnification levels: ×40, ×100, ×200, and ×400.
The detailed distribution of the images for each sub-class of
the benign and malignant class is summarized in Table 1.

Methodology and Classification Approaches

The proposed methodology comprises three different ap-
proaches that are based on handcrafted feature and transfer

learning technique. The performance of the network with the
handcrafted feature extraction approach is evaluated by dint of
box-plot analysis and plotted on the basis of accuracy acquired
by a particular classifier. The performance of classifiers for
transfer learning approaches is examined through accuracy,
precision, recall, F1 score, receiver operating characteristic
(ROC) curve, and the area under that curve (AUC). In each
experiment, the labeling of the class is done in a manner that
classes 0 to 7 have been assigned as A, DC, FA, LC, MC, PC,
PT, and TA, respectively. For each set of experiments, the con-
sidered dataset is divided into 90% and 10% for training and
testing respectively, and the training set is further divided into

Fig. 2 Histopathological image samples from BreakHis dataset for eight categories of breast cancer for ×200 magnification factors a adenosis, b
fibroadenoma, c phyllods tumor, d tubular adenoma, e ductal carcinoma, f lobular carcinoma, g mucinous carcinoma, and h papillary carcinoma

Fig. 1 Strategies to implement transfer learning approach. a Baseline model. b Fine-tuning. c Feature extractor

J Digit Imaging (2020) 33:632–654 637



80% for training purpose and 20% for validation purpose. The
splitting of the dataset is carried out in amanner that the patients
involved in thebuildingof the trainingset arenot included in the
testing set. Table 1 shows the distribution of the instances in the
sub-classes of BC which is uneven. In order to address this, an
advanced version of the sampling technique termed as stratifi-
cationhas beenapplied on the training set. The stratification is a
method of data sampling in which the available data is divided
into non-overlapped units known as strata. The instances from
each strata are selected in a way that each class is represented
with the same frequency and has an equal probability for occur-
rence. The extra samples are randomly discarded from all the
classes andmade equal to the number of samples present in the
class with least samples to analyze the influence of equal dis-
persion of instances on the performance of the network. In ad-
dition, a set of experiments with unequal distribution of in-
stances (ineveryclass) is also implemented toanalyze theeffect
of the unbalanced dataset on the performance of the utilized

networks. The same protocol is applied to all themagnification
levels in the dataset.

In handcrafted feature-based approach, the labeled histolog-
ical images are resized to the dimension of 224 × 224. This
dimension is chosen for anunbiasedcomparison as all the other
employed techniques considered the same dimension for an
input image. Afterwards, the images are divided into training,
validation and testing set as per the devised protocol. The Hu
moment,Harallicktexture,andcoloredhistogramfeatureswere
then extracted from the training set to produce semantic feature
vectors and used to train some specific traditional classifiers to
findout thebestclassifier. Inmostof thepreviousworks[34,61,
62], only SVM is considered to make a prediction on the data,
but in thecurrent investigation,RF,LR,LDA,kNN,CART,and
NB classifiers are also included along with SVM to determine
theperformance inmulti-classificationofBC.Inaddition, some
specific hyper-parameters related to SVM and RF have been
considered and variedwithin a limit to control the frequency of

Fig. 3 The pre-trained networks: VGG16, VGG19 and ResNet50 as feature extractor with conventional classifiers
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the experiments. The number of trees (hyper-parameter) that
were considered for the experiments with RF classifiers ranges
from50 to4000. In the case ofSVM, the results are obtainedon
three kernels: linear (L), radial basis function (RBF), and sig-
moid (S). Besides that, the value of the penalty parameter (C)
was alsovaried from1 to 5.The remaining parameters for these
classifiers were kept at their default settings. Throughout the
paper, statistical comparison has been performed for all the
classifiers but the results of classifiers that performed poorly
have been summarized in the form of tables and figures and
provided in the supplementary file.

The experiments related to the transfer learning approach
have been implemented using two widely used frameworks of
deep learning, Keras and Tensorflow. Particularly, VGG16,
VGG19, and Res-Net 50 are considered for this study along
with the weights that are already trained on the ImageNet
dataset. In the feature extractor approach of transfer learning,
the last dense layer of the network is substituted by the same
conventional classifiers that are used in the handcrafted ap-
proach for a coherent comparison. Since the features in case of
VGG16 and VGG19 are extracted from the first dense layer of
the network, the shape of the obtained feature vector is 1 × 7 ×
7 × 512. Similarly, the shape of the feature vector for
ResNet50 is 1 × 7 × 7 × 2048 due to extraction of features
from the average pooling layer of the network (Fig. 3).
Further, the extracted features are collapsed into a one-
dimensional array as per the requirement of the conventional
classifiers in the Sci-Kit Learn library by appending a flat-
tened layer on the top of the layer from which the features
are extracted. In the baseline scheme of transfer learning, the
same pre-existing networks are considered without using pre-
defined weights, while the last dense layer is replaced by a
new dense layer of eight nodes. The weights are initialized
randomly to train the network from scratch.

Moreover, the data augmentation techniques are also uti-
lized to determine the impact of more training data samples
on the classification performance of the model. In this context,
flipping, translation, scaling, and rotation technique are utilized
to expand the training set as the histopathological images are

invariant to rotation [63]. Each image in the training set is
rotated with 90°, 180°, and 270° to avoid any background
noise in the image. Left-right, up-down, and transpose flipping
besides translation and central scaling of 90%, 80%, and 70%
of the original image is applied to remove the biasness regard-
ing the presence of certain lesions at specific locations in the
image. The entire experimental work has been performed on
the Intel systemwith Core i7-7500UCPU@ 2.90GHz using a
64-bit Windows 10 operating system (OS) and 8 GB onboard
memory.

Results

In this section, the results of employed classification ap-
proaches are elaborated to provide a systematic and consistent
explanation.

Handcrafted Feature-Based Classification

The performance of six best combinations of conventional
classifiers with the extracted handcrafted features has been
demonstrated. Table 2 shows the classification performance
in term of accuracies obtained by RF and SVMunder different
settings of hyper-parameters (hyper-parameters that varied
during the execution of experiments are embraced within pa-
renthesis). Furthermore, a box-plot analysis has been per-
formed to evaluate the performance of the selected combina-
tions of the classifiers at a particular magnification level.
Figure 4 shows the box-plots for handcrafted approaches, in
which classification accuracy is obtained from the 10-fold
cross-validation on the test set for ×40, ×100, ×200, and
×400 magnification levels. In each box-plot, the mean (μ)
and standard deviation (σ) are computed for an easy under-
standing and the plotted whiskers are based on the Tukey
method. It has been observed that the RF with 1000 number
of trees provided the highest classification accuracy for the
×40 magnification level (median = 90.33%, μ = 90.15, and
σ = 02.88) which is comparable to the accuracy obtained with

Table 1 Distribution of images in
BreakHis dataset for eight sub-
classes of breast cancer with four
magnification factors

Category of BC/total images Sub-category of BC Magnification factor

×40 ×100 ×200 ×400

B/2480 A 114 113 111 106

F 253 260 264 237

TA 109 121 108 115

PT 149 150 140 130

M/5429 DC 864 903 896 788

LC 156 170 163 137

MC 205 222 196 169

PC 145 142 135 138
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the 50, 200, 400, 500, and 4000 numbers of trees as well as
with the SVM for linear kernel and the penalty parameter (C =
5) (Fig. 4a). However, alteration in the value of C from 5 to 1
in SVMwith a linear kernel showed a significant fall in overall
accuracy which is comparable with that obtained by
employing kNN, LR, LDA, LA, and CART (ranges from
71.20 to 79.60%), tabulated in Table S1 (Supporting
Information). The unsatisfactory results are obtained from
NB and SVM (with RBF and S kernel) classifier, where NB
provides an accuracy of 51.80%, while the use of SVM with
RBF and S kernel resulted in the lowest accuracy (ranges from
11.28 to 38.50%). From the performance of SVM, it can be

anticipated that the features obtained from this handcrafted
approach are linearly separable and the increment in C helped
in avoiding misclassification of samples. In a similar manner,
the analysis of classifiers performance has also been carried
out for the other magnification levels. A similar trend has been
observed for the classifiers at ×100, ×200, and ×400 magnifi-
cation factor in which RF showed the best performance. The
only difference lies in the number of trees involved in the RF
classifier which further depends on the requirement of tuning
for hyper-parameters.

Anothe r impor tan t obse rva t ion no t i ced f rom
Table S1 (Suppoting Information) is the effect of an unbal-
anced dataset on the performance of the considered classifiers
for the same settings. The unbalanced dataset has a negative
impact on the performance of the classifiers which diminishes
the performance of classifiers by a substantial amount specif-
ically for ×100, ×200, and ×400. A similar trend was identi-
fied for the entire magnification levels in case of unbalanced
data. Thus, for the remaining experiments, only balanced data
is considered.

Pre-Existing Network as Baseline Model

In order to test the performance of the pre-existing network as a
baseline model, the weights of the network are initialized ran-
domly and the network is trained from the scratch. The con-
sidered models took around 2 h in full training which further

Table 2 Classification accuracy from handcrafted features (HF) and
conventional classifiers for a balanced dataset

Classifiers Model Magnification level (accuracy)

×40 ×100 ×200 ×400

RF HF + RF (400) 89.50 91.35 86.78 85.15

HF + RF (500) 89.50 91.15 86.78 86.78

HF +RF (1000) 90.33 89.88 86.78 85.15

HF + RF (4000) 90.28 90.10 87.43 86.55

SVM HF + SVM(L, 1) 79.15 82.77 81.88 78.90

HF + SVM (L, 5) 82.20 87.58 86.48 82.95

Italicized number in the table represents the best classifier with the highest
accuracy

Fig. 4 Box-plots of classification accuracy at a ×40, b ×100, c ×200, and d ×400 magnification factor. Outliers are represented by circles
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rely on the model capacity. All the results are represented in
Tables S2, S3, S4, and S5 (Supporting Information) for the
×40, ×100, ×200, and ×400magnification factors, respectively.
The values for evaluation metrics (i.e., precision, recall and F1
score) are the weighted average of these metrics (computed for
each class separately). The accuracies for all the magnification
factors are summarized in Table 3 which shows the highest
performance of the ResNet50 network for full training.
However, the accuracies acquired by the networks for full
training are less than 50% which is inapplicable. The main
reason behind low performance of theses network is the small
size of dataset in respect of the number of classes to classify.

The ROC curve analysis has been executed to further eval-
uate the classifier’s performance, and the AUC has been com-
puted to ensure the convergence of the network for all classes,
illustrated in Figs. S1 and S2 (Supporting Information) and
Fig. 5. In case of ResNet50 network, each class is converging
with large AUC, whereas the AUC obtained by the VGG16
and VGG19 network lies near 0.50 for each class which con-
firmed their poor performance. This shows their inability to
learn discerning representations from the images when under-
gone for full training. Despite the highest performance of
Resnet50 for full training, the results obtained from this net-
work are also inapplicable for the multi-classification applica-
tion of BC images. Overfitting of the network is the major
reason behind their unsatisfactory performances that arises
due to the large capacity of these networks with respect to
the size of the dataset. Therefore, the training of a network
with deeper architecture from scratch is not a wise option for a
dataset of limited size. The performance of the networks can
be enhanced by augmenting the data which would help in
generating more data sample. Although, the selection of the
augmentation method should be in a way that it does not alter
the inherent properties of the images. In this context, we have
been applied rotation, flipping, scaling and translation tech-
nique to enlarge the dataset and performed the experiments
under the same settings that have been utilized for the bal-
anced data without augmentation. It has been observed from

the results that even after enlarging the dataset; the models are
incapable to learn the discerning features from the data and
achieved insignificant performance. It implies that the samples
in training set are still not sufficient to tune a large numbers of
model parameters. Consequently, the model is trying to over
fit on the test data.

One more observation noticed from Fig. 5 is that instead of
utilizing the same network for all the different magnification
factors, the distribution of AUC is different. The AUC is min-
imal for class 0 and class 4 at ×40 resolution. At ×100 reso-
lution, the computed AUC is very less for class 0 and class 2.
The scenario is slightly different for ×200 and ×400 resolu-
tions in which AUC for class 2 and class 5 is the least one. It
shows that the extraction of useful representation from the
images of class 0 and class 2 are very tedious and require
special care to improve the overall accuracy of the classifiers.

Pre-trained Network as Feature Extractor

The evaluation of results for this section utilizes the same
metrics that considered for the baseline approach. The results
of all the classifiers for the ×40 magnification level are given
in Table S6 (Supporting Information). By comparing the per-
formances of classifiers, it has been found that the pre-trained
network VGG19 provided the maximum accuracy (91.21%)
with SVM (L, 1) and SVM (L, 5), followed by VGG16 + LR
and VGG16 + SVM (L, 1) classifier (89.61%) (Table 4). Since
the value of precision, recall, and F1 score for these three
classifiers is almost similar, still the acquired accuracies are
different. Figure 6 a–d show the ROC curve analysis for the
VGG16 + LR, VGG 16 + SVM(L, 1), VGG19 + SVM(L,1),
and VGG19 + SVM(L, 5), respectively. These curves validat-
ed that the VGG16 + LR and VGG16 + SVM (L, 1) classifier
are less sensitive to all the classes whereas VGG19 + SVM (L,
1) and VGG19 + SVM (L, 5) classifiers are highly sensitive to
all the classes and the acquired AUC for the micro and macro-
average curve is 0.95. The VGG16 + LR classifier obtained
the minimum AUC for class 0 (0.87) and class 2 (0.89), while
the VGG16 + SVM (L, 1) classifier acquired very less AUC
for class 3 (0.79) which confirm their low sensitivity towards
these classes. Hence the poor sensitivity in the case of
VGG16 + LR and VGG16 + SVM (L, 1) classifiers becomes
the prime reason behind their degraded performance as com-
pared to VGG19 + SVM classifier.

On the other hand, the VGG19 + LR classifier has shown a
comparable performance to the VGG16 + LR classifier by
obtaining an accuracy of 88.31%. The performance dropped
by a considerable amount (from ~ 6 to ~18%) when the pre-
trained model (VGG16 and VGG19) are used in combination
with SVM (RBF), RF, kNN, and LDA. Similarly, NB and
CARTclassifiers have shown an inadequate performance with
the marginal accuracies ranging from 51.95 to 63.64%.
However, the lowest performance is given by SVM with S

Table 3 Classification accuracy of pre-existing network as baseline
(BL) model at the entire magnification factors (balanced data) &
(augmented)

Classifiers Model Magnification factor (accuracy in %)

×40 ×100 ×200 ×400

VGG16 VGG16 as BL 15.58 11.25 9.21 8.33

VGG19 VGG19 as BL 15.58 7.50 9.21 8.33

ResNet50 ResNet50 as BL 38.96 33.75 39.47 33.33

VGG16 VGG16 as BL 25.95 21.63 22.81 22.43

VGG19 VGG19 as BL 25.95 17.46 22.81 22.43

ResNet50 ResNet50 as BL 51.21 49.78 54.67 49.22
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kernel. S kernel makes SVM a non-linear classifier, which
requires further tuning of kernels’ hyper-parameters for its
better working. We have also conducted experiments with
the ResNet50 pre-trained network, but observed no significant
increment in the classification accuracy due to the least sensi-
tivity of this network towards all the classes, given in Table S6
(Supporting Information).

At ×100 magnification factor, SVM (L, 1) and RF (4000)
classifier surpassed all the classifiers by obtaining an accuracy
of 89.75% with VGG16 and VGG19, given in Table S7
(Supporting Information). The performance of the linear
SVM gets deteriorated by 2.25% when the penalty parameter
C changed from 1 to 5 (Table 5). This happened due to the
alteration in the decision boundary which divides the training

Fig. 5 ROC curve analysis obtained for ResNet50 network when used as baseline model at a ×40, b ×100, c ×200, and d ×400 magnification factor

Table 4 Performance metrics of
pre-trained network as feature
extractor with conventional clas-
sifiers for the ×40 magnification
level (balanced dataset)

Pre-trained network Model Performance metrics

Accuracy (%) Precision Recall F1-
score

VGG16 VGG16 + RF(200) 81.82 0. 85 0.82 0.81

VGG16 + SVM(L, 1) 89.61 0.90 0.88 0.88

VGG16 + SVM(L, 5) 88.31 0.90 0.88 0.88

VGG16 + LR(L2) 89.61 0.91 0.90 0.90

VGG16 + kNN 81.82 0.84 0.82 0.82

VGG16 + LDA 81.82 0.83 0.82 0.82

VGG19 VGG19 + RF(200) 79.22 0.78 0.78 0.77

VGG19 + SVM(L, 1) 91.21 0.91 0.90 0.90

VGG19 + SVM (L, 5) 91.21 0.91 0.90 0.90

VGG19 + LR(L2) 88.31 0.89 0.88 0.88

VGG19 + kNN 76.62 0.81 0.81 0.80

VGG19 + LDA 77.92 0.79 0.78 0.78

Italicized number in the table represents the best classifier with the highest accuracy
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data. On the other hand, the use of SVM with RBF kernel
offered an accuracy of ~ 78% which is much less than that
obtained from SVM (L, 1), whereas SVMwith sigmoid kernel
showed the lowest performance at this magnification which
describes its incapability in the classification of feature vectors
obtained from the pre-trained networks. This happens because
of the non-linear behavior of the sigmoid function. In the case
of the RF classifier, a direct relationship between the accuracy

and the number of trees has been observed. The performance
of the RF classifier increases with the increase in the number
of trees due to a proportional increment in the number of
tunable hyper-parameters. The accuracy of the RF classifier
with 50, 200, 400, and 500 numbers of trees lies in the range
of 75 to 81.25% which is comparable with the accuracies
obtained in case of the LR, LDA, and KNN classifiers, while
the CART and NB classifiers gained marginal accuracy. It is

Fig. 6 ROC curve analysis at 40X magnification factor for a VGG16+LR(L2), b VGG 16+SVM(L, 1), c VGG19+SVM(L, 1), d VGG19+SVM(L, 5)

Table 5 Performance metrics of
the re-trained network as feature
extractor with conventional clas-
sifiers for the ×100 magnification
factor (balanced dataset)

Pre-trained network Model Performance metrics

Accuracy (%) Precision Recall F1-
score

VGG16 VGG16 + RF(500) 81.25 0.86 0.81 0.82

VGG16 + RF(1000) 83.75 0.87 0.84 0.84

VGG16 + RF(4000) 89.75 0.89 0.87 0.87

VGG16 + SVM(L, 1) 89.75 0.87 0.85 0.85

VGG16 + SVM(L, 5) 87.50 0.87 0.85 0.85

VGG16 + LR(L2) 81.25 0.83 0.81 0.81

VGG19 VGG19 + RF(500) 81.25 0.86 0.81 0.82

VGG19 + RF(1000) 83.75 0.87 0.84 0.84

VGG19 + RF(4000) 89.75 0.89 0.87 0.87

VGG19 + SVM(L, 1) 89.75 0.87 0.85 0.85

VGG19 + SVM(L, 5) 87.50 0.87 0.85 0.85

VGG19+ LR(L2) 81.25 0.83 0.81 0.81

Italicized number in the table represents the best classifier with the highest accuracy.
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noteworthy that RF, SVM, KNN, and LDA classifiers provide
the same accuracy when combined with VGG16 and VGG19.
Additionally, we have not found any difference in the value of
precision, recall, and F1 score (Table S7).

Further, the performance and the sensitivity of classifier
towards a particular class has been analyzed through the
ROC curve for ×100 magnification factor and shown in
Fig. 7. It is observed in Fig. 7 a and c that the RF (4000)
classifier with VGG16 and VGG19 shows the same sensitiv-
ity. Similarly, the SVM (L, 1) classifier also shows the same
sensitivity graph with VGG16 and VGG19, illustrated in Fig.
7 b and d. The pre-trained models with the SVM (L, 1) clas-
sifier shows lower sensitivity towards class 0, class 4 and class
5 in comparison with the RF (4000) classifier, while both the
classifiers are least sensitive to class 2. The overall perfor-
mance of RF (4000) classifier is better as compared with
SVM (L, 1) for the ×100 magnification factor.

In case of the ×200 magnification level, the VGG16 +LR
classifier provided the highest accuracy, followed by VGG16+
LDA classifier, shown in Table 6. The accuracy falls substantially
by 9.63% when linear SVM is used with the VGG16 model.
Therefore, we changed the kernel from linear to radial but obtain-
ed further decrement in the accuracy by 7.9% which determined
that the feature vectors obtained from the VGG16 model for the
images with ×200 magnification are linearly separable. From
Table S8 (Supporting Information), it has been analyzed that the

VGG16+RF classifier rendered insignificant results (ranges from
59.21 to 69.74%) even when the number of trees is increased.
However, the RF classifier provides accuracy in the range of
67.11 to 71.05% when VGG19 is used as feature extractor. The
VGG19 +KNN classifier provides a maximum accuracy of
72.37% which is also inapplicable. These results confirm the
inability of the VGG19 pre-trained model in extracting more
discerning representations from the images with ×200 resolution.

Figure 8 shows the ROC curve for analyzing the sensitivity
of the best classifiers for the eight classes of BC in case of
×200 resolution. The maximum AUC for the macro-average
ROC curve is covered by the VGG16 + LR classifier (0.89)
which is the major reason behind the best performance of this
classifier. The VGG19 + RF classifier provides a very low
AUC for class 2 (0.69) and class 4 (0.78), while VGG19 +
KNN classifier provides the lowest AUC for class 5 (0.74) and
class 7 (0.75) in comparison with the other three classifiers
which degrades their performance by a significant amount.
The images belonging to class 2 are more complex at ×200
magnification level as the AUC obtained for class 2 is very
low (Fig. 8). It is hard to extract the important features from
the images of class 2 (F). The ResNet 50 network also fails to
learn discriminating features from the images, and the worst
performance has been noticed in the classification of BC his-
topathology images. The results are tabulated in Table S8
(Supporting information).

Fig. 7 ROC curve analysis at ×100 magnification factor for a VGG16 + RF (4000), b VGG16 + SVM (L, 1), c VGG19 + RF (4000), and d VGG19 +
SVM (L, 1)
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The comparison of classifiers’ performances for multi-
classification of images with ×400 magnification level is
presented in Tables 7 and S9 (Supporting Information). It
has been found that the VGG16 + SVM with linear kernel
provide the highest accuracy of 80.00%. The accuracies ob-
tained in the case of KNN, LDA, RF, radial SVM and LR
classifiers lie in the range of 62.50 to 69.44% (Table S9),

which are not much considerable for the multi-classification
application. On the other hand, the accuracies obtained by all
the classifiers with the ResNet50 network are less than 50%.
The large capacity of the ResNet50 network is the rationale
behind its worst performance due to which degrees of free-
dom involved in the parameters increased, consequently
leading to over fitting.

Table 6 Performance metrics of
the pre-trained network as a fea-
ture extractor with conventional
classifiers for the ×200 magnifi-
cation level (balanced dataset)

Pre-trained network Model Performance metrics

Accuracy (%) Precision Recall F1 score

VGG16 VGG16 + SVM(L, 1) 78.95 0.81 0.82 0.81

VGG16 + SVM(L, 5) 78.95 0.81 0.82 0.81

VGG16 + SVM(R, 5) 71.05 0.69 0.68 0.67

VGG16 + LR(L2) 88.58 0.89 0.89 0.89

VGG16 + kNN 72.37 0.78 0.74 0.74

VGG16 + LDA 87.26 0.88 0.86 0.86

VGG19 VGG19 + RF(200) 71.05 0.73 0.71 0.71

VGG19 + RF(400) 71.05 0.72 0.71 0.71

VGG19 + RF(500) 69.74 0.74 0.72 0.73

VGG19 + RF(1000) 69.74 0.71 0.70 0.70

VGG19 + RF(4000) 69.74 0.69 0.68 0.68

VGG19 +KNN 72.37 0.78 0.74 0.74

Italicized number in the table represents the best classifier with the highest accuracy

Fig. 8 ROC curve analysis at ×200 magnification factor for a VGG16 + LR(L2), b VGG16 + LDA, c VGG19 + RF(400), and d VGG19 +KNN
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The ROC curve is shown in Fig. 9 for the best classifiers in
case of ×400 magnification in which the maximum AUC is
covered by the VGG16 + SVM with a linear kernel. It is fur-
ther noticed that the AUC achieved by VGG16 + SVM for
class 3 (0.78) and class 5 (0.78) is the lowest one as compared
with other classes. The VGG16 + LR classifier provided the
least AUC for class 3 (0.74) only. However, VGG19 + SVM
and VGG19 + LR classifier has acquired the minimum AUC
for class 6 (0.73 and 0.66, respectively). Therefore, the clas-
sification of BC histopathological images for class 3, class 5,
and class 6 becomes more complicated at ×400 magnification
level due to major involvement of small-grained appearances
in the images at higher magnification.

Pre-Trained Network as Feature Extractor
with Augmented Dataset

Following the devised topology for the use of pre-trained net-
works as feature extractor, the highest obtained accuracies are
91.21%, 89.75%, 88.58%, and 80.00% for images with mag-
nification factors ×40, ×100, ×200, and ×400, respectively. As
a matter of fact, the classification of histopathological images
is a very complex problem and requires proper tuning of pa-
rameters to map an image correctly into a label. Therefore, an
adequate amount of image samples is required to tune the
parameters appropriately in order to get good performance
through the classification model. By applying rotation,

translation, scaling, and flipping technique, a tremendous in-
crement in the classification accuracy has been observed for
all magnification factors. The performance metrics for the best
possible combinations at each magnification factor is present-
ed in Table 8. The VGG16 pre-trained model with linear SVM
surpassed all the classifiers and helped in achieving the
highest accuracies at all magnification levels. This is due to
sufficient tuning of model parameters after employing the data
augmentation techniques. To further demonstrate the perfor-
mance of outstanding CNN as feature extractor (VGG16 +
SVM (L, 1)) in multi-classification of BreakHis dataset for
BC detection, the patient-based accuracy [31] is also evaluat-
ed, i.e., 93.25%, 91.87%, 91.5%, and 92.31% for ×40, ×100,
×200, and ×400, respectively. Figures 10 and 11 demonstrate
the ROC curves and confusion matrix to validate the perfor-
mance of the best classification model. On the other hand,
VGG19 with linear SVM provides a comparable performance
to the best classifier (VGG16 with linear SVM) for all the
magnification levels except ×400. The major rationale behind
the low performance of VGG19 + SVM (L, 1) lies in their
inability to represent intended output for the given input.
The extracted features from augmented dataset create confu-
sion for the classification model due to their similar clinical
expressions. In particular, Fig. 12 a and b shows the confusion
matrix of the VGG19 + SVM (L, 1) classifier for the balanced
data at ×400 magnification without considering augmentation
and with augmentation, respectively. The numbers of samples

Fig. 9 ROC curve analysis at ×400 magnification factor for a VGG16 + SVM (L, 1 and 5), b VGG16 + LR(L2), c VGG19 + SVM(L, 1), and d
VGG19 + LR(L2)
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which have been classified correctly in balanced dataset are
23, 17, 26, and 18 for ductal carcinoma, lobular carcinoma,
papillary carcinoma, and phyllods tumor, respectively.
However, after enlarging the dataset by employing augmenta-
tion technique, the number of correctly classified samples
dropped to 18, 13, 19, and 16. Four samples of ductal carci-
noma are misclassified as mucinous carcinoma and one sam-
ple as fibro-adenoma. Similarly, four samples of lobular car-
cinoma are misclassified as adenoma after data augmentation
and lower the performance of VGG19 + SVM (L, 1) classifier.

Discussion

This study emphasizes the conventional machine learning and
transfer learning approach for multi-classification of BC histo-
pathological images. In “Results”, the performances of pro-
posed approaches are evaluated on the BreakHis dataset and
a noticeable improvement in accuracy figure has been ob-
served. In the case of the handcrafted approach, the RF

classifier has shown remarkable performance for the entire
magnification scales (accuracy of 90.28% for ×40, 90.10%
for ×100, 87.43% for ×200, and ×86.55% for ×400). It is well
known that the RF classifier is inherently suited for multi-
classification problem and require very less tuning of hyper-
parameters to provide robust performance. It is reported for the
first time that a handcrafted feature–based approach achieved
accurate and reliable performance for such a challenging
dataset of histopathological images. Even for a higher magni-
fication, the discriminating ability of our handcrafted approach
is better than other existing conventional models, tabularized in
Table 9.

Bardou et al. performed multi-classification using DSIFT
and SURF features separately [64]. The features were encoded
with a coding model named as bag of words (BOW) and clas-
sified using SVM. The reported accuracy with the BOW+SVM
model for DSIFT features at ×40, ×100, ×200, and ×400 is
18.77%, 17.28%, 20.16%, and 17.49%, respectively.
Concurrently, the accuracies obtained for SURF features are
49.65%, 47.00%, 38.84%, and 29.50% for the same order of

Table 7 Performance metrics of
pre-trained network as feature
extractor with conventional clas-
sifiers for the ×400 magnification
level (balanced dataset)

Pre-trained network Model Performance metrics

Accuracy (%) Precision Recall F1-
score

VGG16 VGG16 + RF (400) 69.44 0.70 0.69 0.69

VGG16 + RF (500) 69.44 0.70 0.69 0.69

VGG16 + SVM(L, 1) 80.00 0.80 0.79 0.79

VGG16 + SVM (L, 5) 80.00 0.80 0.79 0.79

VGG16 + LR(L2) 69.44 0.71 0.69 0.69

VGG16 + kNN 68.06 0.75 0.72 0.72

VGG19 VGG19 + RF (1000) 63.89 0.65 0.64 0.64

VGG19 + RF (4000) 63.89 0.65 0.64 0.64

VGG19 + SVM(L, 1) 69.44 0.72 0.71 0.71

VGG19 + SVM (L, 5) 66.67 0.72 0.71 0.71

VGG19 + LR(L2) 68.06 0.69 0.68 0.68

VGG19 + kNN 63.89 0.66 0.62 0.63

Italicized number in the table represents the best classifier with the highest accuracy

Table 8 Performance metrics of pre-trained network as feature extractor with conventional classifiers for augmented dataset

Model ×40 ×100 ×200 ×400

Acc (%) Pre Rec F1 Acc (%) Pre Rec F1 Acc (%) Pre Rec F1 Acc (%) Pre Rec F1

VGG16 + SVM(L,1) 93.97 0.94 0.93 0.94 92.92 0.92 0.91 0.91 91.23 0.92 0.92 0.92 91.79 0.92 0.91 0.91

VGG16 + SVM (L,5) 93.07 0.93 0.93 0.93 92.92 0.93 0.91 0.91 91.23 0.92 0.92 0.92 91.79 0.92 0.91 0.91

VGG16 + LR(L2) 91.34 0.92 0.91 0.91 91.25 0.92 0.91 0.91 86.84 0.84 0.82 0.82 85.51 0.86 0.86 0.86

VGG19 + SVM(L,1) 92.64 0.92 0.92 0.92 91.25 0.91 0.91 0.91 89.42 0.90 0.89 0.89 84.11 0.83 0.82 0.82

VGG19 + SVM (L,5) 92.21 0.92 0.92 0.92 91.67 0.91 0.91 0.91 89.42 0.90 0.89 0.89 83.64 0.83 0.82 0.82

VGG19 + LR(L2) 88.74 0.89 0.89 0.89 90.00 0.90 0.90 0.90 83.87 0.84 0.83 0.83 80.84 0.82 0.81 0.81

Italicized number in the table represents the best classifier with the highest accuracy
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magnification factors. Further, locality constrained linear cod-
ing (LLC) was used as a coding model besides spatial pyramid
matching with 3 different levels to enhance the performance
[64]. The accuracies acquired by LLC + SVM model for
DSIFT features are lying in the range of 32.60 to 49.44% at
level 0, 32.86 to 47.44% at level 1, and 35.54 to 51.68% at level
2, for the different magnification factors. However, the range of
accuracy obtained for SURF features using the LLC + SVM
model at levels 0, 1, and 2 for the different magnification fac-
tors are 37.20 to 55.80%, 38.12 to 54.61%, and 40.88 to
53.75%, respectively. The authors succeeded in increasing the
accuracy at all the magnification levels using the LLC + SVM
model, but still the obtained accuracies are insufficient. The
marginal performance of these models confirmed their inade-
quate performance for the multi-classification application.

Further, the authors introduced an alternative approach in
which a set of handcrafted features is classified using CNN
instead of a conventional classifier. The topology used by the
authors for this work consisted of three dense layers in which the
first twowere followed by the ReLU activation layer with a 50%
dropout. To train the network, the weights were initialized by
Gaussian distribution and the hyper-parameters like weight de-
cay, learning rate, batch size and iterations were set to 0.1, 0.001,
32 and 20,000, respectively. Although the proposed approach
(BOW+CNN and LLC +CNN) produced better results, the
performance is still less than our handcrafted approach

employed for multi-classification. On the other hand, Chan
et al. extracted a set of features using the fractal dimension
technique and fed as input to the SVM classifier [61]. They
reported an accuracy of 55.6% for ×40 magnification only.
Our handcrafted approach outperforms all the handcrafted ap-
proaches proposed in [61, 64]. Although the performance of the
handcrafted approach is outstanding, it requires deep knowledge
about the morphology of cancerous cells and staining protocol
used in histopathology procedures in advance. Therefore, deep
learning techniques are a better alternative to these requirements
as the deep learning models are capable to extract the useful
representations directly and automatically from the data. The
deep learning models require copious of data for efficient learn-
ing and consume a lot of time in the training process.

In order to overcome the problem of less data availability and
large training time, we have examined the ability of “transfer
learning” technique on histopathological images of BC for
multi-classification using three pre-existing models, namely,
VGG16, VGG19, and ResNet50. The utilization of pre-
existing networks as baseline model showed very poor perfor-
mance and provides accuracy in the range of 7.50 to 39.47% for
the different magnifications. There are several reasons behind the
worst performance of baseline models: (a) overfitting and (b)
difficulty in extracting the distinctive features from the images
belonging to different classes due to similar clinical expressions
in class A, F, and LC at ×40, class F, MC, and PC at ×100 and

Fig. 10 ROC curve analysis of VGG16 + SVM (L, 1) classifier applied to augmented data at a ×40, b ×100, c ×200, and d ×400
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×200, and class DC, MC, and PT at ×400, (c) limited instances
per classes, and (d) a large number of classes to classify. The pre-
trained network as feature generator showed an accuracy of
91.21% for ×40, 89.75% for ×100, 88.58% for ×200, and
80.00% for ×400 using VGG19 + SVM (L, 1), VGG16 +
SVM (L, 1), and VGG16 +LR (L2) classifiers. These three clas-
sifiers performed in a different manner for all four magnification
levels according to which VGG19 + SVM (L, 1) gives the best
performance for ×40 and ×100, VGG16 + SVM (L, 1) for ×100

and ×400, whileVGG16+LR (L2) for ×200when applied to the
balanced data without augmentation. The classifiers are not
equally sensitive to all the classes for the entire magnification
levels which can be easily validated by computing the AUC
for each classifier. This happens because the trainable parameters
of the classifiers are not tuned properly in the lack of sufficient
data samples. However, after augmenting the data, a considerable
improvement in the classification accuracy of VGG16 + SVM
(L, 1) has been observed for all the magnification levels, i.e.,

Fig. 11 Confusion matrixes of VGG16 + SVM (L, 1) classifier for augmented data at a ×40, b ×100, c ×200 and d ×400

Fig. 12 Confusion matrixes for VGG19 + SVM (L, 1) classifier at ×400 magnification: a balanced data without augmentation, b augmented data

J Digit Imaging (2020) 33:632–654 649



Table 9 Comparison of existing handcrafted approaches and the present handcrafted approach for the entire magnification level

Model Features Magnification Factor Accuracy (%) Ref.

BOW+ SVM DSIFT ×40
×100
×200
×400

18.77
17.28
20.16
17.49

[64]

SURF 49.65
47.00
38.84
29.50

LLC+ SVM with SPL(0) DSIFT ×40
×100
×200
×400

48.46
49.44
43.97
32.60

[64]

SURF 55.80
54.24
40.83
37.20

LLC+ SVM with SPL(1) DSIFT ×40
×100
×200
×400

47.44
44.32
44.46
32.86

[64]

SURF 54.61
53.92
48.10
38.12

LLC+ SVM with SPL(2) DSIFT ×40
×100
×200
×400

44.54
51.68
44.30
35.54

[64]

SURF 53.75
44.30
45.30
40.88

BOW+CNN DSIFT ×40
×100
×200
×400

41.80
38.56
49.75
38.67

[64]

SURF 53.07
60.80
70.00
51.01

LLC+CNN DSIFT ×40
×100
×200
×400

60.58
57.44
70.00
46.96

[64]

SURF 80.37
63.84
74.54
54.70

Fractal dimension + SVM Fractal dimension ×40 55.60 [61]

(Hu moment + colored histogram +Haralick texture)
+ RF (4000)

Hu moment, Colored histogram,
and Haralick texture

×40
×100
×200
×400

90.28
90.10
87.43
86.55

Present Work

(Hu moment + colored histogram +Haralick texture)
+ SVM (linear kernel and C = 5)

Hu moment, colored histogram,
and Haralick texture

×40
×100
×200
×400

82.20
87.58
86.48
82.95
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93.97% for ×40, 92.92% for ×100, 91.23% for ×200, and
91.79% for ×400 and attained the best performance.

Bardou et al. designed their own CNN which composed of
five convolutional layers and two dense layers [64]. They

Table 10 Comparison of existing approaches and the present work based on deep learning at image level for the entire magnification levels

Technique Model Magnification factor Accuracy (%) Precision Recall F1 score Ref.

Deep learning CNN+ original data ×40
×100
×200
×400

86.34
84.00
79.83
79.74

– – – [64]

Deep learning CNN+ augmented data ×40
×100
×200
×400

83.79
84.48
80.83
81.03

84.27
84.29
81.85
80.84

83.79
84.48
80.83
81.03

83.74
84.31
80.48
80.63

[64]

Deep learning CNN+ SVM ×40
×100
×200
×400

82.89
80.94
79.44
77.94

– – – [64]

Deep learning CNN+ ensemble model ×40
×100
×200
×400

88.23
84.64
83.31
83.98

– – – [64]

Deep learning CNN features + KNN ×40
×100
×200
×400

70.48
68.00
70.08
66.38

– – – [64]

Deep learning CNN features + RBF SVM ×40
×100
×200
×400

75.43
71.20
67.27
65.12

– – – [64]

Deep learning CNN features + linear SVM ×40
×100
×200
×400

72.35
67.68
66.45
64.95

– – – [64]

Deep learning CNN features + RF ×40
×100
×200
×400

66.38
65.12
69.80
67.96

– – – [64]

Deep learning CSDCNN+ original data ×40
×100
×200
×400

89.4 ± 5.4
90.8 ± 2.5
88.6 ± 4.7
87.6 ± 4.1

– – – [38]

Deep learning CSDCNN+ augmented data ×40
×100
×200
×400

92.8 ± 2.1
93.9 ± 1.9
93.7 ± 2.2
92.9 ± 1.8

– – – [38]

Deep learning VGG19 + SVM (L, 1)
(balanced data)

×40
×100
×200
×400

91.21
89.75
68.42
69.44

91.00
89.00
69.00
72.00

90.00
87.00
68.00
71.00

90.00
87.00
68.00
71.00

Present Work

Deep learning VGG19 + SVM (L, 1)
(balanced + augmented data)

×40
×100
×200
×400

92.64
91.25
81.42
80.84

92.00
91.00
82.00
82.00

92.00
91.00
82.00
81.00

92.00
91.00
82.00
81.00

Deep learning VGG16 + SVM (L, 1)
(balanced data)

×40
×100
×200
×400

89.61
89.75
78.95
80.00

90.00
89.00
81.00
80.00

88.00
87.00
82.00
79.00

88.00
87.00
81.00
79.00

Deep learning VGG16 + SVM (L, 1)
(balanced + augmented data)

×40
×100
×200
×400

93.97
92.92
91.23
91.79

94.00
92.00
92.00
92.00

93.00
91.00
92.00
91.00

94.00
91.00
92.00
91.00
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have reported an accuracy ranging from 79.74 to 86.34% for
different magnifications with the original dataset. To further
enhance the performance, they employed data augmentation
technique (rotation and horizontal flip) and obtained accuracy
within the range of 80.83 to 84.48% for different resolutions,
but an enhanced performance was observed for all the resolu-
tions except ×40. A hybrid approach “CNN+ SVM” was also
considered by the authors to improve the classification perfor-
mance. However, the classification performance deteriorated
for this configuration. Further, an ensemble model was ap-
plied to the augmented data for an improvement in the classi-
fication performance. They utilized 10 predictive models with
the highest accuracies. This ensemble model showed the best
result with this CNN topology (ranging from 83.31 to 88.23%
for different resolutions). However, the same CNN showed an
inadequate performance when employed as feature extractor
in conjunction with KNN, RBF SVM, linear SVM, and RF
classifier (ranging from 65.12 to 75.43%).

Han et al. proposed the CSDCNN model for achieving a
remarkable performance in multi-classification of BC histo-
pathological images. They have reported the accuracies in the
range of 87.6 to 90.8% for the raw data and 92.8 to 93.9% for
the augmented data at different magnifications [38]. However,
the transfer learning approach as feature generator with aug-
mented data outperforms all the CNN-based approaches used
in [64] as well as to the CSDCNN approach (when applied to
the original data) [38], while the results of [38] with the aug-
mented dataset are comparable (Table 10). During compari-
son, it is found that the proposed transfer learning approach is
good enough to learn distinguishing features from the com-
plex data of histopathological images at all the magnification
levels.

Conclusions

In this paper, handcrafted feature–based approach and transfer
learning approach with different configurations (as a feature
extractor and as a baseline model) for the multi-classification
of breast cancer histopathological images have been com-
pared. It has been observed throughout our study that the
transfer learning approach as feature extractor provides a re-
markable performance in contrast to other employed ap-
proaches. Among different combinations of classifiers,
VGG16 + SVM (L, 1) provides the best result for all magni-
fication factors (×40, ×100, ×200, and ×400). For this classi-
fier, the process of feature extraction is very efficient as it
utilizes pre-trained weights that are obtained through the train-
ing of VGG16 network on a very large ImageNet dataset. Due
to this fact, VGG16 + SVM (L, 1) has considered to be more
robust and strong classifier for the present configuration.
Additionally, the data augmentation techniques are also
employed which help in further improving the classification

accuracy by tuning the parameters in an appropriate manner.
The impact of magnification level on the classification accu-
racy relies on the complexity level of histopathological images
which goes hand to hand with the rise in the level of
magnification.

In the near future, the layer-wise fine-tuning approach and
ensemble modeling with pre-trained networks can be investi-
gated to determine the overall impact on the accuracy of the
models for the multi-classification of histopathological im-
ages. Moreover, the embedding of pre-trained CNN’s as a
classifier in the handcrafted feature–based approach instead
of conventional classifier could be additional strand to solve
the problem of breast cancer multi-classification.
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