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Abstract
Malaria is a serious public health problem in many parts of the world. Early diagnosis and prompt effective treatment
are required to avoid anemia, organ failure, and malaria-associated deaths. Microscopic analysis of blood samples is the
preferred method for diagnosis. However, manual microscopic examination is very laborious and requires skilled health
personnel of which there is a critical shortage in the developing world such as in sub-Saharan Africa. Critical shortages
of trained health personnel and the inability to cope with the workload to examine malaria slides are among the main
limitations of malaria microscopy especially in low-resource and high disease burden areas. We present a low-cost alternative
and complementary solution for rapid malaria screening for low resource settings to potentially reduce the dependence on
manual microscopic examination. We develop an image processing pipeline using a modified YOLOv3 detection algorithm
to run in real time on low-cost devices. We test the performance of our solution on two datasets. In the dataset collected
using a microscope camera, our model achieved 99.07% accuracy and 97.46% accuracy on the dataset collected using a
mobile phone camera. While the mean average precision of our model is on par with human experts at an object level, we
are several orders of magnitude faster than human experts as we can detect parasites in images as well as videos in real
time.
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Introduction

Malaria is a serious public health problem in many parts
of the world. According to the current world malaria report
[1], 219 million malaria cases and 435,000 malaria deaths
were reported worldwide in 2017. Africa accounts for 92%
of malaria cases and 93% malaria deaths worldwide [1].
Malaria is mainly caused by a group of protozoa parasites
called Plasmodium [2]. Plasmodium falciparum is the most
dangerous member of the Plasmodiidae family, it has a
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higher probability of causing death [3] and is the most
prevalent malaria parasite in sub-Saharan Africa accounting
for 99.7% of estimated malaria cases in 2017 [1].

Early diagnosis and prompt effective treatment are requi-
red to avoid anemia, organ failure, and malaria-associated
deaths. Microscopic examination of stained blood smears
remains the gold standard technique of detecting malaria
both in the laboratory and field [4]. Microscopic examina-
tion enables detection of densely stained parasites against
a background of lightly stained red blood cells (RBCs).
Microscopy is particularly well adapted to low-resource
and high disease burden areas owing to the cost effective-
ness, simplicity, and versatility. However, manual micro-
scopic examination for malaria parasite detection, parasite
life stage differentiation, and parasite count is very labo-
rious and subjective and requires skilled health personnel
[4, 5]. Accurate malaria parasite count is not only criti-
cal for malaria diagnosis but also essential for measuring
drug-effectiveness, testing for drug resistance, and classi-
fying disease severity. The lack of trained health personnel
and the inability to cope with the workload of examining
malaria blood slides are among the main limitations of
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malaria microscopy especially in low-resource and high dis-
ease burden areas [4]. Alternative to microscopy is the use
of rapid diagnostic tests (RDTs) which are instrument-free
tests that are relatively fast in malaria diagnosis and can
be administered by unskilled health personnel [6]. Malaria
RTDs are considered as point-of-care tests in remote malaria
areas as they are mainly used by health care volunteers
at community level [7]. Although RDTs are often able
to differentiate most malarial species by means of their
antigenic properties, overall sensitivity of detection is far
below the threshold of microscopy-based malaria detection
and exhibits large variations among the patients [6]. The
majority of health facilities in remote places are sparsely
distributed with a single health facility serving a vast pop-
ulation; the laboratories are always overwhelmed but under
resourced, and there is critical shortage of skilled health per-
sonnel. As a result, diagnoses are often made on the basis
of clinical signs and symptoms alone, which is highly error
prone and leads to drug resistance, the added economic bur-
den of buying unnecessary anti-malaria drugs, and higher
mortality [5].

Malaria spreads rapidly in a particular season of the year,
and it becomes difficult to arrange an adequate number
of trained health personnel and resources at that time,
especially in remote places. Thus, there is need for low-cost
alternatives and complementary solutions for rapid malaria
diagnosis and quantification for low-resource settings to
potentially reduce the dependence on manual microscopic
examination, which is an exhaustive and time-consuming
activity. In this study, we develop an alternative malaria
screening proof-of-concept which is simple to use, cheaper,
faster, and more accurate than the currently available
methods in low-resource settings. We present an image
processing pipeline using deep learning object detection
methods for rapid malaria detection and quantification in
thick blood smears in both images and videos. We design
our system to run on low-cost devices such as mobile phones
and desktop computers with basic specifications. Therefore,
by mounting a mobile phone or a digital microscope camera
on an existing light microscope, we can speed up and
improve malaria diagnosis in low-resource settings despite
shortage of skilled health personnel.

RelatedWork

Despite the current success of deep learning–based models
in visual object detection, the state-of-the-art models have
not yet been widely applied to microscopic data. Studies in
[8–10] have used object detection techniques to detect and
quantify malaria parasites in thin blood smears. Thin blood
smears consist of a single layer of red blood cells and white
blood cells in which the cells are clearly visible and can

easily be classified as infected or not infected cells. Thick
blood smears consist of several layers of cells which allow
for larger volumes of blood to be examined as well as
quantifying the parasites. The study in [11] used deep
learning object detection to detect and quantify malaria par-
asites in thick blood smears. This study presents realistic
assessments of the effectiveness of their algorithms using
patient-level performance metrics. The study claims suffi-
cient accuracy to achieve level 1 competency in the World
Health Organization external competency assessment, and
sufficient quantitative accuracy for use in drug resistance
studies. However, their algorithm takes about 20 min to pro-
cess the recommended target limit of about 300 fields of
views (images) on a standard quad-core laptop. The pro-
cessing time of their algorithm is more than the average
time a trained technician takes on a single blood slide. The
images were acquired using a digital scanning microscope
which is rare in remote places. Although the study has a
large and diverse dataset consisting of 1452 blood samples
from 12 countries, the dataset and its implementation were
not made available; therefore, their study and claims cannot
be replicated or compared against.

We thus focus on two studies, [12] and [13], to which
we compare the performance of our approach. We are par-
ticularly interested in these studies because they generated
the datasets using low-cost devices suitable for low-resource
settings. Further, the two studies have made the datasets
and implementation details open access. These datasets are
described in “Data.” In both studies, the authors used a
sliding window approach in which overlapping patches are
cropped from images and fed into a classifier. The classi-
fier then determines if the patch contains a parasite or not.
After all patches are classified, the results are aggregated
and by using the non-maximum suppression algorithm [14],
for each detected parasite the best patch is chosen, and
all overlapping patches suppressed. Extremely randomized
trees and Convolutional Neural Network (CNN) classifiers
were in used in [12] and [13] respectively. In both stud-
ies, the authors evaluated the performance of the classifiers
only and not the performance of their algorithms on parasite
detection in full images. The studies provide the receiver
operating characteristic (ROC) and precision-recall met-
rics on the patches that were cropped from the images.
Therefore, in this study, we focus on evaluating the per-
formance of our approach on parasite detection in full in
images. This is a realistic way to measure how well the
algorithm is able to quantify the parasites in images. It
is recommended that a minimum of 100 fields (i.e., the
area visible under the microscope) are examined before the
sample is considered negative [4]. This translates to process-
ing more than 100 images per sample. The results in [13]
showed a significant improvement compared to [12] due to
use of a deep learning approach. We therefore reimplement
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the approach used in [13] to enable us evaluate its detec-
tion performance and compare to our approach on the same
datasets.

Materials andMethods

Object detection has immensely benefited from the recent
developments in deep learning. Object detection, which
involves localizing and identifying multiple objects in a sin-
gle image remains a core challenge in computer vision. The
state-of-the-art generic object detection algorithms such as
You Only Look Once (YOLO) [15], Single Short Detection
(SSD) [16], Faster Regional Convolutional Neural Network
(Faster R-CNN) [17], RetinaNet [18], and RefineDet [19]
perform very well when detecting large objects in images
(such as cars, people, animals, traffic signs) but struggle
when it comes to detecting very small objects in images. In
this study, we adopt and modify the YOLO algorithm for
our malaria parasite screening task. YOLO is currently one
of the fastest object detection algorithms among the state of
the art due to its unique approach in processing of images.
The lightweight version of YOLO can run at 155 frames per
second which makes it suitable for what we are trying to
achieve in this study.

YOLO

YOLO takes a totally different approach from the other
state-of-the-art object detection algorithms which re-
purpose classifiers or localizers to perform detection by
applying the model to an image at multiple locations and
scales. High-scoring regions of the image are then con-
sidered detections. The YOLO algorithm reasons globally
about the whole image and all its objects. YOLO models
detection as a regression problem by utilizing a single neural
network to a full image. Initially, YOLO takes an image
as input, divides it into an S × S grid. Objects whose
center location lies on a grid cell, that grid cell is respon-
sible for detecting that object. Each grid cell is responsible
for predicting B bounding boxes with confidence scores.
A bounding box contains box coordinates of an object of
interest in an image while confidence scores show the prob-
ability of the box containing an object and how accurate the
model thinks the predicted box is. These bounding boxes
are weighted by the predicted probabilities. YOLO looks
at the whole image at test time; therefore, its predictions
are informed by global context in the image with a sin-
gle network evaluation. The YOLO algorithm has evolved
over time since its inception, with each version provid-
ing an incremental improvement in average precision. In
this study, we adopt the current version of YOLO algo-
rithm known as YOLOv3 [20] and modify its backbone and

detection network architectures for our parasite detection
problem.

Feature Extraction

The current version of YOLO is trained and evaluated
on some of the popular object detection datasets such as
Pascal visual object detection class (Pascal VOC) [21] and
Microsoft common objects in context (COCO) [22]. Both
of these datasets contain multiple classes of objects such
as cars, bicycles, people, dogs, and cats. These objects are
visibly large in images compared to parasites which are very
small requiring experts with several years of experience to
accurately identify them. This presents a unique challenge
for these generic detection algorithms.

YOLOv3 model in its current form is not suitable for
low-resource settings. YOLOv3 is a fully convolutional neu-
ral network as it is made up of convolutional layers only.
A full YOLOv3 model consists of 76 convolutional lay-
ers with skip connections and upsampling layers. Out of
the 76 convolutional layers, 53 make up the feature extrac-
tion network. This makes it computationally expensive to
run on low-cost devices such as mobile phones and basic
computers with only CPUs for real-time detection. There-
fore, we modify and replace the entire YOLOv3 feature
extraction network by adopting convolutional bottleneck
residual blocks [23, 24] that utilize 1 × 1 convolutional
and depthwise separable convolutional operations as shown
in Fig. 1.

A standard convolution operation takes wi × hi × ci

input tensor Li , applies a convolutional kernel K ∈
Rk x k x ci x cj , and outputs wj × hj × cj with computa-
tional cost equal to wi .hi .ci .cj .k.k. Depthwise separable
convolutions empirically work almost as well as stan-
dard convolutions but only cost wi .hi .ci(k

2 + cj ) [24].
This allows depthwise separable convolutions to effectively
reduce computation cost by almost a factor of k2. By using
3 × 3 depthwise separable convolutions, the computational
cost becomes 8 to 9 times lesser than that of standard
convolutions without affecting accuracy of the network sig-
nificantly. Depthwise separable convolutions significantly
reduce the number of parameters and computations used
in convolutional operations at the same time increasing
representational efficiency.

YOLOv3 uses output channels ranging from 32 to 1024
filters. We further reduce the number of output channels
in each convolutional layer as shown in Table 1. This
enables us to reduce the number of network parameters from
61 million in YOLOv3 to 0.2 million parameters without
compromising the average precision significantly. Each
1 × 1 convolutional layer and 3 × 3 depthwise separable
convolutional layer is followed by a batch normalisation
and an activation layer. We maintain the same LeakyReLU
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Fig. 1 Bottleneck block: For the downsample operation, we use 3 × 3 depthwise convolution with a stride of 2. We also use a depth multiplier of
2 to double the number of output channels for only the downsample convolution operation

activation function used in YOLOv3. Our feature extraction
network is shown in Table 1.

Detection

For object detection, YOLOv3 includes 23 more convolu-
tional layers to the feature extraction network. The feature
extraction network uses stride 2 convolutional operations
for downsampling the feature map which helps prevent the
loss of low-level features as is the case when using pooling
for downsampling. YOLO v3 performs prediction at three
scales, which are produced by downsampling the dimen-
sions of the input image by 32, 16 and 8 respectively. The
input image in the feature extraction network is downsam-
pled 5 times by a factor of 2 in the 2 stride convolutional
layers.

The first detection is performed on a feature map
generated from the feature extraction network downsampled
by 32. After the first detection, the feature map is
upsampled by a factor of 2 and the resulting feature map is
concatenated to the feature map of the fourth downsample
convolution in the feature extraction network. Therefore, the
resulting feature map, after concatenation, is the input image
downsampled by a factor of 16. The resulting feature map is
subjected to an additional few convolution operations before
performing the second detection. After the second detection,
the feature map is again upsampled by a factor of two and
concatenated to the feature map of the third downsample
convolution operation in the feature extraction network
which results in downsample of the input image by 8. The
resulting feature map is again subjected to a few convolution
operations before performing the third detection. At every
scale before detection, YOLOv3 performs five convolution
operations on the feature map as follows: {1 × 1 conv, 3 × 3
conv, 1 × 1 conv, 3 × 3 conv, 1 × 1 conv}.

We modify the detection network by dropping five
convolution operations of the first detection scale. For
the second and third scales, instead of the performing 5
convolution operations to the feature map we perform 3
convolution operations as follows: {1 × 1 conv, 3 × 3 conv,
1 × 1 conv}. For convolution operations with a 3 × 3
kernel, we replace the standard convolutions with depthwise
separable convolutions as we have done in the feature
extraction network. The resulting feature map at every scale
is passed onto the detection layer (regressor) that consists
of a 3 × 3 convolution and a 1 × 1 convolution which
predicts the coordinates of the bounding boxes, class labels
and confidence scores.

The feature map produced in the detection layers
comprises (B(5 + C)) entries. B is the number of bounding
boxes each grid cell is able to predict. Each bounding box
has 5 + C attributes where 5 represents four attributes
of the bounding box and one object confidence, and C
is the number of object classes the network expects to
detect. In this study we are only detecting a single object
class (Plasmodium falciparum), therefore C = 1. YOLOv3
predicts 3 bounding boxes for every grid cell. Each grid
cell is responsible for detecting an object whose center
coordinates falls onto the receptive field of that grid cell.
YOLO does not predict the dimension of the bounding
boxes instead it predicts the offsets to pre-defined default
bounding boxes known as anchors. Predicting dimensions
leads to unstable gradients during training. The bounding
box predictions are obtained by transforming the network
output using the formula in Eq. 1;

bx = σ(tx) + Cx

by = σ(ty) + Cy

bw = pwetw

bh = phe
th (1)

Table 1 Feature extraction
network architecture Type Output channels Kernel Stride

Convolutional 24 3 × 3 2

Bottleneck 32 1 × 1 3 × 3 1 × 1 3 × 3 1 × 1 1 2 1 1 1

Bottleneck 64 1 × 1 3 × 3 1 × 1 3 × 3 1 × 1 1 2 1 1 1

Bottleneck 96 1 × 1 3 × 3 1 × 1 3 × 3 1 × 1 1 2 1 1 1

Bottleneck 160 1 × 1 3 × 3 1 × 1 3 × 3 1 × 1 1 2 1 1 1
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Fig. 2 Sample images annotated
with bounding boxes. a Image
sample from dataset A captured
using a digital microscope
camera. b Image sample from
dataset B captured using a
mobile phone

Where bx and by represent the x,y coordinates of the
predicted box center; bw and bh represent the width and
hight of the predicted box; tx, ty, tw, th are what the network
outputs; cx and cy represent the top left coordinates of the
grid cell; pw and ph are the anchor dimension. YOLO
defines anchors by running the k-means [25] clustering
algorithm on all the bounding boxes in a dataset to get a
good representation of object sizes in images. YOLOv3 uses
9 anchors. We define our own anchors in a similar way, as
the anchors defined in YOLOv3 are not representative of
the parasite size in the our dataset. We maintain the same
loss function used in YOLOv3. Due to reduced number of
network parameters, we can perform real-time prediction on
high resolution images and videos on low-cost devices.

Data

We train and evaluate our system using two datasets
collected using low-cost devices; Dataset A1 [12] contains
images captured using a digital microscope camera mounted
on a conventional light microscope, and Dataset B2 [13]
contains images captured using a mobile phone mounted
on a conventional light microscope. Both datasets were
annotated by experts using bounding boxes(coordinates on
an image) each centered around a parasite as shown in
Fig. 2. The coordinates of 49,900 Plasmodium falciparum
parasites were recorded in 2703 images (1024 × 768 pixels)
from 133 individuals in dataset A. The set of images in
dataset A were taken from thick blood smears stained using
Field stain at ×1000 magnification. The coordinates of
7628 Plasmodium falciparum parasites were recorded in
1182 images (750 × 750 pixels) in dataset B. The set
of images in dataset B were also taken from thick blood
smears stained using Giemsa stain at ×1000 magnification.
The parasite of interest in both datasets is the Plasmodium
falciparum. Each image in both datasets represents the
maximum rectangular/square area of the microscopic field

1http://air.ug/downloads/plasmodium-images.zip
2http://air.ug/downloads/plasmodium-phonecamera.zip

of view. It should be noted that the life state of the parasites
in both datasets were not reported. Furthermore, the images
are not labelled at patient level. Therefore, this study will
not attempt to evaluate the performance at patient outcome
level, instead the performance is evaluated at object level
(i.e., number of parasites detected per image). We evaluate
how well the model is able to detect all the parasites in each
image in the test set.

In both datasets, we randomly split images: 60% training,
20% validation, and 20% testing as illustrated in Table 2.
The number of images that are negative (no parasites
recorded) and positive (at least a parasite is recorded) from
both datasets is not well balanced as shown in Table 2.

We show the parasite distribution in each image for both
datasets in Fig. 3. Figure 3 a shows the parasite distribution
in the training data with a mean number of parasite per
image equal to 20.65 for dataset A and 8.19 for dataset B.
Figure 3 b shows the parasite distribution in the validation
data with a mean number of parasite per image equal to
19.08 for dataset A and 7.62 for dataset B. Figure 3 c shows
the parasite distribution in the test data with a mean number
of parasite per image equal to 19.81 for dataset A and 8.03
for dataset B. Figure 3 a shows the parasite distribution for
the whole dataset with a mean number of parasite per image
equal to 20.64 for dataset A and 8.04 for dataset B.

Training

As a result of the changes we have made to the architecture,
we train our network from zero. The feature extraction
network in YOLOv3 is trained separately on Imagenet [26]
dataset before further training the full model for object
detection. In our model, we train the feature extraction
network and detection network from zero together at once.
The images in the two datasets described in “Data” have
different sizes. Therefore, instead of having a constant
input image size, we change the network input size after
every 10 training batches. All the input images are resized
to dimensions which must be a multiple of 32 as we
downsample an input image at 5 convolution operations
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Table 2 Datasets: Number of
images (positive and negative)
and parasite

Dataset A Dataset B

+ images – images Parasites + images – images Parasites

Training 1458 164 30107 577 132 4728

Validation 481 59 10302 198 38 1510

Testing 479 62 9491 173 64 1390

Total 2418 285 49900 948 234 7628

using a stride of 2 during our feature extraction process.
We randomly pick the input image size in range between
224 × 224 to 800 × 800 during training after every
10 batches. The input dimension must have equal height
and width. The network input image size is changed on
the fly during training without affecting the number of
parameters in the model. This enables the network to learn
to predict across different image resolutions. Therefore,
our model enables us to make a trade off at test time
between accuracy and computation cost/speed. The training
data is heavily augmented due to imbalanced datasets and
limited number of samples to avoid over fitting. We use
the heavy augmentation option from the imgaug3 pipeline,
and all the image augmentation is done randomly at runtime
during training. We train the networks independently for
each dataset to ensure that our model can learn from
the images with high object-density as well as images
with low object-density, as the two datasets have different
distribution of parasites. In addition to parasite distribution,
the two datasets were generated using different devices,
and different stains were used. We do not perform image
preprocessing at test apart from resizing the input image to
a size W × H where W = H and multiple of 32.

We train our model using Tensorflow [27] and Keras [28]
libraries. We use the standard RMSProp [29] optimizer
with decay and momentum both set to 0.9. Every layer
consists of a standard weight decay set to 4e−1 as well
as batch normalization. We set the initial learning rate
at 0.0045 chosen after multiple experiments, and reduce
the learning rate when it plateaus by factor 0.1. To speed
up the training process, we use the NVIDIA GeForce
GTX 1080 Ti GPU, as training a deep learning model is
computationally expensive. Training the model has to be
done only once, and retraining only periodically depending
on the model performance in the real world environment.
This trained model can be used on multiple low-resource
client devices (cellphones, low-powered PCs) in the field
without problems, since parasite detection and counting in
novel images using an already trained model is much faster
(several orders of magnitude cheaper, computationally not
requiring GPUs) than retraining the model in the first place.

3https://github.com/aleju/imgaug

Evaluation

Evaluating object detection is non trivial, as there are two
distinct tasks to measure: classification, which determines
whether an object exists in the image, and localization
which determines the location of the object (a regression
task). In this study we use the average precision (AP)
evaluation metric used in the Pascal visual object detection
class (VOC) challenge [21] which is one of the most
popular datasets for object detection. Currently, there are
no standard object detection evaluation metrics tailored
for microscopic objects; hence, we use the popular Pascal
VOC AP. The AP used in the Pascal VOC challenge is an
interpolated AP from [30] used for evaluating classification
and detection. To calculate the AP, the precision-recall curve
is computed from the model’s detection output by using the
bounding box confidence score. Each predicted bounding
box in an image/video has a confidence score. A detection is
considered positive if the bounding box confidence score is
above the certain score threshold. In this study, we maintain
the Pascal VOC confidence score of more than 50%. The
50% confidence score threshold in this study gives us the
optimal F1 score. Precision and recall are computed as
shown in Eqs. 2 and 3 respectively.

Precision = T P

T P + FP
(2)

Recall = T P

T P + FN
(3)

where TP is true positive, FP is false positive, and FN is
false negative. The TP, FP, and FN are determined as shown
in Fig. 4. The final step in calculating the AP score is
to compute the precision over all recall values. Therefore,
AP summarizes the shape of the precision-recall curve and
is determined as the mean precision at a set of eleven
equally spaced recall levels [0.0, 0.1, ..., 1.0]. The AP is
then computed as shown in Eq. 4:

AP = 1

11

∑

r∈R

P recision(Recallr ); R=0.0, 0.1, ..., 1.0

(4)
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Fig. 3 Parasite distribution per image. a Training data. b Validation data. c Test data. dWhole data

The precision at each recall level r is interpolated by getting
the maximum precision recorded at recall that exceeds
Recallr :

Precision(Recallr ) = max
r̃:r̃≥r

P recision(Recallr̃ ) (5)

Fig. 4 Prediction example. RED: true box annotated by experts.
GREEN: predicted box by our model. The confidence score is the
probability that our model assign to the predicted box that it contains
a parasite

The precision-recall curve is interpolated to reduce the
impact of jitter in the precision-recall curve that are caused
due to small changes in the ranking of examples. This
implies that to get higher AP score, the model must have
precision at all levels of the recall. The model gets penalized
if it only retrieves a subset of cases with high precision.

In order to evaluate the model on parasite localization
in images or videos, there is a need to determine how
well our model predicts the location of all the parasites.
We archive this by drawing a bounding box around the
parasite. Localization is evaluated by measuring the overlap
ratio between the predicted bounding box and the ground
truth bounding box. The overlap ratio is also known as
Intersection over Union (IoU) computed as illustrated in
Fig. 5a. We show different IoUs thresholds in Fig. 5. In this
study, we set IoU threshold to 0.3. This means that if the
overlap ratio between predicted box and true box is 0.3, we
consider that detection as a TP. The threshold of 0.3 was set
deliberately low to account for inconsistencies in bounding
boxes in the ground truth data with regards to placing the
parasite in the center of the box. We are confident that a
threshold of 0.3 is sufficient to consider a positive detection
as shown from the visual representation in Fig. 5b. The
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Fig. 5 Intersection over Unions (IoU) values. Red: True box annotated by experts. Green: predicted box

bounding boxes in dataset A are 50 × 50 pixels while in
dataset B are 40 × 40 pixels.

Results and Discussion

We compare the performance of our model against human
experts and the baseline. We consider the sliding window
plus convolutional neural network (SW + CNN) approach
used in [13] as the baseline. We optimized our model in the
best way possible for simplicity and detection speed. Earlier
during model training, we manually examined random
images to inspect the consistency in the annotation of
images. This gave us an idea of what to expect when we test
our model’s performance. We discovered some annotation
errors in the few random sampled images. Therefore, in
order to provide a fair and realistic model evaluation, we
gave the test set images to two independent experts from
different labs to annotate, and we evaluated the annotations.
In the baseline model, parasite detection was not evaluated
therefore we reimplemented the baseline model using
the same libraries as our model for a fair performance
comparison. The results are shown in Table 3.

Our model outperforms the baseline on both datasets in
every category. Our model performance on the two datasets
is almost at par with human experts in terms of mean
average precision (mAP) but our model is several orders of
magnitude faster at detection. For the results in Table 3, the
IoU threshold for our modified YOLO and human experts

is set to 0.3 and the confidence score threshold is 0.5 while
for the SW + CNN model, the IoU threshold is set to
0.15 and the detection probability threshold is 0.9 based
on their implementation. The number of parameters in this
case represents the total number of parameters in the feature
extraction network and the detection network. The detection
time represents the average amount of time our models
takes to detect parasites in an image by predicting bounding
boxes. The detection time is measured on a CPU.

To show the robustness of our model, we evaluate our
model by interchanging the test dataset, a network trained
on the training set A is evaluated on test set B and vice-versa
without retraining the two networks. We show the results in
Table 4. The results in Table 4 shows that our model is not
significantly affected by the variability in the dataset such
as change of camera and staining.

Our model uses fewer parameters compared to the
baseline model which makes our model faster. The slid-
ing window approach used in the baseline has a draw
back in that the model only sees a small fraction of an
image, thus discarding important background information.
The YOLO algorithm addresses the background differenti-
ation issue and scales much better to larger datasets than
SW + CNN. We show in Fig. 6 how the model predicts
parasites’ locations in images. The images in Fig. 6 rep-
resent some of the images with the most dense parasites
from both datasets. The observed maximum annotated par-
asites count per image is 112 in dataset A and 27 in
dataset B.

Table 3 Performance comparison at parasite level

Network Input size mAP: dataset A mAP: dataset B No. of parameters CPU time/image

Modified YOLO 224 × 224 0.762 0.814 205,934 0.07 s

Modified YOLO 544 × 544 0.871 0.880 205, 934 0.20 s

Modified YOLO 800 × 800 0.887 0.902 205, 934 0.42 s

SW + CNN [13] 50 × 50 patch size 0.515 0.685 602,046 2.20 s

Human expert I Original size 0.896 0.923 − −
Human expert II Original size 0.904 0.912 − −
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Table 4 Model performance on
swapped test sets Network Input size mAP: train A - test B mAP: train B - test A

Modified YOLO 224 × 224 0.645 0.703

Modified YOLO 544 × 544 0.721 0.781

Modified YOLO 800 × 800 0.801 0.832

Our model is trained using different image input sizes
from 224 × 224 pixels to 800 × 800 pixels. Therefore,
at test time we make a trade off between accuracy and
computational cost. Lowering the input size at test time
affects the accuracy while increasing the input size increases
the computational cost. We show this trade off in Fig. 7.
The mean average precision increases with an increase in
image size as shown in Fig. 7. However, increasing the
input image size beyond 800 × 800 does not significantly
improve the mAP. This can be attributed to parasite density
in images and partially on model capacity. The denser the
parasites are in images, the more the annotated bounding
boxes overlap. Our model in some cases predict a single
bounding box for parasites that are very close to each other.
This has an effect on the way we evaluate the precision
as two annotated parasites with more that 40% overlap
between them are counted as a single parasite in our model.
This problem can be resolved by reducing the size of the
bounding box annotations, as we noticed that the parasites
occupied less 50% area of annotated bounding box. An
alternative approach would be to move beyond bounding
box annotations to pixel segmentation which looks at the
actual boundaries of the object of interest in an image.

The mean average precision is affected by the overlap
threshold set during detection. In Fig. 8, we show the
precision-recall curves for both datasets to illustrate how
the mean average precision is affected by different overlap
thresholds. We start with the lowest overlap threshold, i.e.,
0.1. For an IoU of 0.1, if the true box and predicted box
are the same size, it means the overlap covers 17.5% of
the true box which is large enough to consider a detection

positive. During training, we consider a positive detection if
the overlap (IoU) is more 0.3, which means that predicted
box overlaps the true box by 52.5%.

To better understand the worst case predictions by our
model, we look at images with lowest precision from both
datasets as shown in Fig. 9. In both cases, the model is very
confident that these are parasites as can be seen from the
confidence scores on the bounding boxes. In most cases, this
can be attributed to missed labelling by the annotators as is
the case in most supervised learning problems. We found
that in most cases a few parasites were not annotated. Minor
errors in bounding box annotations can significantly affect
the performance of the model on the test set. This explains
why the average precision for human experts is around 0.9
and also highlights the subjectivity of parasite quantification
in blood smears.

We further give an insight into our model prediction
performance by looking at the number of parasites detected
in each image. We show these results in Fig. 10. Figure 10
a shows true number of parasites in each image versus
the number of parasites per image detected by our model.
We fit a y = x line over the points in Fig. 10a for both
datasets where x is the true number of parasites per image.
We use mean absolute error (MAE) to assess our model
prediction error. The MAE is 3.23 for dataset A and 2.24
for dataset B. We do the same for the total number of
parasites per image versus the true positives per image in
Fig. 10b. We fit a y = x line over the points for each
dataset, the MAE is is 0.75 for dataset A and 0.23 for
dataset B. Figure 10 c shows the total number of parasites
per image versus the false positives per image and we can

Fig. 6 Sample prediction by our
model: Red boxes represents the
true parasites, green boxes
represent our model prediction
with the confidence score. The
input image is 544 × 544 and
IoU = 0.3. No preprocessing is
done at test time apart from
resizing the images to a user
desired input image size
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Fig. 7 Image input size versus
Mean Average Precision versus
versus time on a CPU in
milliseconds; IoU = 0.3. The
image size equal to width equal
to height

Fig. 8 Precision-recall curves for both dataset produced at different IoU thresholds. The image input size is 544 × 544, confidence score threshold
is 0.5

Fig. 9 Sample images from test
set with lowest precision. a
Image from dataset A. b Image
from dataset B. Red boxes
represents the true parasites, and
green boxes represent our model
prediction
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see that the false positives count decreases as the number
of parasites in an image increases. For images with the low
parasite count, the false positives’ ratio to total number of
parasites is higher than images with high parasite count.
This can be partially attributed to annotation errors as shown
in the images with lowest precision in Fig. 9. Increasing
the detection threshold could reduce the false positives but

this will affect the sensitivity of the model. Figure 10 d
shows the total number of parasites per image versus false
negative per image and the results shows that as the images
gets denser with parasites, the more chances some parasites
will be missed by our model. Figures 10 e and f show the
total number of parasites per image versus the precision per
image and the recall per image respectively. At test time,

Fig. 10 Different metrics in terms of number of parasites per image
in the test set. The image input size is 544 × 544, confidence score
threshold is 0.5. a True number of parasites per image vs number of
predicted parasite by model per image. b True number of parasites per
image vs model’s true positives per image. c True number of parasites

per image vs model’s false positives per image. d True number of par-
asites per image vs model’s true negatives per image. e True number
of parasites per image vs model’s precision per image. f True number
of parasites per image vs model’s recall per image
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Fig. 11 Classification results at
image level in test datasets. The
image input size is 544 × 544,
confidence score threshold is 0.5

the model allows for this flexibility where one can choose
which metrics to maximize to get the best result for each
particular case.

For overall image classification, we use the object
detection results of each image. An image can be classified
positive or negative by considering the precision, recall and
accuracy from the parasite prediction count. The precision,
recall, and accuracy can be affected by a number of
factors such as the intersection over union, confidence
score threshold, etc. We consider an image positive if the
precision at object level is greater than zero. This means
that at least a parasite is detected in an image. However,
this may not give a true picture if we do not consider
recall and accuracy as illustrated in the worst case result
in Fig. 9b where the precision is 0.056 and the accuracy
is 0.055. Such a result may not give a true diagnostic at
patient level unless we consider multiple images which
represents microscopic fields of view as recommended
by the World Health Organization (WHO). Therefore, to
perform classification at patient level, we need to analyze
multiple images. The WHO recommends at least 100 fields
of view (images) to consider a patient negative. Neither
dataset has patient-level information for us to be able to
apply patient-level evaluation metrics. We report the image
level classification results using the confusion matrix in
Fig. 11 and other classification metrics in Table 5. Our
model achieved 99.07% and 97.46% accuracy on dataset A
and dataset B respectively. By extrapolating these results to
patient-level classification, if we apply our model to 100
images from a patient sample, the model should thus be
able to classify with confidence as to whether a patient has
malaria or not.

Table 5 Model classification performance at image level

Sensitivity Specificity Precision F-score Accuracy

Dataset A 0.9979 0.9333 0.9917 0.9948 0.9907

Dataset B 1.0000 0.9048 0.9665 0.9830 0.9746

Conclusion

This research provides a prototype for an inexpensive
alternative to, and a complementary solution for, rapid
malaria screening and can help to provide access to quality
malaria diagnosis that is currently routinely unavailable in
low-resource settings. Our solution can potentially be used
as decision support tool for diagnostic consistency, help
reduce the dependence on manual microscopic examination,
relieve operator fatigue, and improve throughput rates. We
evaluate the performance of our system on images that
were generated using low-cost devices which include a
mobile phone or digital microscope camera mounted on
light microscope. The mean average precision on two test
datasets is on par with human experts, but several orders
of magnitude faster as we can process a single image in
milliseconds using a simple mobile device. We demonstrate
how a generic object detection algorithm can be repurposed
for detecting very small objects which require skilled
experts to accurately identify. Our system is able to detect
and localize malaria parasites in thick blood smears with
high precision and sensitivity.
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