
ORIGINAL PAPER

iBEX: Modular Open-Source Software for Digital Radiography

Altay Brusan1
& F. Aytaç Durmaz1 & Alper Yaman2

& Cengizhan Öztürk1

Published online: 16 December 2019
# Society for Imaging Informatics in Medicine 2019

Abstract
A device-independent software package, named iBEX, is developed to accelerate the research and development efforts for X-ray
imaging setups such as chest radiography, linear and multidirectional tomography, and dental and skeletal radiography. Its extension
mechanism makes the software adaptable for a wide range of digital X-ray imaging hardware combinations and provides capabil-
ities for researchers to develop image processing plug-ins. Independent of the X-ray sensor technology, iBEX could integrate with
heterogeneous communication channels of digital detectors. iBEX is a freeware option for preclinical and early clinical testing of
radiography devices. It provides tools to calibrate the device, integrate to health information infrastructure, acquire image, store
studies on local storage, and send them to Picture Archiving and Communication System (PACS). iBEX is a unique open-source
project bringing X-ray imaging devices’ software into the scope of the open-source community to reduce the X-ray scanners’
research effort, potentially increase the image quality, and cut down the production and testing costs of radiography devices.
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Introduction

projectional radiography device is an assembly of a power
source, X-ray tube, collimator, positioning mechanisms, X-
ray sensitive receptor, and dose control tools. The power
source generates a suitable range of electrical energy and con-
ducts it to the X-ray tube to generate an X-ray beam. A colli-
mator at the window of the X-ray tube housing influences the
size and shape of the X-ray beam exiting the tube assembly
and directed toward the patient body. Within the body, X-ray
photons may be attenuated or directly pass through. The latter
photons are called primary photons and positively contribute
to the image formation at the detector. However, attenuated
photons have the chance to find a way out and bring unwanted

contributions at the detector. These photons are called scatter
photons and are filtered by a specifically designed grid. A
detector captures the received photons and forms an image
[1], in which each pixel intensity is directly related to the
amount of the incident X-ray photons.

The parameters of early projectional radiography scanners
were manual and adjusted by an operator using electrome-
chanical knobs and switches, but in time, devices have
adopted such that the software’s role in automation and con-
trol of the processes has increased. In 1970s, high-frequency
(HF) power generators were introduced which outperformed
three-phase power generators in terms of efficiency and reli-
ability [2]. In this type of generators, an embedded software in
a microcontroller was responsible for generating high-
frequency switching signals, which were applied for control-
ling the output voltage. Indeed, it was the first appearance of a
software unit within a radiography device. During the 1980s,
electromechanical timers and knobs started to be replaced by
digital and electronic counterparts [3]. By the early 1990s, a
form of an embedded software component was presented in
almost all radiography devices. At this decade, digital revolu-
tion completely changed the radiology devices, which result in
(1) introduction of digital X-ray detectors, (2) significant re-
duction in storage costs, and (3) proliferation of digital com-
munication infrastructures in medical centers. These advance-
ments all together create a new ecosystem. The radiography
devices need to be upgraded to fit to the new environment.
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Despite the successful history of the embedded solutions, they
were not enough for these new demands. Due to this issue,
embedded digital hardware was replaced by general-purpose
computers, and software tools were developed to handle the
necessary requirements and controlling tasks.

From then, researches are focused on optimizing the digital
radiography systems, specifically with the aim to acquire bet-
ter images from lower X-ray dose. As a result, receptor tech-
nology and material [4, 5], collimator design [6], acquisition
protocol guidelines [7], and image processing and filtering [8]
were all subject to further optimization. Also, studies were
conducted to compare different imaging modalities [9] or im-
age quality of the same modality from different vendors [10]
and to update the standards [11].

These studies have highlighted the fact that despite a long
history of the projectional radiography, it is still an active field
of study with continuously emerging dynamic requirements.
However, manufacturers develop their own hardware and ac-
companied software packages as a closed system, and some
vendors limit access to critical sections within their software
products. This approach is attributed to the tightly regulated
ecosystem of the medical device environment. Figure 1 shows
a common set of standards that are related tomedical software.

A medical software, either as a part of a device or stand-
alone medical application, is required to comply with several
regulations, like US Food and Drug Administration (FDA)
regulations on electronic records and electronic signatures,
CGMP-CFR 21 Part 11 [12], or European Medicines
Agency (EMA) 93/42/EEC directives [13]. A set of standards
were prepared for software products: IEC 62304 (Medical
Device Software – Life Cycle Processes) [14], which pre-
scribes software engineering-related matters, and ISO/IEC/
IEEE 29119 (software testing) family, which defines software
testing standards that are usable in any development method-
ology; specifically, ISO/IEC/IEEE 29119-5 [15] promotes

Keyword-Driven Testing (KDT) [16] as an efficient and con-
sistent solution for evaluating software units. IEC 14971 [17]
discusses a risk management framework within which the
safety critical properties are hold and guarantees conformance
to abstract specification of safe device operation. Additionally,
there are standards that are not specific to software alone, but
organizations should provide evidences of conformance, like
ISO 13485 (Quality Management System). Companies that
successfully pass this pathway for their products prefer to
close their achievements for external intervention, and this
effectively limits the flexibility for researchers.

In opposite to the closed-formmanufacturing paradigm, var-
ious kinds of dedicated X-ray devices could be brought togeth-
er, from off-the-shelf components made by different manufac-
turers. For example, a power source from vendor A and a de-
tector from vendor Bmay be used to make a newX-ray scanner
device. This assembling paradigm liberates the researchers
from prefabricated device limitations and allow for customiza-
tion of the radiography device based on their own needs and
requirements. The only issue with the new paradigm is the lack
of a device-independent and general-purpose software package
which could interact with the components from different ven-
dors. Such a software package would complete the chain of the
customized X-ray device fabrication, and its requirements have
already been defined by the American College of Radiology
(ACR), the American Association of Physicists in Medicine
(AAPM), and the Society for Imaging Informatics in
Medicine (SIIM) [18].

The purpose of this study is to provide a multitude of mod-
ular open-source software tools, which is named iBEX, to
facilitate the workflow necessary to build a functional digital
radiography system. Its plug-in mechanism paves the way for
integrating devices from different vendors and developing
custom image processing algorithms. In order to reduce the
platform compatibility issues, iBEX was written in C++, and

Fig. 1 FDA- and EMA-
standardized medical software
development, management, and
integration activities
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it is portable to any state-of-the-art operating system and hard-
ware architecture (i.e., ×86 or 64-bit system). Researchers and
developers could download the source code from the project
GitHub repository [19] and rebuild it for their own scanners.

SOLID principles [20] andModel-View-Controller (MVC)
design patterns [21] were applied during iBEX development,
rendering the output source code neat, safe, and efficient.
These goals were evaluated by means of automated testing
tools and profiling widgets. Furthermore, iBEX functionality
and reliability were assessed on an innovative full-body time
delay integration (TDI)-based X-ray scanner.

In the following sections; iBEX architecture and major
workflows are presented, and then its novel extension
methods are discussed in detail. In the results section, iBEX
analysis results are presented. Finally, at the discussion sec-
tion, the iBEX, current position, and its future in the medical
open-source development are discussed.

Materials and Methods

This section reviews iBEX internal from normal users and
technical developers’ perspectives. Normal users get benefit
of main workflow and high-level functionalities of iBEX sole-
ly for imaging and device calibration purposes without deal-
ing with technical details behind. On the other hand, technical
developers access the full iBEX code. These users are normal-
ly responsible for developing, installing, updating, configur-
ing, and customizing iBEX for a new imaging device.

The project development follows IEC 62304 standard [14].
This standard discusses a generic application lifecycle manage-
ment (ALM) for medical software and its minimum required
criteria, without involving methods and realization techniques.
Anymethodologies that meet these minimums could be accept-
able. Among the available options, Rational Unified Process
(RUP) [22] has been selected for iBEX realization. First, the
requirement analysis document of the project was prepared.
Based on that document, the project was divided into three
milestones. Then, a design document of the first milestone
was sketched out. In an iterative and incremental process, the
requirements document, design artifacts, and prepared source
code were gradually updated. This process continued until all
targets of a given milestone were achieved. Then, the next
milestones were started and continued till all the requirements
were satisfied. In this section, the focus was on the final outputs
and the details of each iteration were omitted.

Requirement Analysis

The requirement analysis started from ACR-AAPM-SIIM
guideline [18] and Digital Imaging and Communications in
Medicine Information Object Definition (DICOM IOD) of
digital radiography [23]. Based on these guidelines, a list of

required workflows was identified; then, the list was enriched
by some of the other workflows that are commonly available
in modern digital radiography scanners (Table 1). This list was
the base of all analysis, implementation, and test designs.

System Design

iBEX had a micro-kernel architecture (Fig. 2). All major
workflows (Table 1) and a plug-in manager were implemented
within the core package.

Internally, iBEX core contained VTK [24], DCMTK [25],
CTK [26], Qt [27], Log4Qt [28], and SQLite [29] packages.
Each package had a specific responsibility within the kernel.
VTK library was used for image rendering, DCMTK was
applied for DICOM transactions and file format conversion,
and CTK has built-in plug-ins and tools for managing PACS
connection and provided extra Qt widgets for handling and
viewing images. The plug-in manager was based on Qt plug-
in engine and log-engine leverages Log4Qt package. Finally,
SQLite was applied for managing database.

Implementation Concerns

iBEX code was developed based on well-known best practices
and guidelines. The source code clarity and reusability were
boosted by applying separation of concern principle [30] and
implementing MVC design pattern. The view objects were re-
sponsible only for interacting with the user interface, model
objects stored and retrieved data, and controller objects handled
the data flow in between view objects and model objects.

The events were divided into systemic and application cate-
gories. Each category is logged separately. Systemic events in-
clude technical details and mostly designed for debugging iBEX
itself. The application events observe users’ interactions like the
last time a user signed in. The log files are stored in a rolling
fashion in text format, and when their sizes reach a predefined
amount (current limit is 10 MB), they are overwritten.

DICOM standard has a database model [31] for DICOM
compatible medical X-ray scanners. In this model, each pa-
tient entity accomplishes at least one study entity, each study
contains zero or more series entities, and each series contains
zero or more instance entities (i.e., image). iBEX database
implements this model with solidifying two design choices:
first, all the patient’s imaging tasks are completed in one ses-
sion. So, each study contains one and only one series. Second,
each instance (i.e., image) is independent of the others and
stored in a separate file.

Extension Mechanisms

Plug-in manager of iBEX core supports two types of plug-ins:
device and algorithm. The device plug-in provides a mecha-
nism to integrate a device driver, for example, a detector
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driver, and algorithm plug-in is for merging new image pro-
cessing algorithms into iBEX. As it is shown in Fig. 3,
IDevice and IAlgorithm interfaces provide the common lan-
guage in between iBEX core and external plug-ins. During
iBEX core boot period, plug-in engine automatically searches
for the files that implement one of these interfaces and loads
them as extension plug-ins.

The IDevice interface standardizes the commands andmes-
sages that is sent and received in between iBEX core and
peripheral devices (Fig. 4). This interface identifies three types
of operations for each device: read, write, and execute. To

accomplish each of these commands, the plug-in may use a
setting value. IDevice could discriminate error and normal
messages. These notifications are fired from the device plug-
ins and contain the situation information. They are captured
and handled within iBEX core. Some device plug-ins may
have a user interface to display on the screen. iBEX core, by
means of the “Get Widget” function, checks whether there is
any user interface widget within the IDevice plug-in or not. If
there is any, then it would load and fuse it to its own interface
during the boot time. Additionally, IDevice interface discrim-
inates volatile and permanent settings. Volatile settings are

Table 1 Digital radiography common requirements

Workflow Description

Register new patient Capture the patient’s demographic information and record it in the local database

View image Load local image file (with tiff or dcm extension) and display it on the screen

Select imaging task Opens the local task list to select a task

Quick scan Starts to acquire a study without registering the patient. It is useful for emergency scans

Configure devices Updates parameters of components (such as detector binning mode or energization level of power source)

Apply image filtering Updates the images by applying a filter plug-in (one could also make changes on the filter parameters before its
application)

Manage local database Checks the database for data integrity and controls the capacity

Decide on image After acquiring an image, the user can decide to accept or reject the image. If the image was rejected, then the acquisition
is expected to be repeated

Log event Events within the system are recorded in different levels (e.g., warning, information, error, fail)

Send to PACS The finished studies are stored in a remote PACS server. The server connection settings should be configurable

Configure machine Peripheral components’ calibration parameters are updated

Make DICOM file Converts the raw image into a DICOM file

Create account User credentials are updated

Update worklist Modality worklist is automatically (and manually) updated

Fig. 2 iBEX core package is the
kernel of the system. It includes
all major workflows and a plug-in
manager
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parameters restricted to the current session and disappear
when the session is ended (or due to power loss). On the other
hand, the permanent settings are stored within the device firm-
ware, and they are not cleared even after the session is fin-
ished. To handle this latter type of settings, iBEX core requests
a parser in order to help with permanent settings. Some per-
manent settings, like detector gain and offset, could critically
affect the device performance. Manufacturers prefer to block
the end user access completely or intentionally to make it hard
to manipulate those calibration parameters. However, if the
user is authorized and provided a way to update the critical
calibration parameters, then it is feasible to change them by
means of an IDevice plug-in.

The IAlgorithm interface is specialized for image process-
ing (Fig. 5). iBEX core passes the raw images to an
IAlgorithm filter via “Set Input” command. The processed
image is reloaded back to the iBEX core with “Get Output.”
The core can trigger the algorithmic operation of the plug-in
with “Start” and “Stop” command and through the “Update

Parameter” informs the IAlgorithm plug-ins with the most
updated filtering parameters. The plug-ins could inform the
operation status to the iBEX core via firing notification mes-
sages (i.e., Finish, Error, Stop, and Start), and the iBEX core
handles these messages appropriately. Like IDevice,
IAlgorithm plug-ins may contain a graphical interface widget
and, likewise, the “Get Widget” function returns this interface
from the plug-in into the core.

IDevice and IAlgorithm interfaces intrinsically differ
from each other in the way that they handle the com-
mands. It is reasonable to assume that the device com-
mands are executed in relatively shorter time than algo-
rithmic operations, which may take a while to complete.
Based on this, IDevice operations (read, write, and exe-
cute commands) are conducted synchronously, while
IAlgorithm operations (start and stop commands) are
asynchronous. In other words, whenever iBEX core issues
a device operation command to a device plug-in, it blocks
itself and waits until the command is finished or a

Fig. 4 IDevice interface. This
interface describes a common
context in between iBEX core and
a device plug-in

Fig. 3 iBEX extension
mechanisms support device and
algorithm extensions via IDevice
and IAlgorithm interfaces
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notification message is returned. On the other hand, when
iBEX core starts (or stops) a filtering task within an
IAlgorithm plug-in, it immediately returns to its own

execution thread. It is the plug-in’s responsibility to in-
form the core with appropriate notification messages, such
as start, stop, progress, or error notifications.

Fig. 5 IAlgorithm interface.
Image, algorithm, and UI widget
are IAlgorithm properties. iBEX
core interacts with a filtering
plug-in via a set of functions de-
fined in the interface

Fig. 6 iBEX internal main workflow. This workflow is used by normal users
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Main Workflow

iBEX main workflow is shown in Fig. 6. After successful log-
in to the system, the main menu shows up. Each item on this
menu targets a section of the common workflow (Table 1).
iBEX provides three methods to start a study:

1. Register a new patient: the patient’s DICOM critical de-
mographic information is first collected and registered at
the local database.

2. Fetch from Radiology Information System (RIS): imaging
tasks and patient demographics are fetched from the RIS
system.

3. Quick operation: imaging task is performed with no need
to collect demographic details. This is useful for emergen-
cy and anonymous studies.

The “Examination dialog” controls the examination expo-
sure parameters and flows. After successful acquisition, image
processing task is initiated via the filters’widget. The processed

image is shown in the image viewer section of the
“Examination dialog,” and if it is acceptable, then it is sent to

Fig. 7 Data flow pipeline between core and first custom filters. If another filter exists, then iBEX automatically activates. The final filter output is
displayed on the screen

Fig. 8 Developed full-body X-ray scanner. In this device, a TDI detector,
high-frequency power generator, and three servo motor drivers are re-
quired to be controlled with iBEX

Fig. 9 Risks in association with software. These risks could negatively
affect the device functionality
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PACS server; otherwise it is eliminated. Other workflows such
as updating PACS and RIS servers’ connection settings or reg-
istering new users are also available but are not shown in Fig. 6.

Filtering Pipeline

The digital X-ray images are large and require a delicate flow
pipeline to prevent memory leakage or system crash. To opti-
mize the data transfer in between iBEX core and IAlgorithm
plug-ins, the raw images were encapsulated in multi-layer data
structure (Fig. 7).

First , the raw images were converted into raw
“vtkImageData” type. This data type is consistent with the
other image processing and filtering tools of the VTK library.
Then, to activate the VTK memory management, the
“vtkImageData” was wrapped with a smart pointer and then
enlisted in Qt list data structure. This list is passed to the first
filter plug-in. When it is finished with processing, it notifies
the core with the filtered image. This flow is repeated for the
next filter until all filtering tasks are finished. Then iBEX core
fetches the processed image from the last filter and displays
the output on the screen.

Tests, Risks, and Measures

In harmony with IEC 14971, risk management activity is placed
underneath of the project management discipline. Risks and their
associated harm were studied before any piece of code was writ-
ten. Then, candidate routines, practices, and control mechanisms

that could avoid or reduce harm severity were devised and re-
ported on failure mode and effects analysis (FMEA) document –
as a part of analysis-and-design artifact. By this effort, iBEX
would always stay within a tolerable harm zone.

In accordance with ISO/IEC/IEEE 29119-5 standard,
iBEX tests were accomplished based on two-layer KDT mod-
el: domain layer and test interface layer. Each domain layer
keywords associate with a group of tests at interface layer and
represent the highest abstraction level. However, test interface
layer keywords stand for the most atomic interactions and
specify the lowest level of abstraction.

After development, the released executable was tested
on an innovative full-body TDI X-ray scanner that we
had developed (Fig. 8). In this device, one Gulmay CF-
series power generator through a serial port, a Delta
ASD-b2 motor driver through a MODBUS RTU channel
and one Teledyne Argus TDI detector through an ether-
net channel were connected to the workstation comput-
er. Additionally, on the workstation there were a PACS
server [32] and a RIS emulator [33] to simulate real
environment. This case study is used to profile iBEX
runtime resource management and measure the code
coverage [34]. To best of our knowledge, no medical
software standards suggest rigid boundaries, methods,
or criteria for quantitatively measure the medical soft-
ware quality. However, commonly used criteria such as
count of activated functions [35], number of passed
conditions [35], amount of used memory, CPU peak
and GPU load were measured for iBEX.

Table 2 Risks FMEA matrix
before applying any risk
reduction mechanisms

Likelihood 6 frequently 1 1
5 probable 2 22 23
4 occasional 30 10 13
3 remote 19 16 5 4
2 improbable 13
1 unbelievable 2

1 negligible 2 marginal 3 critical 4 very critical 5 catastrophic

Severity

Table 3 Risks FMEA matrix
after applying risk control
mechanisms

Likelihood 6 frequently

5 probable

4 occasional

3 remote 3 5 23
2 improbable 18 52 8 13
1 unbelievable 16 14 1

1 negligible 2 marginal 3 critical 4 very critical 5 catastrophic

Severity
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Results

Using the common requirements (Table 1), iBEX was
logically organized into a set of domains, and for each
domain, a keyword was assigned. Respectively, each
domain is divided into atomic operation units and tested
individually. A summary of these tests is available in
appendix (Table 5). Some tests are accomplished by
automated testing tool, marked as AUTO, and the others
are done manually, labeled MAN. Except a few warning
messages, majority of tests passed successfully. The rea-
son of the warnings was in the fact that the VTK is in
transition from openGL to openGL2 backend technology
and there is inconsistency in between VTK and CTK
widgets. Also, VTK Qt widget plug-in works just in
release mode compilation, and this causes additional
warnings during the tests.

The project risks root in different factors such as soft-
ware related, device component originated, human errors,
or environment. A partition of risks that were classified to
be in association with software is shown in Fig. 9.

In collaboration with medical experts, all identified
risks were categorized in failure mode and effects anal-
ysis (FMEA) matrix (Table 2). Red blocks are unaccept-
able zones, and the associated risks could cause severe
harm on the patient or frequently happened. This type
of risks requires tighter security measures during the
software design. For example, the operator may enter
a wrong X-ray generation parameter which leads to
harmful over (or under) shoot exposure on the patient.
To minimize this risk, (1) all exposure parameters on

the user interface should have measurement unit, (2)
the font and its size should be legible, (3) the parame-
ters’ order on the screen should be static such that it
reduces the chance of human mistakes, (4) there should
be hard-coded boundaries on exposure parameters, and
(5) ask the operator to verify the exposure before
starting examinations. Risks within the orange blocks
are tolerable. For example, invalid look-up table (LUT)
values may change the image appearance on the screen;
however, most DICOM viewers have an option to ma-
nipulate LUT boundaries, and physicians can adjust
them on their device before deciding. Additionally, a
verified DICOM encoder, like DCMTK, takes care
about this issue. Finally, the green area shows the zones
within which the risks happen remotely or their severity
is not critical. Example of this kind of risks is invalid
grid information. This type of information is used to
augment the DICOM file with device specification and
does not carry therapeutic or diagnostic value.

Fig. 10 Sample output of the step
phantom

Table 4 Memory, CPU, and GPU utilizations reflect the runtime
resource management quality criteria

Snap Memory (mb) Peak CPU(%) GPU utilization(%)

Baseline 22 17 2.8

PACS transaction 25.42 14 4.8

RIS transaction 25.43 11 3.2

Patient registration 26.34 4 3.7

Quick scan 231.88 25 5.2
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The following strategies were contemplated to reduce
harm:

• Apply standard compatible tools such as DCMTK.
• Require the user to verify steps.
• Hard code DICOM-predefined constants within the

source code.
• Design user interface to reduce the chance of miss

interpretation.
• Provide detailed documentations regarding device techni-

cal specification.
Based on the expert bodies’ judgment, the above ap-

proaches could reduce the red zone risks’ severity or likeli-
hood and put them within the tolerable boundaries. The
FMEA matrix of iBEX after risk management activity is
shown in Table 3. One can see there are no risks within intol-
erable region.

The functionality and reliability of iBEXwere evaluated on
a novel TDI full-body scanner. For each component, a device
plug-in was developed and a denoising filter implemented to
reduce the image noise. Sample output of a step phantom is
shown in Fig. 10.

A summary of the runtime resource consumption is
given in Table 4. After successful log-in and before acti-
vating any process, a snapshot of allocated resources is
captured. This snapshot constitutes the base line, and dur-
ing the execution, other snapshots were captured to com-
pare the resource consumption over the time. A sudden
memory and CPU peak was observed in quick-scan snap-
shot. This is because the image processing and device
communication happened simultaneously, and they are
resource-hungry processes. Comparing CPU and GPU uti-
lizations clearly depicts that most of the processing tasks
are done by CPU rather than GPU. This is because the
fact that VTK and CTK widgets were compiled for CPU.

A code coverage tool was applied to measure the
percentage of the iBEX source code that involved in
action on the prototype scanner. For this, five different

execution scenarios were contemplated, and for each
scenario, the percent of involved function to the total
number of functions was measured (Fig. 11).

The load and boot process required the minimum
amount of functions to complete. This process was fin-
ished in almost 300 ms. Network communication (i.e.,
PACS/RIS communication workflow) required almost
20 s, and configuring the device settings took 40 s.
The maximum amount of iBEX which is approximately
equal to 80% of iBEX got involved to accomplish a
quick scan. From another perspective, Fig. 12 summa-
rizes the condition pathways of each execution scenario.

Discussion

iBEX is an open-source and platform-independent soft-
ware for digital X-ray scanners. In contrast to [36],
iBEX is developed to be platform-independent realiza-
tion of an X-ray workstation software package. Its de-
velopment process was adopted to be compatible with
IEC 62304, ISO/IEC/IEEE 29119-5, and ISO 14971
medical device standards. Project documents, samples,
and help files were prepared in RUP templates. These
documents, when accompanied with test results of the
whole X-ray scanner, could provide evidence of compli-
ance with certifications like FDA or CE. Nonetheless,
we must emphasize that iBEX is not evaluated in (or
applied for) pre/clinical and human examinations. Our
current iBEX implementation is limited to phantom im-
aging and development of advanced image processing
techniques required by our line scanner setup.
Manufacturers and researchers can continue customizing
and developing both iBEX and their device in compli-
ance with pertinent regulations to finish up with a med-
ical grade certified X-ray device.

Fig. 11 iBEX function coverage
on prototype device. Number of
iBEX functions involved in
execution depends on the
execution path

Fig. 12 Percent of if-else state-
ments passed to accomplish each
execution scenario depends on its
complexity
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Open-source community should take notice the im-
portance of the full iBEX package, including the com-
plete set of development notes, developer guide, man-
uals, risks analysis, source code test results, and exam-
ples. Similarly, any contribution must come with neces-
sary additional user and developer documentations. In
the future, either changes may happen to iBEX core
itself or new plug-ins will be developed. Whenever
iBEX core is updated, source code tests and risks anal-
ysis should be re-evaluated and reflected on the relevant
project documents. In this way, iBEX core consistency
is preserved, and the updated documents can be used to
provide evidence of compliance with medical standards.
In the same manner, suspicious plug-ins will be detected
by inconsistent risk analysis or incomplete source code
test results. Any discrepancy between documented
claims and compiled code could be a sign of a vulner-
able contribution, and the other open-source community
members could report it to fix the issue or completely
remove it from the project repository.

The idea of plug-in extension is not novel to the medical
imaging. For example, in magnetic resonance imaging
(MRI) modality, manufacturers with an agreement provide
an extension mechanism for researchers to integrate their
custom sequences and/or reconstruction algorithms.
Usually, in those devices, the researchers’ contributions
are executed in a controlled manner, and they are utilized
only after the institutional approval (which may include the
ethical review by a formal body for animal and/or human
research) has been acquired. Likewise, iBEX core utilized
the Dependency Inversion Principle (DIP) [20] in order to
isolate the plug-ins from the functionalities that are critical
for the safety of the device. Communication in between
plug-ins and core is formalized with IDevice and
IAlgorithm interfaces, and the core has the data flow control
in hand. Additionally, each IDevice plug-in runs within
their dedicated isolation environment, and they cannot in-
terfere with each other’s operation. This separation protects
the whole system against outlier device plug-ins and eases
the debugging process. The IAlgorithm plug-ins are also
sandboxed; furthermore, they receive a separate execution
thread. Thus, the core is protected against system blocking
image processing algorithms. Despite all these arrange-
ments, there is still a chance for abnormal incidents. It is
the responsibility of the developer to accomplish compre-
hensive testing, which includes plug-in tests, plug-in and
core junction tests, and whole scanner device tests.
Finally, for protecting the system against unauthorized
plug-ins, a plug-in certification and signing mechanism
could be added to plug-in manager. This protection mecha-
nism would be complex, and from our point of view, it is in
contrast with open-to-extension spirit of iBEX; however, for
commercial devices, it seems to be unavoidable.

Among the list of exerted packages, VTK, SQLite,
CTK, and Log4Qt are open source and freely available
on their corresponding owner’s websites; but Qt and
DCMTK are exception in this list. Qt is distributed un-
der both open-source freeware for noncommercial pro-
jects and commercial licenses. iBEX developers, specif-
ically commercial users, should adhere to legal obliga-
tions enforced by the licensing agreements. Currently,
DCMTK free evaluation period is for 4 months, and
any further use requires a full license agreement. Also,
some device component manufacturers may ask for a
nondisclosure agreement (NDA) to protect their
Application Programming Interfaces (API’s). In such sit-
uations, developers should avoid to publicly share their
plug-ins. For example, in our full-body scanner case,
Gulmay power generator API was under protection,
and its plug-in’s implementation file (i.e., .cpp file)
was removed before uploading into the repository.

iBEX plug-in mechanism breaks the limitation of as-is
X-ray machine and turns it into a plug-integrate-play (PiP)
device. In other words, researchers, based on their budget
and workload, can select their own scanner’s configura-
tion and optimize its design. The details of how to devel-
op a new plug-in and its source code is available on
GitHub [12] repository readme section. The repository
contains both device and algorithm plug-ins which could
be used as template for developing plug-ins.

iBEX is an ongoing project and open to improve-
ments. As seen in Fig. 11, execution time of configura-
tion and settings update is not negligible and could be
improved. There are some limitations in the current re-
lease. For example, there is no platform-independent
programming library available for writing a CD or
DVD. So, this tool is not yet implemented in iBEX.
Medical printers’ specifications differ from conventional
printers, and to the best of our knowledge, there is no
platform-independent medical printer emulator or library.
However, in the future, these tools are feasible to be
developed by the community.

Conclusion

iBEX, as a free and open-source project, aimed to encapsulate
all the required functionalities of a medical grade digital X-ray
workstation. By opening the doors of the X-ray imaging de-
vice software to open-source community and developing
high-quality and well-documented software which are com-
patible with medical software standards, it will be possible to
have more stable, robust, and flexible imaging scanners with
lower costs in a short period of time. Eventually, this would
bring higher-quality workstations at reduced costs for health
centers and democratize X-ray device development.
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Appendix

A summary of the KDT results is given in Table 5

Table 5 iBEX test table. Tests are organized in two-tier KDT framework proposed in [15]

Domain layer Test interface layer Type Note

RegisterPatient Test_
UpdatePatientDemographicInfo();

AUTO PASS

Test_UpdatePatientId(); AUTO PASS

Test_UpdateReferringPhysician(); AUTO PASS

Test_UpdateAdmissionNumber(); AUTO PASS

Test_UpdateAccessionNumber(); AUTO PASS

Test_GetPatientDemographicInfo(); AUTO PASS

Test_GetPatientId(); AUTO PASS

Test_GetReferringPhysician(); AUTO PASS

Test_AppendRegion(); MAN PASS

Test_RemoveRegion(); MAN PASS

Test_ClearForm(); AUTO PASS

Test_GetAnatomicRegionList(); AUTO PASS

ViewImage Test_DisplayImage(); MAN WARN

Test_ClearImageViewer(); MAN PASS

Test_OnThumbnailChanged(); MAN PASS

Test_OnVerticalFlipToggled(); MAN PASS

Test_OnHorizontalFlipToggled(); MAN PASS

SelectTask Test_OnNewTaskRowIsSelected(); MAN PASS

QuickScan Test_OnActivateExamination(); MAN PASS

ConfigNetworkConnection Test_GetPACSServerName(); AUTO PASS

Test_GetStorageServerName(); AUTO PASS

Test_GetPACSServerport(); AUTO PASS

Test_GetWorklistServerAETitle(); AUTO PASS

Test_GetWorklistServerIP(); AUTO PASS

Test_GetWorklistServerPort(); AUTO PASS

Test_SetWorklistServerAETitle(); AUTO PASS

Test_SetWorklistServerIP(); AUTO PASS

Test_SetWorklistServerPort(); AUTO PASS

ManageDatabase Test_WriteToTable(); AUTO PASS

Test_ReadFromTable(); AUTO PASS

Test_ChangeFieldInTable(); AUTO PASS

Test_SearchInTable(); AUTO PASS

Test_RecordConsistency(); AUTO PASS

Test_AutoSqlStringMaker(); AUTO PASS

LogEvent Test_SystemDebug(); AUTO PASS

Test_SystemInfo(); AUTO PASS

Test_SystemWarn(); AUTO PASS

Test_SystemError(); AUTO PASS

Test_SystemFatal(); AUTO PASS

CommunicateWithPACS Test_
SendingSingleDicomFileToPacs();

MAN PASS

Test_SendingDirectoryContents(); MAN PASS

Test_ConnectingPacs(); MAN PASS

ManageDeviceMetaData Test_UpdateManufacturer(); AUTO PASS

Test_UpdateInstitutionName(); AUTO PASS
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