
Amitava Halder1 & Debangshu Dey2 & Anup K. Sadhu3

Published online: 29 January 2020
# Society for Imaging Informatics in Medicine 2020

Abstract
This paper presents a systematic review of the literature focused on the lung nodule detection in chest computed tomography
(CT) images. Manual detection of lung nodules by the radiologist is a sequential and time-consuming process. The detection is
subjective and depends on the radiologist’s experiences. Owing to the variation in shapes and appearances of a lung nodule, it is
very difficult to identify the proper location of the nodule from a huge number of slices generated by the CT scanner. Small
nodules (< 10 mm in diameter) may be missed by this manual detection process. Therefore, computer-aided diagnosis (CAD)
system acts as a “second opinion” for the radiologists, by making final decision quickly with higher accuracy and greater
confidence. The goal of this survey work is to present the current state of the artworks and their progress towards lung nodule
detection to the researchers and readers in this domain. This review paper has covered the published works from 2009 to April
2018. Different nodule detection approaches are described elaborately in this work. Recently, it is observed that deep learning
(DL)-based approaches are applied extensively for nodule detection and characterization. Therefore, emphasis has been given to
convolutional neural network (CNN)-based DL approaches by describing different CNN-based networks.
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Introduction

Cancer is a disease that has several manifestations and it is
primarily associated with abnormal cell groups. These can-
cer cells continue to divide and grow to produce tumors.
Among all types of cancer, lung cancer is the most life-
threatening disease all over the world. According to the
World Health Organization [1], lung cancer is the leading
cause of death worldwide. In 2008, 1.37 million deaths
caused by lung cancer occurred throughout the world [2].
Available data shows that the lung cancer is the largest
among new cancer diagnoses worldwide (1,350,000 new

cases and 12.4% of total new cancer cases) and it is the
largest cause of death from cancer globally (1,180,000
deaths and 17.6% of total cancer deaths) [3].

It is the most common cancer in men worldwide (1.1 mil-
lion cases, 16.5% of the total). Among females, it was the
fourth (516,000 cases, 8.5% of all cancers) most commonly
diagnosed cancer and the second (427,000 deaths, 12.8% of
the total) leading cause of cancer death [4]. Last 5 years (2014-
2018) estimated new lung cancer cases and total estimated
lung cancer deaths found in the USA [5] have been portrayed
in Fig. 1. A report by National Cancer Centre Singapore [6]
has shown that 1.2 million people were diagnosed with cancer
and 7700 people died of cancer on average in the year 2015
and 158,080 cases were expected by the end of 2016. In
Brazil, an average of 28,220 cases found in 2016 with
17,330 males and 10,890 females [7].

Lung cancer can be divided into two broad categories, viz.,
small cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC). SCLC accounts for 15% of lung cancer cases and
highly malignant. Non-small cell lung cancer (NSCLC) ac-
counts for the remaining 85% of cases [3].

A pulmonary nodule refers to the lung tissue abnormality
mostly found in lung cancer patients. In 1984, a glossary of
terms published by Fleischner Society [8] for thoracic
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radiology. The society has defined lung nodule as “any pul-
monary or pleural lesion represented in a radiograph by a
sharply defined, discrete, nearly circular opacity 2-30 mm in
diameter.” Twelve years later, the society defined lung nodule
as “round opacity, at least moderately well marginated and no
greater than 3 cm in maximum diameter.”

The solitary pulmonary nodule (SPN) is defined as a radio-
graphic opacity with a diameter of up to 30 mm and at least
two-thirds of its margins surrounded by lung parenchyma.
SPNs are of the four types: (a) well-circumscribed: the nodule
is located centrally in the lung without significant connections
to vasculature, (b) vascularized: the nodule is located centrally
in the lung, but has significant vascularization (connections to
neighboring vessels), (c) juxtapleural: a significant proportion
of the nodule periphery is connected to the pleural surface, and
(d) pleural tail: The nodule is near the pleural surface, con-
nected by a thin structure called “pleural tail” [9]. Figure 2
shows four types of SPNs. On the other hand, if the diameter is
greater than 30 mm, it is called lung mass. Lung masses are
generally cancerous.

It is observed from different research works that early de-
tection of lung nodules can improve the 5-year survival rate.

Among different types of cancer, the 5-year survival rate of
lung cancer is the lowest with an estimated value of 18% of
the diagnosed cases for years 2004-2010. The prognosis of
lung cancer depends on the extent of disease at the time of
diagnosis. Early-stage detection of lung cancer can improve
the survival rate. The 5-year survival rate is 54% for a small
and localized lesion [10]. According to Cancer Research UK
[11], the survival rate is 87% for stage I, and 19% for stage IV
lung cancer patients.

Many pitfalls of recent medical imaging techniques have
been investigated by the work of Godoy et al. [12] for nodule
detection and characterization. Computed tomography is the
most recent dominated imaging tool used to capture the lung
images. The National Lung Screening Trial (NLST) [13] re-
ported that a reduction of 20% in mortality can be achieved
with low-dose computed tomography (LDCT) image than
chest X-ray. Therefore, computer-aided detection and
computer-aided diagnosis has become the most prominent
and valuable tool for lung nodule detection and
characterization.

A complete guideline for small pulmonary nodule manage-
ment including its growth information is provided by the work

(a) (b) (c) (d)

Fig. 2 Typical SPNs for different
types. a Well-circumscribed
nodule. b Juxtavascular nodule. c
Nodule with a pleural tail. d
Juxtapleural nodule (Dhara et al.
[17])

Fig. 1 Last 5 years (2014–2018)
lung cancer statistics in USA. a
Nos. of estimated new cases. b
Total nos. of estimated deaths.
Source: American Cancer Society
(ACS) [5]
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of MacMahon et al. [14]. Recent guidelines and management
of pulmonary nodules are described in [15]. A deep and ex-
tensive study of patients with previous cancer history was
presented by the work of Rena et al. [16] for SPN
characterization.

The morphological appearances such as border, shape, and
location characteristics of a lung nodule in CT image are de-
scribed in [18-20]. The information about ground glass opac-
ity (GGO) nodule is available in [21]. Different types of
GGOs are shown in Fig. 3.

Reviews of the pulmonary detection techniques are not
new but as the computational techniques change from time
to time, a thorough review is necessary to understand the
technology shipment towards automated nodule detection sys-
tems. Different review works with objectives to find out the
technological changes exist in the literature [17, 22-27].

However, owing to the developments of new techniques, it
has been noticed that a recently deep learning-based approach
has introduced for nodule detection. Therefore, a detailed sur-
vey is required to cope up with the technological changes and
present consistent information to the thirsted readers, the aim
of this survey work.

This survey work primarily conducted by focusing on the
“nodule detection” process from CT images. Therefore, dif-
ferent works based on nodule detection have been searched
and collected from IEEE, Elsevier, SPIE, and Springer. The
following sentences were used as search terms for handcraft-
(HC) or feature engineering-based works: (1) lung nodule
detection, (2) nodule detection, (3) lung nodule detection
using filters, (4) lung nodule segmentation, and (5) nodule
candidate detection. On the other hand, sentences such as (1)
lung nodule detection using deep learning, (2) lung nodule
detection using deep features, (3) lung nodule detection using
convolutional neural network, and (4) lung nodule detection
using CNN have been used for deep learning-based works.

It is observed that, apart from nodule detection, CNN-
based nodule characterization/classification tasks are also
available in the literature. CNN acts as an automatic feature
extractor, owing to this reason the nodule characterization
becomes much easier. The following search terms have been
used to collect different works based on the nodule

characterization, viz., (1) lung nodule characterization, (2)
lung nodule classification, (3) lung nodule characterization
using CNN, and (4) lung nodule classification using CNN.

This review paper is organized as follows. The “Database
Description” section presents a detail description of the avail-
able databases. The “Traditional/Handcraft/Feature
Engineering-Based Approaches Towards Lung Nodule
Detection” section describes different nodule detection frame-
works based on handcraft/feature engineering approach. The
“Deep Learning-Based Approach Towards Lung Nodule
Detection” section is devoted to the deep learning-based ap-
proach towards nodule detection and characterization. Finally,
the reported survey work has been concluded in the
“Conclusion” section.

Database Description

In this step, CT images are collected for evaluation of the
CAD systems. In most of the nodule detection works, the
images used have dimension 512 × 512 pixels in the form of
a 2-D slice. A number of slices are varying in different scans.
All images use Digital Imaging and Communications in
Medicine (DICOM) file format. The high-resolution CT
(HRCT) images can be acquired from the few publicly avail-
able databases, e.g., LIDC, ANODE, and from different hos-
pitals (private database). Below, a brief introduction has been
given for the two publicly available databases.

(a) LIDC-IDRI The Lung Image Database Consortium-Image
Database Resource Initiative [28] is the world’s largest pub-
licly available database that acts as a leading source of nodule
reference database. This image repository was initiated and
developed by five institutions in USA, viz., Weill Cornell
Medical College, University of California (Los Angeles),
University of Chicago, University of Iowa, and University
of Michigan [29]. Readers are referred to the work of
Armato III et al. [29] and Tan et al. [30] for the historical
perspective of the LIDC-IDRI database. The database con-
tains 1018 CT scans of 1010 patients. The thickness of each
slice varies from 1.25 to 2.5 mm range with the pixel size
ranges between 0.48 and 0.72 mm [31]. Most of the work
used the nodule size between 3 to 30 mm (11-113 pixels). A
detailed description of the LIDC-IDRI can be found in [29,
32]. The works of Gupta et al. [31], Hancock and Magnan
[33], Han et al. [34], Hancock and Magnan [35], Messay
et al. [36], and Paul et al. [37] have presented the marking
techniques, evaluation methods, and guidelines to use of this
database.

(b) ANODE09 The Automatic Nodule Detection 2009
(ANODE09) is another publicly available database consists
of 55 CT scans, annotated by two radiologists. Out of 55

(a) (b)
Fig. 3 Examples of a sub-solid and b pure ground-glass nodules
(Lederlin et al. [15])
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scans, 5 were provided as training cases, and the rest 50 cases
were provided as the testing case. The details of this database
can be found by the work of Ginneken et al. [38].

Apart from LIDC and ANODE09, three more databases,
viz., TIME [39], ELCAP [40], and LISS [41], are available in
the public domain for lung nodule research. These databases
are small in size w.r.to LIDC.

Traditional/Handcraft/Feature
Engineering-Based Approaches Towards
Lung Nodule Detection

This section describes the workflow of a computer-aided de-
tection (CADe) system by explaining different works based
on “Feature Engineering” for nodule detection. This tradition-
al framework consists of four main steps: (1) pre-processing,
(2) lung segmentation, (3) nodule detection, and finally (4)
classification (Fig. 4). Each step has been described precisely
by considering the related works that have been found so far.

Pre-processing

The aim of this step is to reduce noise and enhancement of
nodule-like structures by applying different filters to the input
lung CT image. Different filters can be found in literature,
among them median filter, dot enhancement filter, log filter,
and filters based on histogram equalization are widely used in
this stage. Median filter has been used in [42-46]. The work of
Sun et al. [47] and Choi and Choi [48] used dot enhancement
filter. Log filter was used by the work of Nagata et al. [49],
Jirapatnakul et al. [50], and Kubo et al. [51]. Wiener filter was
applied in [52]. CLAHE and Wiener filter have been used in

[53]. Multi-scale filter was examined by the work of Pei et al.
[54] and Takemura et al. [55]. Selective enhancement filter has
been used by Miyajima et al. [56] and Dhara and
Mukhopadhyay [57]. Dhara et al. [58] applied a multi-scale
selective enhancement filter. Gabor filter was used by the
work of Hadavi et al. [59]. Filho et al. [45] and Namin et al.
[60] have used Gaussian filter in the pre-processing stage.
Apart from that, Iris filter [61], shell filter [62], sequential filter
[63], fuzzy filter [64], and LBP filter [65] have been used as a
pre-processing step.

Lung Segmentation

The second step of the nodule detection system is the lung
segmentation. This stage aims to reduce the search space by
extracting only the lung regions. This step mainly includes the
following sub-steps thorax extraction and parenchyma struc-
ture extraction/lung extraction.

Thorax Extraction

This stage processes and removes all artifacts external to the
patient’s body, e.g., bed sheets, the air that involves him, and
the surface on which he lies [66].

Lung Extraction

The overall aim of this module is the identification of the left
and right lung from a CT slice. The histogram of the lung CT
image with two sharp peaks from left to right has been shown
in Figs. 5 and 6, respectively.

A typical thoracic CT slice contains voxel intensities in
Hounsfield unit (HU) scale. It is observed from the above
histograms that low-density lung tissues are visible in the in-
tensity range of − 910 to − 500 HU, whereas high-density
structures such as chest wall, blood, bone, fat, and muscles
contain intensity value above − 500 HU. In most of the works,
researchers have incorporated threshold-based segmentation,
as there is a sharp valley in the histogram (Fig. 6).
Experimentally, a value of − 500 HU may be chosen as the
ideal threshold value. Otherwise, an iterative optimal thresh-
old algorithm may be used to determine an optimal threshold.
Therefore, by designing a proper mask, it is possible to extract
the left and right lung region from CT image. A region-
growing algorithm with a threshold as stopping criteria may
be used for lung segmentation as mention in [66]. A 3-D
region-growing algorithm has been used by several studies
for lung segmentation. After segmentation, a 3-D labeling
algorithm labels the image. Finally, two lung regions have
been extracted as the biggest and next biggest connected re-
gions from the labeled image and setting the rest of the seg-
mented regions as background [68, 69]. Lung segmentation
based on threshold can be found by the work of Leemput et al.

1. Image acquisition and Preprocessing

2. Lung Segmentation

2.2 Lung Extraction

2.1 Thorax Extraction

3. Nodule Detection

3.1 Nodule candidate detection/ Tubular 
structure elimination

3.2 Feature extraction/ False Positive 
reduction

4. Classification

Fig. 4 A simple CADe framework
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[62], Cuifang et al. [64], Suárez-Cuenca et al. [61], Sousa et al.
[66], Santos et al. [68], Zhang et al. [70], Fu et al. [71], Gopi
and Selvakumar [72], Paing and Choomchuay [73, 74], Javaid
et al. [75], Rendon-Gonzalez and Ponomaryov [76], Xu et al.
[65], Saien et al. [77], Choi and Choi [78, 79], Pu et al. [80],
and Messay et al. [81]. Segmentation based on iterative
threshold [48, 82, 83], Otsu threshold [73, 84], adaptive
threshold [61, 85], and 3-D adaptive fuzzy threshold [86] exist
in the literature. Lung segmentation based on region and 3-D
region growing can be found in [42, 67, 87-92]. Zhang et al.
[70] have introduced a global active contour model for lung
segmentation. Figure 7 shows an example output of the lung
segmentation stage.

Nodule Detection

This section describes the main module of a CADe-based
system. The aim of this module is the detection of potential
region of interests (ROIs), here lung nodule using image pro-
cessing techniques. The term, “nodule detection” has been
used in a broad sense and consists of the following two sub-
stages, viz., (1) nodule candidate detection/tubular structure
elimination and (2) feature extraction/false-positive reduction.
The complete framework for the CADe system has been

shown in Fig. 4. Lee et al. [25] have categorized the nodule
detection scheme as (a) segmentation detection, (b) classifica-
tion detection, (c) segmentation-template detection, and (d)
segmentation-classification detection. It has been observed
that in the traditional nodule detection approach, almost all
the works are following the segmentation-classification-
based approach. The aim of nodule detection module is to
identify true nodule candidates from the false positives
(FPs), such as blood vessels, shades, bronchioles, bifurcation
points, and ribs by using different image processing and pat-
tern recognition techniques. Next, use or invent different dis-
criminating features so that nodules can be detected (Fig. 8)
with higher classification accuracy. In this section, different
journal works and few conference-based works have been
described elaborately for nodule detection found so far from
the time period 2009 to April 2018.

Nodule Candidate Detection/Tubular Structure Elimination

Image segmentation divides an image into different disjoint
regions. This process changes the representation of an image
into some meaningful image regions for better understanding
and analysis in the subsequent stages. Therefore, this process
reduces the search space within an image and at the same time
finds the location of the desired objects for identification pur-
pose. A good survey on the segmentation category and med-
ical image segmentation can be found by the work of Pal and
Pal [93], Haralick and Shapiro [94], Phamy et al. [95], and
Sharma and Aggarwal [96]. The segmentation approaches can
be divided into three generations. The first-generation ap-
proach includes different algorithms depending on the pixel
intensity and different low-level image processing techniques.
Segmentation involves edge and thresholding and region-
based approaches are examples of this category. First-
generation algorithms do not incorporate any prior informa-
tion of the image. Second-generation algorithms introduce
uncertainty models and different optimization techniques for

Fig. 5 Gray-level distribution of
lung CT image (Cascio et al. [67])

Fig. 6 Threshold may be obtained by choosing the valley of the
histogram (Sousa et al. [66])
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image segmentation. Segmentation based on clustering, ge-
netic algorithm (GA), neural network (NN), and partial differ-
ential equations are examples of second-generation segmen-
tation. Third-generation algorithms incorporate high-level
knowledge such as “a piece of prior” information; expert
knowledge and knowledge about the object shape, orientation,
continuity, elasticity, or smoothness are included in the seg-
mentation process. Segmentation based on deformable model,
active appearance model (AAM) and atlas-based approaches
are examples of third-generation segmentation algorithm.
Different segmentation algorithms have been introduced for
accurate nodule segmentation or nodule candidate detection or
both. Research works focused on nodule segmentation can be
found in [36, 86, 97-101]. Our aim of this survey is to empha-
size on the nodule detection process. In this subsection, dif-
ferent segmentation and detection frameworks have been
discussed for nodule candidate detection.

The frameworks have been categorized based on different
segmentation approaches. Segmentation based on
thresholding [66, 78, 79, 81, 102-104], region-based [105],
clustering-based [45, 75, 106-109], mixed or hybrid segmen-
tation algorithm-based [110], partial differential equation-
based [99, 111], model-based [67, 112] and atlas-based
[113] methods were reported in the literature for nodule can-
didate detection. Apart from that, some other approaches, e.g.,
template matching based [88, 114], filtering based [48, 57, 62,

115-118], feature based [60, 119], concept based [42, 80, 120,
121], and works based on specialized algorithms [122-125]
are available in the literature for complete nodule detection
framework.

A. Thresholding-Based Methods This approach is the simplest
one among different image segmentation approaches. Image
histogram is used to partition the image. Each peak of the
histogram represents a particular region and the intensity val-
ue between two peaks called the “threshold” is selected to
separate desired classes. Next, the segmentation process is
done by grouping all pixel intensities w.r.to. threshold value.
A good survey on thresholding-based segmentation can be
found by the work of Sahoo et al. [126]. Sousa et al. [66]
segmented internal structures of the lung by choosing appro-
priate threshold values. After that, tubular structures were
eliminated by applying the 3-D skeletonization algorithm. In
their work, researchers have observed that tubular structure,
e.g., vessel shows a low variation of the average depth w.r.to
medial axis. On the other hand, nodules show an abrupt
increase of values from the nodule border. Therefore, by
choosing appropriate threshold value with skeletonized
segmentation algorithm nodules has been separated from
vessels. Messay et al. [81] used intensity thresholding and
morphological processing techniques for nodule candidate
detection. Choi and Choi [78] have identified initial nodule

Fig. 8 Output of “nodule
detection” stage. a Original lung
CT image, input to the CADe
system. b Detected nodule

Fig. 7 Output of “lung
segmentation” stage. Segmented
left and right lung appear in slices
40 and 21, respectively (Santos
et al. 2014 [66])
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candidates by using thresholding and shape information.
Narayanan et al. [102] have segmented and detected
candidate nodules simultaneously using intensity-based
thresholding combined with morphological processing.
Aresta et al. [103] developed a nodule detection framework
using Otsu’s threshold method. Different solid, sub-solid,
non-solid, and juxtapleural nodules have been detected by
their proposed system. Solid nodules were searched slice-
wise inside a fixed-width sliding window with stride 1.
Next, the Otsu threshold method has been applied inside each
window for candidate generation. Finally, all windows were
combined using logical OR operation. The sub-solid and non-
solid nodule candidates were detected using a Laplacian-of-
Gaussian (LoG) filter combined with Otsu’s method. Mehre
et al. [104] combined intensity threshold with structuring ele-
ments (SEs) for candidate nodule detection. Morphological
opening operation was performed by using six different inten-
sity values combined with radii of SEs, viz., (− 400, 2), (−
500, 2), (− 600, 2), (− 400, 3), (− 500, 3), (− 600, 3) for nodule
candidate detection. Choi et al. [79] applied optimal multiple
thresholding and rule-based pruning method for nodule can-
didate detection and segmentation.

It is observed that the detection sensitivity varies from
82.66% with an average 3 FPs/scan/case [81] to 94.1% at
5.54 FPs/scan [79] by using threshold-based approach. The
juxtapleural nodule candidates were also detected with a sen-
sitivity of 57.4% at 4 FPs/scan by using this approach [103].

The thresholding approach is entirely based on pixel inten-
sity of an image. It highly depends on the histogram peaks of
an image. Finding an appropriate threshold is a challenging
task; as pixel intensity is more sensitive to noise and intensity
inhomogeneities. Apart from these, spatial characteristics of
an image are not taken into account by this approach and not
good for images with wide plane valleys and unclear histo-
gram peaks.

B. Region-Based Methods This approach partitions an image
into different regions by satisfying some homogeneity criteria.
Gray-level pixel values are used as homogeneity criteria.
Region-based segmentation includes different techniques,
viz., region merging, region splitting, and split and merge.
“Split and Merge” is a hybrid approach, taking the advantages
of both methods. In this approach, pixels are grouped by sat-
isfying some similarity criterion. The selection of the similar-
ity criterion plays an important role in accurate segmentation.
A survey on region-based segmentation is presented in
Freixenet et al. [127]. Suárez-Cuenca et al. [105] developed
a 3-D region-growing algorithm for accurate nodule segmen-
tation. Initially, the nodule candidates were detected by a se-
lective enhancement filter and thresholding approach. The re-
searchers have detected 71.8% of nodules at 0.8 false positives
per case, 75.5% at 1.6 FPs/case, and 80% at 3.4 FPs/case,
respectively. The region-based algorithm gives poor results

as compared with a threshold-based nodule detection
approach.

The primary disadvantage of region-based approach is that
it requires careful manual interaction for seed point initializa-
tion as well as proper seed planning for the regions that need
further processing, although the split and merge technique
does not require a seed point. Apart from that, different ex-
tracted regions may contain holes or even disconnected. These
algorithms are also sensitive to noise.

C. Clustering-Based Methods This method is based on the
division of pixels into homogeneous clusters. This is an unsu-
pervised approach to image segmentation method. It finds the
natural grouping of pixels by executing certain criterion func-
tion. Different clustering algorithms, e.g., K-means or
ISODATA algorithm, fuzzy c-means (FCM), and the
expectation-maximization (EM) algorithm, have been applied
extensively for medical image segmentation. Filho et al. [45]
proposed a CADe system based on the quality threshold (QT)
algorithm and the diversity index. The QTalgorithm was used
for nodule candidate detection. Javaid et al. [75] have used the
K-means algorithm for nodule detection. Initially, the number
of classes has been chosen as three. Next, the class with the
highest mean intensity value was chosen as the nodule cluster.
Juxtavascular nodules are attached to the blood vessels.
Therefore, the separation of blood vessels from the
Juxtavascular nodule is a crucial task. The researchers have
categorized these attachments (connection) as 2-D and 3-D
type. If vessels were connected to a nodule in a single slice,
it was called “2-D connection.” On the other hand, a“3-D
connection” was defined as the branches and nodules that
appear to be separated objects on a single slice but were at-
tached in any previous or some next slice. Researchers have
used a shape-specific morphological opening operation to
break the 2-D connection. A structuring element “line” with
parameters length and angle has been used by their study.
Removal of 3-D connected branches has been done by com-
paring the areas of 3-D connected regions on each slice.
Finally, all nodule candidates were grouped into six classes
by using the proposed equations, viz., “nodule inhomogenei-
ties thickness” and “% of wall connectivity.” Santos et al. [68]
developed a CADe system for automatic small nodule (2-
10 mm) detection on CT images. After lung segmentation,
the internal structures have been segmented using the
Gaussian mixture model (GMM) and EM algorithm. Then a
Hessian matrix was used for false-positive reduction.
However, it has been observed that the presence of bronchi
bifurcations could not be removed by using only a Hessian
matrix. Nithila and Kumar [106] have presented a new tech-
nique that incorporates particle swarm optimization (PSO)
algorithm with back-propagation neural network (BPNN).
Nodules were initially detected by using FCM clustering.
The data points have been clustered into three different
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intensity levels; low, medium, and high. Spherical objects
have been identified using roundness rule, and tubular struc-
tures were removed using elongation rule. Farahani et al.
[107] developed a type-II fuzzy algorithm for the quality im-
provement of raw CT images. Then, modified spatial
kernelized fuzzy c-means (MSFCM) clustering algorithm
has been used for internal structure segmentation. After that,
morphological opening, closing, and filling operations have
been used for nodule candidate detection. Netto et al. [108]
developed a CADe system based on growing neural gas
(GNG) clustering algorithm. Initially, candidate nodules were
detected using GNG algorithm. Next, nodule candidates were
further regrouped using 3-D region-growing algorithm for
volume reduction. Hosseini et al. [109] proposed an automatic
system that can learn and tune Gaussian interval type-2 mem-
bership functions (IT2MFs). Finally, the system has been ap-
plied for lung nodule detection.

It is observed that the detection sensitivity varies from
85.91% with 1.82FPs/exam [45] to 93.2% [107] by using
the clustering-based method. An accuracy of 98% (for solid
nodule), 99.5% (for part-solid nodule), and 97.2% (for non-
solid nodule) respectively has been achieved by the work of
Nithila and Kumar [106]. Farahani et al. [107] also have
achieved an accuracy of 96.5% by using this approach. As
compared with the previous threshold and region-based detec-
tion approaches, the detection accuracy of clustering approach
is higher with lower false positives.

Most of the clustering algorithms require initial parameters.
The EM algorithm has greater sensitivity to initialization than
the K-means or FCM algorithm. This approach does not con-
sider spatial modeling and can be sensitive to noise and inten-
sity inhomogeneities. The lack of information and uncertainty
in data can be dealt with the FCM algorithm by using a mem-
bership function. Fuzzy if-then rules could be utilized to do
approximate inference. However, choosing or designing an
appropriate membership function is not a trivial task and cal-
culations involved in fuzzy approaches could be intensive.

D. Mixed or Hybrid Segmentation Algorithm-Based Methods
This approach consists of combining different segmentation
approaches by using some criterion function. Antonelli et al.
[110] designed a new CADe system that includes three sub-
modules (1) image segmentation, whose aim is to extract pul-
monary regions; (2) VOI (voxel of interest) detector, looking
for VOIs inside the pulmonary regions; and (3) nodule detec-
tor, classify the VOIs into nodules and non-nodules. Three
segmentation algorithms, viz., robust fuzzy c-means
(RFCM), iterative threshold, and region growing, have been
used in parallel to the initial segmented image for VOIs detec-
tion. A combination scheme (VOI detector combiner) has
been used to merge the outputs of the algorithms to form the
VOIs list. This VOI list acts as a nodule candidate locator in
their proposed system. Finally, five classifiers, viz., linear

classifier (ldc), quadratic classifier (qdc), logistic classifier
(loglc), decision tree (treec), and a radial basis function neural
network (rbnc), have been used for nodule detection. The
proposed system has achieved a sensitivity of 92.5%. It is
observed that the sensitivity value is high for mixed
algorithm-based system but choosing the proper combination
criteria is difficult as different segmentation algorithm belongs
to a different generation and follows their philosophy.

E. Partial Differential Equation-Based Methods This approach
uses partial differential as its basic set of equations. Active
contour model (ACM) and level-set method (LSM) belong
to this category. Another name for ACM is snake. A snake
is an energy minimizing, deformable spline. It is defined by
two energy terms, viz., internal elastic energy and the external
edge-based energy. Internal energy term controls the deforma-
tions applied to the snake, and the external energy term con-
trols the fitting of the contour onto the image. The finally used
energy function is the sum of the external energy and internal
energy terms; it acts like a snake. Level-set methods are a
conceptual framework and act as a tool for numerical analysis
of surfaces and shapes. Keshani et al. [99] have presented a
technique using ACM. In the first step, binary lung CT images
were obtained by adaptive fuzzy thresholding. After that, false
positives were reduced by applying two different sized win-
dows, immediately followed by another two rotational win-
dows. Next, two threshold values were used to improve the
result and making an initial mask for the ACM model. A
global region-based energy function that uses mean intensities
has been used by their work for nodule candidate segmenta-
tion and detection. Gong et al. [111] have used a unique 3-D
tensor-filtering algorithm combined with local features for
nodule candidate detection. Next, a 3-D level-set method has
been used to correct and refine the boundaries of nodule can-
didates. A sensitivity of 79.3% was achieved by their work.
An overall detection rate of 89% with 7.3 FPs/scan has been
achieved by the work of Keshani et al. [99]. The disadvan-
tages of ACM include it is not parameter free, sensitive to
local minima states, and accuracy highly depends on the con-
vergence policy. On the other hand, LSM is a parameter-free
approach. In LSM technique, constructing appropriate veloc-
ities for a level-set function is difficult.

F. Model-Based Methods This approach assumed that the
structure of the organs has a repetitive form of geometry and
then it is modeled probabilistically for variation of shape and
geometry. Active shape model (ASM), active appearance
model (AAM), and deformable models are examples of
model-based segmentation methods. A survey on deformable
models can be found by the work of McInerney and
Terzopoulos [128]. Cascio et al. [67] proposed a new algo-
rithm based on the 3-D mass-spring model. The proposed
system can detect small-sized (3 mm diameter) nodules. The
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stable 3-D mass-spring model (MSM) combined with spline
curves has been used for nodule segmentation. Farag et al.
[112] have used AAM with a template matching technique.
Four templates were obtained using AAM for four categories
of nodule detection. Cascio et al. [67] have achieved a detec-
tion rate of 97% with 6.1 FPs/CT with a sensitivity of 88%
with 2.5 FPs/CT.

In model-based segmentation, manual interaction is re-
quired to place an initial model and choose appropriate param-
eters, the main disadvantage of this approach. Apart from that,
this approach gives poor convergence to concave boundaries
[96].

G. Atlas-Based Methods This approach incorporates prior in-
formation of the object. Different expert knowledge or statis-
tical information extracted from the available examples. The a
prior knowledge is incorporated in both atlas construction and
atlas-fitting procedure. In this approach, different features are
computed using an atlas or lookup table. Alam et al. [113]
have used an atlas-based segmentation method for lung nod-
ule detection. In the first step atlas, pre-segmented image has
been selected using nine feature descriptors and the K-nearest
neighbors (K-NN) algorithm. Then in the second step, nodule
candidates were selected using a patch-based image segmen-
tation method. Finally, the Laplacian of Gaussian (LoG) filter
has been applied for accurate nodule segmentation and detec-
tion. Researchers have reported a sensitivity of 100% by using
the atlas-based approach.

The main advantage of this approach is that it can perform
segmentation and classifications in one go [96]. The disadvan-
tage of an atlas-based approach is the time necessary for atlas
construction.

H. Template Matching-Based Methods This is the “brute-
force” algorithmic approach for object detection process. A
template is a sub-image contains the region of interest
(ROI); slides over the entire input image for the search of
desired objects. Cross-correlation, normalized cross-
correlation (NCC), sum of absolute difference (SAD), and
sum of squared differences (SSD) are the metrics, commonly
used for the matching process. Gonga et al. [88] developed a
new algorithm based on dynamic self-adaptive template
matching and Fisher linear discriminant analysis (FLDA) clas-
sifier. Initially, the lung volume was segmented by using Otsu
and the 3-D region-growing algorithm. Next, a multi-scale
Gaussian smoothing operation has been operated for noise
reduction and gradient calculation. After that, the 3-D dot
enhancement filter has been applied over the smooth image.
Finally, a threshold was applied on the dot-enhanced image to
get the nodule candidate regions. Then the spherical ROIs
have been obtained by using a 3-D dot-filtering algorithm.
Next, a 3-D dynamic self-adaptive template matching algo-
rithm has been used with the middle slice of 3-D ROI as the

gray distribution of the 3-D template. Researchers have used
the maxima of NCC and SSD matching methods for nodule
candidate detection. Then a 3-D region-growing algorithm has
been applied for accurate nodule segmentation. Farag et al.
[112] proposed a template matching technique for nodule de-
tection. Four templates were designed by their work. Each
template represents the mean shape and texture of one of the
four types of nodules. These models have been generated
using an AAM method that allowed for obtaining a more
realistic texture and shape descriptor of the nodules. NCC
has been used as the similarity measurement. Assefa et al.
[114] have combined a template matching algorithm with a
multi-resolution feature analysis technique for nodule detec-
tion and false-positive reduction.

Initially, nodule candidates were detected by using a tem-
plate matching approach. Finally, authors have used NCC as a
similarity measure for nodule candidate detection. A sensitiv-
ity of 90.24% with 4.54 and FPs/scan in LIDC and 84.1%
with 5.59 FPs/scan in ANODE09 database has been achieved
by the work of Gonga et al. [88]. Farag et al. [112] also have
achieved a sensitivity of 85%. It is observed that sensitivity in
the range of 84-91% has been achieved by using template
matching approach.

The main demerit of template matching approach is the
proper choice of metric for matching with the target image.
The algorithms, e.g., NNC, SSD, SAD, are mostly time con-
suming, taking more time to compute the correlation. NCC
involves the time-consuming division, square root operations
for correlation computation and hence is more complicated as
compared with both SSD and SAD algorithms.

I. Filtering-Based Methods In this approach, different filters
have been designed and processed for accurate nodule seg-
mentation and candidate detection. Most of the filters have
been designed based on the eigenvalues of the Hessian matrix.
Another name of the Hessian matrix is second-moment ma-
trix; derived from the gradient of a function. It is a square
matrix and can be decomposed using eigenvalue decomposi-
tion; gives a linear combination of three eigenvalues with
three eigenvectors. These three components provide explicit
structural information about the surfaces, curvedness, and
pointedness of an object that can be used for nodule candidate
detection. Choi and Choi [48] detected nodule candidates by
using a proposed multi-scale dot enhancement filter. Hessian
matrix has been used to calculate the dot values of the filter.
The proposed system has shown a maximum accuracy of
97.4% with a high sensitivity value of 97.5%. Jaffar et al.
[115] also have used multi-scale filter based on the eigen-
values of Hessian matrices for nodule candidate detection.
Retico et al. [118] applied a multi-scale dot enhancement filter
combined with peak detector algorithm for internal nodule
candidate detection. Yokota et al. [129] developed a system
that can detect GGO nodules from lung CT images. A 3-D line
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filter using the Hessianmatrix has been used for vessel remov-
al. Next, GGO candidate nodules were detected using density
and gradient information. Finally, GGO candidate nodules
were segmented using a suitable threshold. Ye et al. [86] have
used volumetric shape index map along with the Hessian ma-
trix for nodule detection. The proposed system has achieved a
sensitivity of 91.3% for solid nodule and 83.3% for GGO
nodule with an average detection rate of 90.2% with 8.2
FPs/scan. Novo et al. [116] also have used Hessian matrix
for nodule candidate detection. A new technique named as
central adaptive medialness has been used along with the
Hessian matrix by their work. This technique has been applied
over the bright object regions where the sum of the eigen-
values was less than zero. The main advantage of this method
is that it does not require any Gaussian smoothing operation.
The method is more sensitive to small nodules. Chen et al.
[117] proposed two new features for false-positive reduction.
A blob-like structure enhancement (BSE) filter has been in-
troduced for nodule detection. The “blobness” feature was
computed by utilizing Hessian matrix and has applied across
multi-scale fashion in the lung CT image. It is observed that
Hessian-based BSE filter has low sensitivity in the boundary
region; results in under-segmentation. Therefore, a segmenta-
tion technique named as “fine segmentation” has been intro-
duced for the inclusion of the boundary voxels. A LoG filter
has been used in a bounded region for candidate segmenta-
tion. Dhara and Mukhopadhyay [57] have investigated a hy-
brid pre-processing technique using geometry based diffusion
(GBD) filter and selective enhancement filter for nodule de-
tection. In the first step, GBD filter has been used for FP
reduction. Next, a selective enhancement filter has been used
for false-negative reduction. Leemput et al. [62] have pro-
posed a new filter for nodule detection, named as shell filter.
After lung segmentation, gray-scale dilation operation was
performed with a spherical shell structuring element. Next,
voxel wise minimum was computed between the filtered im-
age and original lung segmented image. Finally, candidate
regions were detected by taking the difference between the
resulted image and the original image.

It is observed that sensitivity in the range of 88.65-97.5%
has been achieved by filter-based approach. However, design-
ing and choosing a good filter that can suppress vessel-like
structure and enhance blob-like structure is a difficult task.

J. Feature-Based Methods This approach is composed of com-
puting different features for candidate nodule identification.
Shape index (SI) and curvedness (CV) are the two most im-
portant features that have been used by feature-based
methods. This strategy was originally proposed by Murphy
et al. [119], where the researchers first down-sample the image
and then apply a single Gaussian filter with σ = 1. Next, the SI
and CV features were computed using the principal curvatures
k1 and k2 for nodule candidate detection. The researchers have

achieved a sensitivity of 80%with an average of 4.2 FPs/scan.
Namin et al. [60] also applied shape index feature and
achieved a sensitivity of 88% with 10.3FPs/subject. Ye et al.
[86] used volumetric shape index feature for nodule candidate
detection. Next, dot-like candidate regions were enhanced
using a multi-scale dot enhancement filter. The proposed
CAD system was able to detect both solid and GGO nodules
from the CT image. The researchers have achieved a sensitiv-
ity of 91.3% for solid nodule and 83.3% for GGO nodule.

It has been observed that maximum sensitivity was
achieved by the work of Ye et al. [86]. Therefore, these fea-
tures can be combined with some other features, e.g., Hessian
matrix based and texture based, for accurate nodule detection.

K. Concept-Based Methods In this subsection, different
concept-based approaches have been discussed for nodule
candidate detection. Froz et al. [120] have used a concept
based on artificial Life. A hierarchical vector quantization
(VQ) scheme was adopted by the work of Han et al. [121].
Concepts based on the “Gestalt Psychology” principle and
“Break-and-Repair” can be found in [42, 80]. Froz et al.
[120] presented a new algorithm based on the concept of arti-
ficial crawlers (AC) and rose diagram (RD) for nodule detec-
tion. AC was defined as a model that uses two-dimensional
images and lives as an individual in the pixels of gray-level
images. The researchers have used candidate curve and tem-
plate curve by employing the AC algorithm. In their work,
nodule and non-nodules were used to generate the candidate
curve, and only true nodules were used to generate the tem-
plate curve. Next, a feature vector was formed by taking the
differences between the template and candidate curve and
employing area under the curve. Five distance functions,
viz., Euclidean, simple matching, Jaccard, Chebyshev, and
Manhattan have been used for each template. Next, different
features, e.g., mean direction, circular variance, circular stan-
dard variation, mean resulting length, kurtosis, and skewness
have been computed by employing the RD. Finally, nodules
were detected by combining different features computed from
the ACmodel and RDmodel. Han et al. [121] have introduced
a new algorithm for the CADe system based on a hierarchical
VQ scheme. Vector quantization was originally used in the
field of data compression and signal processing and then be-
come popular in the fields of speech recognition, face detec-
tion, image compression, classification, and segmentation, as
mentioned by the researchers. In the reported work, the lung
fields were segmented using a “high level” VQ methodology.
The final lungmaskwas obtained using connected component
analysis, followed by a flood-fill operation for filling up the
holes and other disconnected regions. In the second step, a
“low level” VQ algorithm has been used for nodule candidate
detection and segmentation. Qiu et al. [42] proposed a CADe
system based on the Gestalt psychology principle; states that
people first focus on things as a whole and then understand the
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details view of things with the help of global understanding.
Researchers have used comprehensive images, obtained by a
linear combination of maximum intensity projection (MIP)
image and the original lung CT image. Next, the axial, coro-
nal, and sagittal comprehensive CT images have been com-
bined for candidate detection. Pu et al. [80] have introduced a
newmethodology named as “Break-and-Repair.” The strategy
consists of three steps: (1) “modeling,” (2) “break,” and (3)
“repair.” In the first stage, the gross ROIs have been extracted
and represented as a surface model. After that, non-anatomical
structure regions were identified and removed in the second
stage. Next, in the third stage, an implicit function has been
used for “repairing” (estimating) the removed suspicious re-
gions. In the “break” stage, the principal curvatures and the
principal directions were calculated from the triangle mesh of
the cube. Candidate nodules have been identified using
Koenderink’s shape classification based on a “visibility” test-
ing procedure that followed by curvature analysis. Finally,
seed points satisfying the “visible” condition and have classi-
fied as convex-cylinder types by the curvature analysis were
removed as false positives. Qiu et al. [42] have achieved an
accuracy of 91.29%. An overall sensitivity of 82.7% with 4
FPs/scan and 89.2% at 4.14 FPs/scan has been reported in
[121] for juxtapleural nodule detection. Pu et al. [80] achieved
an overlapping ratio of 69.91 ± 9.43% by using the “Break-
and-Repair” strategy.

L. Special Algorithm-Based Methods This approach is based
on designing some specific algorithms for nodule candidate
detection. Taşci et al. [123] presented a new CADe system
using the α-hull method for juxtapleural nodule detection.
The candidate regions are defined as the region between lines
obtained by applying α-hull and boundaries obtained by the
lung segmentation. The accuracy of the proposed system was
95.88%. Retico et al. [125] reported a CADe system using 3-D
directional-gradient concentration (DGC) algorithm followed
by a morphological opening operation for nodule detection.
Finally, a candidate list was prepared by using a peak detector
algorithm. The FP rejection ability of the system was up to
99% as reported by the researchers. Yuan et al. [122] proposed
a semi-supervised learning algorithm for automatic detection
of GGO nodules from different CT slices. Radiologist only
provides a mark in one slice, and the location of the GGO
nodule in different adjacent slices will be detected automati-
cally; reduce the time of GGO candidate nodule selection time
significantly. Recognition rate of the proposed system was in
the range from 91 to 100% as reported by the researchers.
Wang et al. [124] reported support vector machine (SVM)
classifier based on the 3-D matrix pattern technique that can
prevent the loss of structural and local information. The re-
searchers have achieved an overall sensitivity of 98.2% with
9.1 FPs per section. It has been observed that the average
sensitivity of the systems using these specific algorithms is

quite high and produces good results with higher detection
accuracy. Table 1 summarizes different nodule detection sys-
tems using feature engineering with reported best performance
in reverse chronological order.

Feature Extraction and False-Positive Reduction

In this stage, different intensity-based, morphological /shape-
based, and texture-based features are extracted as feature vec-
tor from the detected nodule candidate regions and fed to a
classifier for true nodule detection. Generally, nodules have a
circular shape in 2-D CT images and spherical shapes in 3-D
CT image, i.e., nodules have a compact structure. It follows
Gaussian distribution and the region is more or less convex.
Therefore, different geometrical and intensity-based features
have been extracted for true nodule detection. A list of features
is available in [75, 81, 121, 130-132] used for nodule detec-
tion. Sousa et al. [66] applied different morphological, textur-
al, and intensity-based features for nodule detection. Messay
et al. [81] identified nodules by extracting 245 features from
candidate nodules for false-positive reduction. After feature
extraction, features were selected using sequential forward
selection (SFS) technique. Finally, Fisher linear discriminant
(FLD) classifier and a quadratic classifier have been used for
nodule detection. Choi and Choi [78] have used principal
component analysis (PCA) for false-positive reduction.
Narayanan et al. [102] computed a list of 503 features for
nodule detection. Mehre et al. [104] have reduced false posi-
tives by using different structural and intensity-based statisti-
cal features. Different structural features, e.g., XY-width, Z-
extent, elongation, cube compactness, pondered radial dis-
tance, and Boyce-Clark radial shape index have been used
by their work. Choi and Choi [79] have extracted a set of 2-
D and 3-D features for nodule detection purposes. Filho et al.
[45] have used two diversity indexes, viz., Simpson’s index
and Shannon’s index as features for nodule detection. Javaid
et al. [75] grouped nodules into six classes by using their
proposed equations, viz., “nodule thickness” and “% of wall
connectivity.” Next, different features were extracted specific
to tiny, small, and big group nodules. Tiny and small group
nodules were classified using if-then rules. An SVM with
radial basis function (RBF) kernel was used for big nodules
classification. Nithila and Kumar [106] computed different
textural features from the candidate nodules. First-order sta-
tistics (FOS), second-order statistics (SOS), and gray-level co-
occurrence matrix (GLCM) have been used as textural fea-
tures for nodule detection. Chen et al. [117] proposed two
new features, viz., “Neighbourhood Feature 1” and
“Neighbourhood Feature 2” for false-positive reduction.
Feature 1 was computed by taking the ratio between nodule
candidate region and the surrounding region. If the value was
less than or equal to one, then the candidate nodule will be
treated as FP. Retico et al. [118] computed Gradient and
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Table 1 Different nodule detection system using feature engineering approach in lung CT images

Sl. No. First author with publication year Nodule detection process Performance

1. Gong et al. (2018) [111] 3-D tensor-filtering algorithm with local feature
analysis followed by 3-D level-set segmentation

Sensitivity = 79.3% at an average of 4FPs/scan in
LUNA16 database and sensitivity = 84.62% at
an average of 2.8 FPs/scan in ANODE09
database

2. Farahani et al. (2018) [107] Kernelized fuzzy c-means (MSFCM) clustering
algorithm followed by morphological operation

Accuracy = 96.5%, sensitivity = 93.2%, specificity
= 98.1%

3. Zhang et al. (2017) [70] 3-D skeletonization based feature, voxel removal
rate (VRR)

Avg. accuracy = 93.6%, sensitivity = 89.3% with
2.1 false-positive rate (FPR) per subject

4. Alam et al. (2017) [113] Atlas-based segmentation method Sensitivity = 100%
5. Narayanan et al. (2017) [102] Intensity-based thresholding with morphological

processing
Specificity of 3 false positives per case/patient on

average and sensitivity in CT image is 87.86%
6. Jaffar et al. (2017) [115] Multi-scale filter based on the eigenvalues of

Hessian matrices
Accuracy = 98.7% and sensitivity = 97.5%

7. Aresta et al. (2017) [103] (1) Solid nodules are detected slice-wise inside a
fixed-width sliding window with stride 1
followed by the Otsu threshold and logical OR
operation.

(2) Non-solid nodules are detected using LoG filter

Sensitivity is 57.4% with 4 FPs/scan

8. Yuan et al. (2017) [122] Semi-supervised based learning algorithm for
automatic detection of GGO nodules

Recognition rate is in the range from 91 to 100%

9. Qiu et al. (2016) [42] Gestalt psychology principle Accuracy = 91.29%
10. Froz et al. (2016) [120] Artificial crawlers and rose diagram–based method Mean accuracy (mACC) = 94.30%, mean

sensitivity (mSEN) = 91.86%, and mean
specificity (mSPC) = 94.78% and mean area
under the receiver operating characteristic
(mROC) = 0.922

11. Mehre et al. (2016) [104] Combinations of thresholds and structuring
elements

Sensitivity = 92.91% with 3 FP/scan

12. Nithila and Kumar (2016) [106] Fuzzy c-means clustering with three clusters, viz.,
low, medium, and high

Accuracy is 98% for solid nodules, 99.5% for
part-solid nodule, and 97.2% for non-solid
nodules

13. Javaid et al. (2016) [75] K-means algorithm Accuracy = 96.22%, sensitivity = 91.65% with
3.19 FPs per case, and sensitivity = 83.33% for
small size nodule

14. Gonga et al. (2016) [88] 3-D dot filtering combined with dynamic
self-adaptive template matching algorithm

Sensitivity = 90.24% with 4.54 FPs/scan in LIDC
dataset, sensitivity = 84.1% with 5.59FPs/scan
in ANODE09 dataset

15. Taşci and Uğur (2015) [123] α-hull method Accuracy = 95.88% and area under curve (AUC)
= 0.9679

16. Leemput et al. (2015) [62] Shell filter Overall system score was 0.336
17. Novo et al. (2015) [116] Central adaptive medialness technique with

Hessian matrix
Sensitivity = 88.65%,

18. Yokota et al. (2015) [129] Density and gradient information Accuracy = 93.0%
19. Han et al. (2014) [121] “Low level” vector quantization (VQ) algorithm Overall sensitivity = 82.7%,specificity = 4

FPs/scan, and sensitivity = 89.2% at 4.14
FPs/scan for juxtapleural nodules

20. Ciompi et al. (2014) [133] Bag-of-Frequencies (BoF) feature descriptor Area under the ROC curve for spiculation (Az)
= 0.907 (for axial),0.903 (for sagittal), and
0.911(for coronal) images

21. Santos et al. (2014) [68] Hessian matrix with Tsallis’s and Shannon’s Q
entropy features

Accuracy = 88.4%, sensitivity = 90.6%, specificity
= 85% and false positives per exam is 1.17

22. Filho et al. (2013) [45] Quality threshold (QT) algorithm Accuracy = 97.55%, sensitivity = 85.91%,
specificity = 97.70%,with a false positive rate of
1.82 per exam and 0.008 per slice and area under
the free-response operating characteristic is of
0.8062

23. Choi and Choi (2013) [48] Multi-scale dot enhancement filter with angular
histogram of surface normals (AHSN) feature

Accuracy = 97.4%, overall sensitivity = 97.5%
with 6.76 FPs/scan, and specificity = 97.7%

24. Keshani et al. (2013) [99] ACM segmentation followed by 3-D averaging
feature

Overall detection rate is 89% with 7.3 false
positives per scan

25. Wang et al. (2013) [124] 3-D matrix pattern technique Overall sensitivity = 98.2% with 9.1 FPs per
section

26. Assefa et al. (2013) [114] Template matching algorithmwith multi-resolution
feature analysis technique

The detection rate is 81.212%

27. Cascio et al. (2012) [67]
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Hessian matrix-based features for nodule detection. Choi and
Choi [48] proposed a new feature, angular histogram of sur-
face normals (AHSN), for nodule detection. In the lung im-
ages, a “wall” is a pleuron or part of another big object near the
target. Researchers have proposed a wall detection and elim-
ination algorithm with the help of AHSN feature. Authors
have reported in their work that an improvement in accuracy
has been achieved by applying the “wall” detection algorithm.
Zhang et al. [70] have introduced a new feature named as
voxel remove rate (VRR) for nodule detection. The 3-D
VRR feature was computed along with four gray features,
viz., mean value, standard deviation, skewness, and kurtosis,
and five shape-based features, viz., effective radius,

elongation, compactness, 1st normalized contour sequence
moment, and 3rd normalized contour sequence central mo-
ments for nodule identification. Jaffar et al. [115] used multi-
coordinate histogram of oriented gradients (MCHOG) feature
descriptor and Intensity-based statistical features (IBSF) to
discriminate nodules from non-nodules. Froz et al. [120] com-
puted mean direction, circular variance, circular standard var-
iation, mean resulting length, kurtosis, and skewness features
for nodule detection. Gonga et al. [88] have used 11 sets of
features with Fisher’s linear discriminant analysis (FLDA)
classifier for false-positive reduction. Taşci and Uğur [123]
have calculated 40 features for false-positive reduction. A fea-
ture selection method based on the ranking of features has

Table 1 (continued)

Sl. No. First author with publication year Nodule detection process Performance

Stable 3-Dmass-spring model (MSM) is combined
with spline curves

The detection rate of the system is 97% with 6.1
FPs/CT. A reduction to 2.5 FPs/CT is achieved
at 88% sensitivity

28. Netto et al. (2012) [108] Growing neural gas (GNG) clustering algorithm The methodology ensures that nodules of
reasonable size be found with sensitivity = 86%,
specificity = 91%, and a mean accuracy of 91%

29. Choi et al. (2012) [79] Optimal multiple thresholding and rule-based
pruning

94.1% sensitivity at 5.45 false positives per scan

30. Soltaninejad et al. (2012) [46] 2-D stochastic features and 3-D anatomical
features

90% detection rate with 5.63FPs/scan

31. Dhara and Mukhopadhyay (2012) [57] Geometry based diffusion (GBD) and selective
enhancement filter

Volumetric overlap (VO) mean = 0.98 (solid
nodule) and 0.93 for GGO nodule. Hausdorff
distance (HD) mean = 9.4 (solid nodule) and 7.8
for GGO nodule

32. Chen et al. (2012) [117] Blob-like structure enhancement (BSE) filter
followed by an LoG filter

Average TPR = 93.6% with 12.3FPs/case

33. Farag et al. (2011) [112] Template matching technique with AAM method Sensitivity = 85% and specificity = 99% using
SIFT feature descriptor

34. Hosseini et al. (2011) [109] Gaussian interval type-2 membership functions
(IT2MFs)

Average ROC accuracy is 95% with a 99%
confidence interval (CI) of [92–99]%

35. Suárez-Cuenca et al. (2011) [105] 3-D region-growing algorithm 71.8% of nodules detected at 0.8 false positives per
case, 75.5% at 1.6 FPs/case, and 80% at 3.4
FPs/case, respectively

36. Antonelli et al. (2011) [110] Combined the output of three segmentation
algorithms (1) robust fuzzy c-means (RFCM),
(2) iterative threshold, and (3) region growing

Sensitivity = 92.5% and specificity = 83.5%

37. Pu et al. (2010) [80] “Break-and-Repair” technique RMS error (mm) 1.08 ± 0.45 and overlapping (%)
69.91 ± 9.43

38. Messay et al. (2010) [81] Combined intensity thresholding and
morphological processing

Sensitivity = 82.66%, with an average of 3 FPs per
CT scan/case

39. Namin et al. (2010) [60] Shape index (SI) feature Sensitivity = 88%, with 10.3 FPs per subject
40. Sousa et al. (2009) [66] 3-D skeletonization algorithm Sensitivity = 84.84%, specificity = 96.15%, and

accuracy = 95.21%
41. Retico et al. (2009) [125] 3-D directional-gradient concentration (DGC)

algorithm, followed by a morphological
opening operation

Sensitivity = 72% and the FP rejection ability of the
system is up to 99%

42. Murphy et al. (2009) [119] Shape index and curvedness features Sensitivity = 80%, with an average of 4.2 FPs per
scan

43. Ye et al. (2009) [86] Shape index map and dot map Average detection rate of 90.2%, with
approximately 8.2 FP/scan

44. Retico et al. (2009) [118] Dot enhancement filter and the “normals” to the
pleura surface technique

Sensitivity in the 80–85% range is achieved with
an average number of 6–9 FP per scan in their
dataset and 67% sensitivity is achieved at 8 FP
per scan in ANODE09 database

45. Choi and Choi (2009) [78] Thresholding and shape information 85.11% detection rate with 1.13 FPs per scan
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been carried out after feature extraction. Ten classifiers were
evaluated by using these features. Finally, 22 features were
selected from 40 features by using a generalized linear model
regression (GLMR) classifier. Han et al. [121] have reduced
false positives by using rule-based filtering operation. Ciompi
et al. [133] investigated a new feature, named as Bag-of-
Frequencies (BoF). This feature was computed by analyzing
the image intensity in a 3-D spherical neighborhood of a voxel
of interest. BoF feature has been applied in two aspects: (1) the
discrimination of ROI (nodule) with false positives, e.g., ves-
sels and bifurcation points and (2) the characterization of the
spiculated nodule. Intensity profiles were sampled in a multi-
scale fashion on spherical surfaces from the center of the nod-
ule. After that, a Fourier transform was used on each intensity
profile to obtain a spectrum. Finally, “Bag-of Frequencies”
(descriptor) have been created from the spectra. Santos et al.
[68] used two texture descriptors, viz., Tsallis’s and Shannon’s
Q entropy from the initial nodule candidate set for false-
positive reduction. Assefa et al. [114] applied a multi-
resolution technique for false-positive reduction. The re-
searchers have used one 2-D separable scaling function along
with three separable 2-D wavelets, viz., horizontal, vertical,
and diagonal for nodule detection. Cascio et al. [67] computed
different 2-D and 3-D features for false-positive reduction.
Netto et al. [108] used a 3-D distance transformation for
false-positive reduction. Finally, different shape- and
intensity-based features have been extracted for nodule detec-
tion. Soltaninejad et al. [46] have used 2-D stochastic features
and 3-D anatomical features for nodule detection and classifi-
cation. 3-D averaging was used to differentiate between nod-
ule and vessel. Active contour model has been used for nodule
contour extraction that also acts as an FP reducer. Finally,
detected small nodules were visualized using the surface ren-
dering (SR) technique. Farag et al. [112] applied two geomet-
ric feature descriptors, viz., scale-invariant feature transform
(SIFT) and local binary patterns (LBP) for false-positive re-
duction. Suárez-Cuenca et al. [105] have calculated 18 fea-
tures for nodule classification. Finally, six classifiers, viz.,
LDA, QDA, ANN, SVM-dot, SVM-poly, and SVM-
ANOVA, were combined using five combination methods. It
is reported in their work that the majority-vote rule gives the
highest performance among other combination methods.
Namin et al. [60] used different intensity features combined
with morphological features, e.g., volume size, sphericity,
elongation, border variation, and effective radius for false-
positive reduction. Murphy et al. [119] applied two successive
K-nearest neighbor (KNN) classifiers for false-positive
reduction.

Classification

This is the final stage for any CADe system. The output of this
stage is yes/no decision. In this stage, recognition of lung

nodule has been done with the help of different classifiers.
Sensitivity, specificity, and accuracy are the three main param-
eters to measures the performance of the CADe-based system.
In Table 1, the performance of different proposed CADe sys-
tems has been given. The choice of a good classifier is an
important aspect for any CADe system and varies with the
design approach of the system. Most of the works have used
SVM as a classifier for nodule detection. Vapnik [134] intro-
duced the original SVM algorithm for classification problems.
An SVM finds the maximum-margin hyper-plane that divides
the data points into different distinct regions. SVM was used
by the works of Choi and Choi [48], Sousa et al. [66], Zhang
et al. [70], Han et al. [121], Keshani et al. [99], andWang et al.
[124]. SVM with radial basis function (RBF) kernel has been
used in Javaid et al. [75], Froz et al. [120], Aresta et al. [103],
Mehre et al. [104], Han et al. [121], and Netto et al. [108]. Qiu
et al. [42] used SVM with radial basis Gaussian kernel func-
tion. Wang et al. [124] used SVM as a 3-D matrix pattern. Ye
et al. [86] have used a weighted SVM. Apart from SVM,
Nithila and Kumar [106] have used a neural network (NN).
Retico et al. [118] applied NNwith 12 input, 14 hidden layers,
and 1 output unit, trained with the back-propagation learning
algorithm for nodule detection. The works of Farahani et al.
[107], Taşci and Uğur [123], Suárez-Cuenca et al. [105], and
Antonelli et al. [110] can find ensemble of classifiers for nod-
ule detection. Choi et al. [79] presented a genetic program
(GP) technique to optimize the classifier parameters. Gong
et al. [111] used a random forest-based classifier. Leemput
et al. [62] also have used a random forest classifier with 100
decision trees. Messay et al. [81] have used FLD classifier and
quadratic classifier. The authors reported a performance com-
parison study between the two classifiers and finally, FLD
classifier was selected for nodule detection. Murphy et al.
[119] used a KNN classifier. Retico et al. [125] have used a
voxel-based neural approach (VBNA) based classifier for
nodule detection.

Deep Learning-Based Approach Towards
Lung Nodule Detection

Deep learning algorithms have become a valuable tool in the
field of medical imaging, used for lesion detection, character-
ization, and analysis. This methodology consists of designing
layer wise network architecture by keeping inmind the goal of
higher classification accuracy. A survey on deep learning on
different network architecture with applications in medical
imaging can be found in [135]. Wong et al. [136] and
Bruijne [137] presented recent developments and challenges
of machine learning in medical imaging. Due to large varia-
tions and complexity in biomedical images, it is very difficult
to recognize medical objects such as lesions and anatomies
from the input image. Therefore, instead of searching for good
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handcraft-based features, emphasis has been given to the au-
tomated feature learning approach called “learning from ex-
amples.” In this technique, computers will learn the features
automatically from the examples given as input. The learning
methods have classified as supervised and unsupervised, in
the view of machine learning paradigm. Auto-encoders
(AEs) and stacked auto-encoders (SAEs) are examples of un-
supervised network models because the labeled training data
is absent and only the input image has given to the network.
On the other hand, CNNs are the example of supervised net-
work model [135]. Labeled training data is mandatory for
CNN architecture. CNN and massive training artificial neural
network (MTANN) are the two most recent approaches used
in deep learning. Both models use pixel values in images
directly as input information, instead of features calculated
(handcrafted) from segmented ROIs [138]. A good compari-
son study of these two end-to-end computing techniques, viz.,
MTNN and CNN, can be found by the work of Tajbakhsh and
Suzuki [139] for nodule detection. However, CNN is the most
popular reference architecture used in medical image analysis.
From Table 2, it is observed that almost all works have used
CNN as the reference architecture for lung nodule detection
and characterization purpose. Therefore, a precise and brief
introduction to CNN in the context of deep learning has been
presented in the “CNN as a Deep Learning Tool” section.

CNN as a Deep Learning Tool

This type of architecture initially appeared in the works of
Hasegawa et al. [140], Lin et al. [141], and Lo et al. [142].
Lin et al. [141] have applied CNN for FP reduction and
achieved a cited accuracy. However, owing to limited compu-
tational resources, CNNdid not receive popularity at that time.
In recent years, with the advent of powerful graphics process-
ing unit (GPUs) such as TitanX (8 GB, 12 GB), CNNs have
gained popularity, especially in the field of biomedical image
processing. CNN is the most dominated architecture in deep
learning and acts as a powerful feature extractor and classifier.
The convolution operation is the heart of the CNN architec-
ture. The layers adapting the “convolution operation” are
called convolutional layer and responsible for detecting local
features in all locations of the input image. CNNs are like
multi-layer perceptrons (MLPs) but there are two key differ-
ences. First, in CNNs, weights in the network are shared and
second, a typical CNN may contain several pooling layers,
which is absent in MLPs. Therefore, in CNN, fewer weight
parameters require as compared with MPL. The detail of con-
volution operations and working principle of CNN architec-
ture is available in Dumoulin and Visin [143]; Lecture Series
and tutorials from Stanford University [144, 145]. Several
CNN-based architecture exists in literature, e.g., the LeNet

Table 2 Different nodule detection and characterization system using CNN-based deep learning approach in lung CT images

Sl.
No.

First author with
publication year

Method Purpose Performance

1. Paul et al. (2018) [37] Pre-trained vgg-s network with merge
CNN

Nodule characterization Accuracy = 76.79%, ROC = 0.87

2. Liu et al. (2018) [157] Multi-view multi-scale CNN Nodule categorization Overall accuracy = 92.3% (LIDC
dataset) and 90.3% (ELCAP dataset)

3. Yuan et al. (2017) [155] Pre-trained vgg network followed by
CNN-based features fused with
handcraft-based features (multi-view
multi-scale CNN)

Nodule categorization Overall accuracy = 93.1% (LIDC
dataset) and 93.9% (ELCAP dataset)

4. Xie et al. (2017) [156] Applied CNN at decision level Nodule characterization AUC of 96.65%, 94.45%, and 81.24%

5. Silva et al. (2017) [154] Genetic algorithm-based CNN Nodule characterization Sensitivity = 94.66%, specificity
= 95.14%, accuracy of 94.78%, and
area under the ROC curve of 0.949.

6. Wang et al. (2017) [153] Data-driven-based machine learning
model using central focused
convolutional neural network
(CF-CNN)

Nodule segmentation Dice score = 82.15% (LIDC dataset) and
80.02% (GDGH dataset)

7. Dou et al. (2016) [152] Three 3-D CNN applied with fusion
technique

Nodule detection Sensitivity = 94.4% and sensitivity
= 92.2% at 8FPs/scan

8. Shen et al. (2016) [149] Multi-crop convolutional neural
network (MC-CNN)

Nodule characterization Accuracy = 87.14%, AUC = 0.93,
sensitivity = 77%, specificity = 93%

9. Setio et al. (2016) [150] Multiple streams of 2-D ConvNets
(multi-view architecture)

Nodule detection Sensitivity = 85.4% with 1 FP/scan and
90.1% with 4 FPs/scan

10. Ciompi et al. (2015) [151] 2-D convolution-based architecture
named as “OverFeat”

Peri-fissural nodules (PFNs)
detection

Area under curve (AUC) = 0.868
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(1998), AlexNet (2012), VGG16/19 (2014), GoogLeNet/
Inception, and ResNet. LeNet and AlexNet are examples of
shallow network as it consists of two and five layers, respec-
tively. On the other hand, GoogLeNet and ResNet architecture
are examples of deep networks. The CNN architecture used
for nodule detection and characterization is somehow deep.
Tajbakhsh and Suzuki [139] have mentioned that increasing
the depth of the architecture with large training dataset gives
better performance. Authors have applied five CNNs separate-
ly, viz., a shallow CNN (sh-CNN), the LeNet architecture, a
relatively deep (rd-CNN), AlexNet, and FTAlexNet over lung
dataset for nodule detection and characterization. FT Alexnet
with a large training dataset has given the best performance
from the rest of the CNNs for lung nodule detection. Apart
from detection, ROIs can be segmented using CNN. Jiang
et al. [146] address the medical image semantic segmentation
problem by applying the modern CNN-based model. Yan
et al. [147] performed a comparative study of slice-level 2-D
CNN, nodule-level 2-D CNN, and nodule-level 3-D CNN for
nodule detection. Tan et al. [148] have addressed the recent
progress and challenges in CNN.

Works Based on CNN Architecture

Recently, deep learning approaches are applying widely ow-
ing to its higher detection and classification accuracy. In this
subsection, we describe different CNN-based works found so
far in the period 2009-April 2018 for nodule detection, cate-
gorization, and characterization. The works have been catego-
rized based on (1) type of basic convolution operations used to
implement network such as 2-D [149-151] or 3-D [152] or
both [153], (2) evolutionary technique applied for CNN pa-
rameter optimization [154], (3) combining/fusing feature en-
gineering features with automatic extracted CNN-based fea-
tures [155, 156], and (4) use of pre-trained network combined
with CNN [37]. Table 2 shows the performance of different
proposed systems.

2-D Convolution-Based CNN

In this approach, a basic 2-D convolution operation has been
used to find local features from the entire image. This is most-
ly used CNN architecture for its simplicity and computational
efficiency. Most of the images are two-dimensional and con-
tain intensity values in the form of a matrix. Several 2-D
filters/features are automatically learned from the training
dataset by this network. Setio et al. [150] used multiple
streams of 2-D ConvNets. Initially, three candidate detector
algorithms specially designed for solid, sub-solid, and large
nodules have combined for nodule candidate detection. Then
for each candidate, a set of 2-D patches of size 64 × 64 pixels
have been extracted from differently oriented planes. The re-
searchers have used nine views for this purpose. Then

multiple 2-D ConvNets were used for feature extraction.
Finally, the outputs of different networks have been merged
by applying three fusion techniques, viz., committee fusion,
late fusion, and mixed fusion. The authors have reported that
late fusion technique gives better detection performance in
comparison with committee fusion and mixed fusion tech-
niques. Ciompi et al. [151] proposed a 2-D CNN architecture
named as “OverFeat” for peri-fissural nodule detection. The
architecture used six convolutional layers, with filter size
ranges from 7 × 7 to 3 × 3. Next, three view images (axial,
coronal, and sagittal) were fed to the “OverFeat” architecture
for nodule feature extraction. Finally, researchers have used a
two-stage classifier for peri-fissural nodule detection. Shen
et al. [149] have designed a multi-crop convolutional neural
network (MC-CNN) by introducing a “multi-crop” pooling
strategy for automatic lung nodule characterization.
Researchers have used a single network that was capable of
producing multi-scale features, instead of using multiple
CNN. They proposed a multi-crop-based pooling operation
strategy. The multi-crop pooling strategy consists of three
pooling operations. Input to the first pooling operation was
convolutional features R0, obtained either from the original
input image or from the pooled features. R1 was the center
region cropped fromR0, and R2 was the center region cropped
from R1. After that, R0 has max pooled twice and R1 has max
pooled one time to generate the pooled feature maps f0 and f1,
respectively. R2 serves as f2 without a pooling operation. The
final multi-crop features were computed by concatenating f0,
f1, and f2. The work has used randomized leaky rectified lin-
ear units (RReLU) as an activation function for SGD learning
algorithm that minimize the cross-entropy loss. The proposed
architecture was also able to perform semantic label prediction
by computing two attributes, viz., nodule subtlety and margin,
and can estimate nodule diameter with promising results.

3-D Convolution-Based CNN

In this network, the basic convolution operation has been ap-
plied in three directions (x, y, z) at the same time. The
convolutional filters used are 3-D, and have applied over the
input 3-D data for automatic feature extraction. These net-
works are more expensive in terms of computation efficiency
than 2-D-based network. Convolution operations based on 3-
D need more calculations and more memory because 3-D
matrix is required to store the extracted features in computer
memory. The main advantage of 3-D CNN is that it produces
multi-view features with the help of 3-D filters. Dou et al.
[152] proposed a 3-D CNN-based architecture for lung nodule
detection. Researchers have used three 3-D CNNs to encode
spatial information and representative features using hierar-
chical architecture. For the first architecture, a receptive field
of size 20 × 20 × 6 has been used, for second architecture, the
size was 30 × 30 × 10, and for third architecture, it was 40 ×
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40 × 26. Finally, the three CNNs have been merged and act as
a feature extractor for nodule detection. The proposed archi-
tecture was validated by participating in LUng Nodule
Analysis 2016 (LUNA16) challenge and achieved a sensitiv-
ity of 94.4%, for nodule detection.

2-D-3-D-Based CNN

The 2-D and 3-D convolution operations can be combined and
used to design a hybrid network; we named it as 2-D-3-D
CNN. The network is capable of capturing both 2-D and 3-
D features from the lung nodule image. In general, the 3-D
patch branch is capable of learning multi-view features from
multiple CT slices whereas the 2-D patch branch learns multi-
scale features. Wang et al. [153] developed a central focused
convolutional neural network (CF-CNN) learning model by
emphasizing nodule segmentation. The architecture consists
of two paths, viz., 3-D CNN-based path and a 2-D CNN-based
path. This architecture is a good example of patch-based nod-
ule segmentation approach. Variations in the lesion have been
captured using both 2-D and 3-D features from the dataset.
The voxels close to center of the image patch were more
relevant to the target voxel than the voxels close to edges.
Owing to this reason, the researchers have proposed a central-
ly focused pooling operation. This type of pooling operation
reserves location information and many features around the
patch center that were not captured in conventional max
pooling operation. In central pooling operation, the pooling
kernel size varies according to the pooling position and non-
uniformly distributed on an input image. On the other hand, in
traditional max pooling operation, the pooling kernels are of
the same size and uniformly distributed. A parametric rectified
linear unit (PReLU) has been used as activation function for

more effective and promising results than the conventional
ReLU. Researchers have achieved a dice score of 82.15% in
LIDC dataset.

Evolutionary Algorithm-Based CNN

This type of network uses evolutionary-based algorithms to
optimize different network parameters. Silva et al. [154] de-
signed an evolutionary-based CNN for lung nodule character-
ization. A good pre-processing step was carried out before
applying the classifier. Initially, the Otsu algorithm based on
PSO has been applied over the dataset. The goal of this step is
to divide each nodule into two sub-regions with maximum
inter-class variance. Next, the two-dimensional CTslices were
resized and used as an individual sample and three databases
each having 21,631 slices have been prepared. Finally, three
CNNs were used for nodule characterization. Genetic algo-
rithm was used to optimize the CNN hyperparameters in the
convolutional layer. Researchers also have chosen an opti-
mum number of neurons in the fully connected layers with
the help of GA. The fitness function has been defined in terms
of sensitivity, specificity, and accuracy. A higher weight value
was assigned to the sensitivity metric so that the network can
classify malignant nodules effectively. The researchers have
reported a sensitivity of 94.66% for nodule characterization.

Fusion-Based CNN

In this network, handcraft-based features can be combined
with the CNN-based extracted features to form the final fea-
ture vector. We have named the network, using this approach,
as fused-based CNN. Yuan et al. [155] have categorized five
types of lung nodule, viz., well-circumscribed, juxtapleural,

Fig. 9 A CNN-based nodule characterization framework that fuses handcraft features with CNN-based features (Xie et al. [156])
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juxtavascular, pleural tail, and GGO using CNN. Researchers
have used a multi-view multi-scale CNN pre-trained with
Visual Geometry Group (VGG) network. Different statistical
features were extracted from the nodule image. Next, SIFT
feature descriptor was computed and encoded in the form of
Fisher vector (FV). The Gaussian mixture model has been
used to compute the Fisher geometrical features. Finally, all
the handcrafted features were fused with CNN extracted fea-
tures by using multiple kernel learning (MKL). Yuan et al.
[155] achieved an overall accuracy of 93.1%. Liu et al.
[157] applied almost the same approach for nodule categori-
zation. Xie et al. [156] have fused handcrafted textural and
shape-based features with automated deep features (Fuse-
TSD) by using deep convolution neural network for nodule
characterization (Fig. 9). The fused features were GLCM tex-
ture (T), Fourier shape descriptor (S), and deep learning-based
features (D). The authors fused the extracted features in the
decision level (decision fusion) which was the output of a fully
connected layer. The same features were also fused on the
feature extractor level (feature fusion), i.e., before feeding to
the classifier. Authors have reported that fusion at decision
level was given better performance than at the feature level.
Therefore, Fuse-TSD can be used as a higher level decision
fusion-based classifier over both manual and automated seg-
mentation process.

Pre-trained CNN

“Transfer Learning” is one most important concepts in deep
learning. In this scenario, the CNN is trained on a large and
different dataset. The final weights of the CNN were fined
tuned and then used for object detection or classification.

This is very helpful as the availability of the medical imaging
data is limited, so a network trained with different datasets and
modality can be used for the task of deep feature extraction.
Paul et al. [37] proposed a new CNN architecture (Fig. 10) for
lung nodule characterization. Researchers have used a pre-
trained VGG network trained with the Imagenet dataset.
Three networks, viz., vgg-f, vgg-m, and vgg-s, have been used
for this purpose. Here, the f, m, and s stand for fast, medium,
and slow and refer to training time. Vgg-s has been chosen as
final pre-trained architecture, as it gives higher classification
accuracy. Next, 4096 deep features have been extracted by
using vgg-s. Next, three CNN architectures have been trained
independently by using the cancerous dataset from NLST.
Next, “Architecture-3,” a cascaded CNN, has been chosen
for its higher classification accuracy and 1024 deep features
were extracted. Finally, nodules were characterized by using
all the deep features extracted by using “Architecture-3,”
fused with 219 radiomics (handcrafted/feature engineering)
features for higher classification accuracy. Researchers have
reported an accuracy of 76.79% using pre-trained CNN.

It has been observed that different researchers have empha-
sized different aspects, e.g., some of them on nodule detection,
some on nodule characterization, and others have used for FP
reduction, by using CNN as basic network architecture.
Table 2 gives different CNN-based works in reverse chrono-
logical order.

Conclusion

Although there are many studies with the same purpose as
described in this paper, it may conclude that a definitive

Fig. 10 A CNN-based nodule characterization framework that pre-trained with VGG network (Paul et al. [37])
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methodology does not exist currently, that could be considered
efficient in every aspect of lung nodule detection. Failure of
different methodologies include in the parenchyma extraction
stage, accurate nodule segmentation stage, e.g., segmentation
of juxtavascular nodule, and mostly in the false-positive re-
duction stage. Apart from that, nodule characterization is very
important for cancer studies. Different algorithms may be pro-
posed for nodule characterization based on growth rate, which
will ultimately help early detection of cancer and its diagnosis.
Automatic analysis of lung cancer staging is another vital
finding for a patient. Unfortunately, very few works with sig-
nificant success rates reported in this direction [22]. In sum-
mary, other alternatives must be investigated and at the same
time, previous works should be revisited so that an increase in
5-year survival rate, (which is at present only 10-15%) may be
achieved.
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