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Antimicrobial peptides (AMPs) are a valuable source of antimi-
crobial agents and a potential solution to the multi-drug resis-
tance problem. In particular, short-length AMPs have been
shown to have enhanced antimicrobial activities, higher stabil-
ity, and lower toxicity to human cells. We present a short-
length (%30 aa) AMP prediction method, Deep-AmPEP30,
developed based on an optimal feature set of PseKRAAC
reduced amino acids composition and convolutional neural
network. On a balanced benchmark dataset of 188 samples,
Deep-AmPEP30 yields an improved performance of 77% in ac-
curacy, 85% in the area under the receiver operating character-
istic curve (AUC-ROC), and 85% in area under the precision-
recall curve (AUC-PR) over existing machine learning-based
methods. To demonstrate its power, we screened the genome
sequence of Candida glabrata—a gut commensal fungus ex-
pected to interact with and/or inhibit other microbes in the
gut—for potential AMPs and identified a peptide of 20 aa
(P3, FWELWKFLKSLWSIFPRRRP) with strong anti-bacteria
activity against Bacillus subtilis and Vibrio parahaemolyticus.
The potency of the peptide is remarkably comparable to that
of ampicillin. Therefore, Deep-AmPEP30 is a promising pre-
diction tool to identify short-length AMPs from genomic se-
quences for drug discovery. Our method is available at
https://cbbio.cis.um.edu.mo/AxPEP for both individual
sequence prediction and genome screening for AMPs.

INTRODUCTION
Antimicrobial peptides (AMPs; also called host defense peptides) are
produced by most organisms as an innate immune response against
microbes. They represent a large repertoire of antimicrobial agents
and hence a valuable resource for drug discovery. In particular,
cationic AMPs have received intense interest in recent years for their
potential in the development of novel antibacterial drugs.1,2 These
peptides often fold into amphiphilic a helices displaying both hydro-
phobic and hydrophilic surfaces. They accumulate by several fold at
the negatively charged surface of the Gram-negative (outer mem-
brane) or Gram-positive (cell wall) bacteria, leading to surface desta-
bilization and permeation.3 Once having entered the bacteria cell,
AMPs are able to interact with the cytoplasmic membrane, forming
membrane-spanning channels or carpeting the bilayer with peptides.4

Some AMPs can target intracellular molecules and interfere with their
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activities.5 For example, AMPs were reported in different studies of
their ability to inhibit protein synthesis, DNA binding and transcrip-
tion, protein folding, and enzymatic activities. AMPs were also sug-
gested as the next generation of anticancer drug candidates.6 By virtue
of a strong electrostatic force, AMPs bind to the negatively charged
surface of cancer cells, leading to membrane disruption.7 Despite
their potentialities, there are limitations in using AMPs as pharma-
ceutical agents, such as some toxicity to human cells, lack of stability,
and high manufacturing cost.8,9 While the former two limitations
may be overcome through careful optimization and peptide engineer-
ing, the high cost of production inevitably makes screening a large
number of peptides expensive. This, together with the possible need
and costs for improving stability and toxicity, renders the peptide
screening approach cost-prohibitive and hence non-appealing for
pharmaceutical companies and research laboratories to undertake.

Cost constraints have been partially overcome through the develop-
ment of several sequence-based computational methods for AMP
prediction. These methods generally exploit machine learning algo-
rithms to learn the sequential, compositional, and physicochemical
properties of known AMP sequences. For example, Xiao et al.10 pro-
posed iAMP-2L to predict AMPs using pseudo amino acid composi-
tion (PseAAC) and fuzzy k-nearest neighbor. Thomas et al.11 built the
Collection of Anti-Microbial Peptides (CAMP) database and then
constructed prediction tools using random forest (RF), support vector
machines (SVMs), and discriminant analysis (DA). Meher et al.12 at-
tempted to improve the prediction accuracy by combining structural
features with compositional and physicochemical properties, and
they used SVMs for the classification algorithm. In our previous
work, we proposed the use of distribution patterns of amino acid
properties as the sole feature type and RF classifier to generate a high-
ly accurate prediction model, AmPEP.13 Vishnepolsky et al.14 used a
semi-supervised machine learning approach based on physicochem-
ical descriptors and the DBSCAN clustering algorithm. More
recently, Veltri et al.15 introduced the first deep learning method
uthors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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for AMP prediction, in which they used a neural network model with
convolutional and recurrent layers and the primary sequence compo-
sition as predictive features. In recent years, many promising targeted
peptides prediction methods have been proposed based on sequence
information. Wei et al.16 developed an anti-cancer peptides (ACPs)
predictor called ACPred-FL. To build an effective predictive model,
they proposed a feature representation learning scheme to integrate
the class information of data into features. The class information
was obtained from a pool of SVM classifiers based on sequence-based
feature descriptors. They further used a two-step feature selection
technique and represented the most informative five-dimensional
feature vector for the final peptide representation. Similarly, Manava-
lan et al.17 used the predicted probability of a baseline predictor as an
input feature into the final predictor to identify antihypertensive pep-
tides (AHTPs). They extracted informative features using extremely
randomized tree (ERT) algorithms. The predicted probability of
AHTPs using ERT algorithms was used as an input feature with other
features to four different machine learning algorithms (ERT, gradient
boosting, RF, SVM). Finally, they integrated the four meta-predictors
into an ensemble model for final prediction. Wei et al.18 also devel-
oped a prediction model, CPPred-RF, to identify cell-penetrating
peptides (CPPs) and their uptake efficiency. They integrated multiple
sequence-based feature descriptors to sufficiently explore distinct in-
formation embedded in CPPs and used the maximal relevance-
maximal distance (MRMD) method to select important features.
Alternatively, Wu et al.19 dealt with biologically important features
to identify neoantigens. They proposed a recurrent neural network
(RNN)-based method, DeepHL-Apan, for high-confidence neoanti-
gen prediction considering both the possibility of mutant peptide pre-
sentation and the potential immunogenicity of the peptide-human
leukocyte antigen complex (pHLA). Recently, Wang et al.20 proposed
a feature representation named general dipeptide composition (G-
DipC) based on short CPP sequences and they used the XGBoost al-
gorithm as a classifier.

Recent discovery of several short AMPs possessing potent inhibitory
activity against bacteria with high specificity and low toxicity to hu-
man cells have led to an exciting turning point in AMP
research.9,21–23 This new class of AMPs (known as short-length
AMPs), in general, has enhanced antimicrobial activities, lower
toxicity, and higher stability.9,21 More importantly, the nature of its
shorter length also means that the synthesis, modification, and opti-
mization of these AMPs are relatively easier and cheaper than with
regular AMPs. The significant improvements introduced with the
use of short-length AMPs have collectively made them an attractive
and affordable class of molecules for drug screening purpose. To
date, several AMPs are already being tested as antibacterial agents
in clinical trials.6

Efforts to identify AMPs from the vast amount of freely available
genome sequences (especially the genome of those organisms
constantly living and interacting with microbes) are expected to yield
many novel AMPs with diverse pharmaceutical properties, including
anti-cancer activity, which is commonly found in AMPs. However,
there is currently no prediction program for identifying AMPs
from assembled genome sequences. Moreover, it was unclear whether
existing AMP prediction methods, which were originally developed
based on collection of AMPs without length consideration, would
be suitable for predicting short-length AMPs. To answer this ques-
tion, we first tested four state-of-the-art AMP prediction
methods10,12,13,15 using peptides 5–33 residues in length.
Unexpectedly, the prediction accuracy achieved with the models
was between 65% and 73%, much worse than the previously reported
accuracy of 90%–95% for peptides of any length. We hypothesized
that many of the long sequences included in the datasets for model
construction may not be at their optimal composition for antimicro-
bial function. This means that they may include sequence segments
that do not contribute to antimicrobial activities of the peptides.
However, deducing the optimal subsequence for antimicrobial func-
tion from a given sequence is not a trivial task. For the purpose of
developing a prediction model targeting short sequences, we pro-
posed to lower the maximum sequence cutoff length used in the
training dataset to 30, instead of the 80–255 range used in previous
studies.10,12,13,15 In this way, a large proportion of suboptimal se-
quences would be removed, which should raise the accuracy and spec-
ificity in identification of short-length AMPs.

Herein, we present a method, Deep-AmPEP30, for short-length AMP
prediction based on the reduced dataset using a deep convolutional
neural network (CNN)24 and reduced AAC (RAAC). In RAAC,
amino acids are clustered on the basis of evolutionary information,
substitution score, hydrophobicity, and contact potential energy.
Clustering is a simple but effective approach to reduce the dimension-
ality in protein sequence encoding, to reduce over-fitting, and to
improve model performance. For example, it enhances the sensitivity
and selectivity in fold recognition25 and helps to identify families of
heat shock proteins more accurately.26 Compared with the 20 natural
amino acids composition, the RAACs exhibited superior predictive
capability with reduced protein complexity and the ability to with-
draw conservative features hidden in noise signals.27,28 In 2017,
Zuo et al.29 established the first online web server, which performed
high-potential roles in dealing with protein sequence analysis, such
as protein folding,30 protein defensins,31 animal toxins,32 heat shock
protein,26 type VI secreted effectors,33 DNA-binding proteins,34 and
so on. With the wide applications of PseKRAAC (pseudo K-tuple
RAAC), more and more online services were proposed for protein
sequence-dependent inference during the last decade. In this study,
we combine the power of CNN and different types of RAAC as fea-
tures in order to increase the prediction accuracy for short functional
AMPs.

To further validate our method, we applied Deep-AmPEP30 to iden-
tify potential short-length AMPs from the genome sequence of
Candida glabrata, a commensal fungus living with trillions of other
microbes in the gut. We hypothesized that C. glabrata may have
evolved the means (e.g., via AMPs) to interact with and/or inhibit
other microorganisms in the competitive gut environment and that
if AMPs were involved our program would be able to identify
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Table 1. Five-Best Reduced Amino Acid Types and Clusters Selected from PseKRAAC for AMP Prediction

Type Description
No. of
Clusters Reduced Amino Acid Alphabets

3A based on PAM (point accepted mutation) matrix 19 {(FA),(P),(G),(S),(T),(D),(E),(Q),(N),(K),(R),(H),(W),(Y),(M),(L),(I),(V),(C)}

7
based on inter-residue contact energies using the Miyazawa-Jernigan
matrix

15 {(C),(K),(R),(W),(Y),(A),(FILV),(M),(D),(E),(Q),(H),(TP),(GS),(N)}

8 based on properties of JTT (Jones-Taylor-Thornton) rate matrices 17 {(AT),(C),(DE),(F),(G),(H),(IV),(K),(L),(M),(N),(P),(Q),(R),(S),(V),(W)}

12a
based on the substitution scores using database of aligned protein
structures

17 {(TVLI),(M),(F),(W),(Y),(C),(A),(H),(G),(N),(Q),(P),(R),(K),(S),(T),(DE)}

12a
based on the substitution scores using database of aligned protein
structures

18 {(TVLI),(M),(F),(W),(Y),(C),(A),(H),(G),(N),(Q),(P),(R),(K),(S),(T),(D),(E)}

aType 12 in the PseKRAAC web server corresponds to type 11 in Zuo et al.29
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them. Indeed, a short peptide of 20 aa was selected by Deep-AmPEP
from sequences extracted from the C. glabrata genome and experi-
mentally validated to have anti-bacterial activities as potent as that
of ampicillin. Encouraged by the positive prediction outcome, we
have constructed a web service to process not only individual peptide
sequences, but also fully assembled genome DNA sequences for AMP
prediction using Deep-AmPEP. To the best of our knowledge, our
web service is the first and so far the only one designed for processing
and predicting AMPs from genome DNA sequences, and it is
expected to facilitate screening the colossal amount of genome se-
quences of diverse organisms for novel and active short-length AMPs.

RESULTS AND DISCUSSION
Feature Selection and Model Performance

In an attempt to select the best features among four commonly used
sequence-encoding methods for AMP prediction—namely, AAC,
composition-transition-distribution (CTD), general PseAAC
(PseAAC-General), and PseKRAAC—and the best feature modes
from the two latter methods, we performed extensive 10-fold cross-
validation (CV) experiments using the training set on the proposed
CNN model. Based on the wrapper-based sequential forward selec-
tion (SFS) approach, the best performing PseAAC-General feature
mode was series-correlation PseAAC (SC-PseAAC), with an accuracy
of 75.1%. Next, we tested SC-PseAAC features generated using com-
binations of parameters with l = {1, 2, 3, 4} and w = {0.1, 0.2,., 1.0}.
The optimal parameters were identified as l = 4 andw = 0.2, giving an
accuracy of 76.2%. The relatively small value of w suggests that the
residue-pair correlation only plays a minor role in AMP identification
as compared with the AAC.

For PseKRAAC, the feature selection procedure yielded a set of five
feature modes that gave the highest prediction accuracy at 76.5%.
These “five-best” feature modes were type 3A-cluster 19, type 7-clus-
ter 15, type 8-cluster 17, type 12-cluster 17, and type 12-cluster 18. A
brief description of these feature modes and the respective reduced
amino acids alphabets are listed in Table 1.

A comparison of the best CNN models from all four feature types is
shown in Table 2. Experiments of 10 times 10-fold CV were per-
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formed to obtain sufficient statistics about these models. The results
confirm that the five-best PseKRAAC with 86 features achieves the
highest auto-cross covariance (ACC) of 77%, area under the receiver
operating characteristic curve (AUC-ROC) of 82%, area under the
precision-recall curve (AUC-PR) of 80%, kappa of 53%, and MCC
of 54%. The second- and third-best models are SC-PseAAC with 32
features and AAC with 20 features, respectively. It is noteworthy
that the sequence-encoding methods used by the top two models
are PseAAC-based variants, suggesting that grouping amino acids is
crucial for detecting the correlation between amino acid properties
and peptide functionality. Interestingly, in the top three models either
all or most dominant features are compositional. While it is well
recognized that AMPs often adopt helical conformation with a hydro-
phobic surface on one side and a hydrophilic surface on the other side,
one may assume that not only the composition but also the inter-res-
idue correlation should be strong to uphold the AMP function.
However, as shown in Table S1, accuracies of CNN models using
SC-PseAAC features generated by different l values with the same
w differ by only 1%–3%. In PseAAC, l defines the maximum posi-
tional distance between two residues from which sequence order cor-
relation is calculated, while w is the weight factor of the calculated
sequence order effect. The larger the value of l the farther the two res-
idues are in terms of sequential distance to be considered. It is
observed that l of the best model is 4, coincident with the number
of residues per turn in a helices, which is 3.6. Nevertheless, the best
model used only a small weight of w = 0.2, and an increase in w
did not show improvement in the prediction accuracy. A possible
explanation for the minor role of inter-residue correlation in AMP
identification is that many AMPs in the dataset do not adopt helical
conformation or only segments of peptides are helical. This agrees
with the structural statistics published in the Antimicrobial Peptide
Database (APD) server that only 14% of AMPs are helices and around
4% of AMPs are in combined helix and b structures; meanwhile, the
structures of as many as 60% of AMPs are unknown.

Deep learning has been mainly applied in learning problems with
large datasets. In this short AMP prediction problem, our dataset is
relatively small, with only 1,529 positive samples. To examine
whether our model architecture and the training procedure were



Table 2. Comparison of CNN Classifiers of Different Feature Sets By 10 Times 10-Fold Cross-Validation

Feature Set {#} ACC AUC-ROC AUC-PR Kappa Sn Sp MCC

T {21} 71.22 ± 0.51 77.41 ± 0.22 73.97 ± 0.53 42.43 ± 1.01 78.22 ± 1.1 64.21 ± 0.91 42.86 ± 1.06

C {21} 72.65 ± 0.35 78.33 ± 0.12 75.54 ± 0.32 45.30 ± 0.69 77.85 ± 1.66 67.45 ± 1.29 45.57 ± 0.78

CTD {147} 73.71 ± 0.34 79.96 ± 0.21 76.61 ± 0.48 47.41 ± 0.67 79.05 ± 1.93 68.36 ± 1.51 47.71 ± 0.79

D {105} 73.74 ± 0.23 79.92 ± 0.17 76.73 ± 0.30 47.48 ± 0.46 79.33 ± 1.2 68.14 ± 1.01 47.79 ± 0.52

AAC {20} 74.27 ± 0.26 80.48 ± 0.19 77.52 ± 0.31 48.55 ± 0.51 80.92 ± 0.85 67.63 ± 1.05 48.99 ± 0.48

SC-PseAAC {32}a 75.62 ± 0.27 82.07 ± 0.19 79.04 ± 0.37 51.24 ± 0.54 82.33 ± 0.78 68.91 ± 1.18 51.72 ± 0.45

Five-best PseKRAAC {86} 76.50 ± 0.37 82.48 ± 0.20 79.55 ± 0.5 53.00 ± 0.74 83.35 ± 0.86 69.65 ± 0.67 53.51 ± 0.78

Values shown are mean ± SD (values were multiplied by 100).
aParameters used for SC-PseAAC (series-correlation pseudo amino acid composition, commonly known as type-2 PseAAC) are l = 4 and w = 0.2.
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appropriate, we tested the CNNmodel on progressively increased size
of the training set. As a reference, we took the larger AMP dataset,
which is a dataset containing >3,000 samples used in our previous
study,13 to understand the size effect of a dataset on model perfor-
mance. Figure 1 shows that all performance measures of our CNN
model reached stability when the size of the dataset was between
2,000 and 3,000. The result of the same test using the larger AMP da-
taset shows a similar trend for datasets of 3,000 and 6,000 (see Fig-
ure S1). Hence, we can conclude that our model is suitable for
learning small datasets of AMP and short AMPs. We anticipate
that when a larger dataset will be available in the future, the model
may need to be revised for learning more complex data.

CNN versus Other Learning Algorithms

Using the CNN-selected best features from PseKRAAC, we compared
the performances of two popular machine learning algorithms, RF
and SVM, to the CNN model using 10 times 10-fold CV against
the training dataset. The best RF classifier was selected by running
different combinations of hyperparameter values (mtry for the num-
ber of variables at the split of the tree, and ntree for the number of
trees). A two-stage approach of grid search was executed. First, a
coarse search was performed to find out promising ranges of the
parameter values, after which a finer search was conducted to decide
the optimal parameters. Experiments were performed using the
training dataset. As shown in Figure S2, the model with mtry = 1
and ntree = 1,200 performs the best, giving an average accuracy of
75.42% in repeated 10-fold CV experiment.

Performances of four models using different learning algorithms are
compared in Table 3. The RF classifier with tuned parameters per-
formed close to the CNN model but with a 1%–6% reduction in per-
formance across different aspects. Both SVM models—one using the
linear kernel and the other radial kernel—performed inferiorly.
Henceforth, the two best models are further compared with other
methods; we name the five-best PseKRAAC CNN classifier as
Deep-AmPEP30 and the RF classifier as RF-AmPEP30.

Comparison with State-of-the-Art Methods

Using the benchmark dataset, we compared our short-length AMP
classifiers, Deep-AmPEP30 and RF-AmPEP30, to three state-of-
the-art general AMP prediction methods and our previous AmPEP
method. As shown in Table 4, our classifiers Deep-AmPEP30 and
RF-AmPEP30 outperformed general AMP methods in most perfor-
mance metrics. In particular, they achieved an accuracy of 77%,
AUC-ROC of 85%, and MCC of 54%. The overall measures ACC,
MCC, and kappa suggest that Deep-AmPEP30 is marginally better
than RF-AmPEP30. The AUC-ROC curves shown in Figure 2A
confirm that both models have high accuracy at different classifica-
tion thresholds.

Run Time Performance

The run time performance of the two methods, RF-AmPEP30 and
Deep-AmPEP30, were compared to our previously developed general
prediction method AmPEP. We used all data from the two datasets
for training the final models of RF-AmPEP30 and Deep-AmPEP30,
i.e., 1,651 positive sequences and 1,646 negative sequences. For testing
the run time performance, we randomly selected sequences of 5–30
residues from the open reading frames of C. glabrata genome to
form a test dataset that was subjected to prediction subsequently by
three methods. The experiment was repeated five times and the run
time of each method was recorded. The computation was done on
a HP workstation with 32-core Intel Xeon E5-2650 processors at
2.6 GHz and 16 GB memory. Run time performances of the three
methods are also shown in Figure 2B. It was observed that both
short-length AMP classifiers run efficiently and are able to complete
the prediction within 70 s for 20,000 sequences. Although Deep-Am-
PEP30 is slightly better in accuracy than RF-AmPEP30 (see Tables 3
and 4), it requires also increased run time when the prediction in-
volves 9,000 or more sequences (Figure 2B, inset). Nonetheless, re-
sults of this run time performance test suggest that short-length clas-
sifiers are efficient tools for running massive prediction of AMPs,
such as for virtual screening of genome sequences.

Screening of the C. glabrata Genome for Novel AMPs

To showcase an application of the short-length classifiers developed
in this study, we performed screening of the C. glabrata genome using
the Deep-AmPEP30 method. To this end, we first converted the
entire genomic DNA sequences into peptide sequences from all six
translation frames. Among 456,723 peptide sequences extracted,
243,072 sequences were of length from 5 to 30 residues and subjected
Molecular Therapy: Nucleic Acids Vol. 20 June 2020 885
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Figure 1. Size Effect of the Train Dataset on Model Performance
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to AMP prediction. To minimize false-positive results, we applied a
strong classification threshold of 0.998 to the Deep-AmPEP30 classi-
fied peptides; with the classification filter, 24 sequences with lengths
from 15 to 29 residues were obtained (see Table S2). To select the
most promising AMPs for experimental validation, we investigated
the peptide-membrane interactions of all 24 sequences using the
CPPpred method of the CellPM server.35 CPPpred predicts the pep-
tide ability to cross the lipid bilayer by calculating its optimal spatial
position in the membrane, the energy of membrane binding, and the
lowest energy translocation pathway across the lipid bilayer. The pre-
dictions were performed using the following parameters: T = 310 K,
pH 7.4, and dioleoylphosphatidylcholine (DOPC) bilayer for the
membrane type (the only membrane type available). For calculation
of the lowest transfer energy pathway, DG(z), we tried both dragging
optimization and global energy optimization methods. The predicted
values of DG(z) of the 24 sequences range from �14.3 to �2.7 kcal/
mol, with a log of partition coefficient (log Pcalc) ranging from�5.5 to
�34.8 using the dragging optimization method and from 3.1 to�35.3
using the global energy optimization method. Two sequences, P3 and
P10, which gave the lowestDG were selected for further biological ex-
periments. In addition, the highest scoring sequence of Deep-Am-
PEP30, P26, was also selected for subsequent experimental testing.
The three selected sequences and their respective scores are summa-
rized in Table 5. All sequences in the list were checked to confirm that
none of them was a previously known AMP.

To validate the prediction, we commercially synthesized the three
predicted AMPs and tested them in an anti-bacterial assay against
three Gram-negative (Vibrio parahaemolyticus, Pseudomonas aerugi-
nosa, and Escherichia coli) and one Gram-positive (Bacillus subtilis)
bacteria. Interestingly, there are bacteria-specific effects for the three
peptides (Figure 3). For example, P3 showed strong inhibitory effect
against B. subtilis (Gram positive) and V. parahaemolyticus (Gram
negative), and the effect was as strong as, if not even better than,
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that by ampicillin (see V. parahaemolyticus at a later time, around
9–12 h). In contrast, P3 did not inhibit growth of P. aeruginosa and
E. coli under the same culturing conditions. Alternatively, P10
and P26 had no noticeable effects against B. subtilis,
V. parahaemolyticus, and P. aeruginosa; interestingly, however, they
seemed to slow down the growth of E. coli between 5 and 18 h after
inoculation. This subtle growth defect is consistently observed across
all three biological repeats, and it is therefore biologically significant
and meaningful, although we do not understand the cause at the
moment. Nevertheless, the bacteria assay results nicely validated the
prediction of our Deep-AmPEP30 method. More importantly,
when applied on the vast amount of freely available genome se-
quences, the program can offer an easy but powerful way to realize
the potentials of short-length AMPs for drug discovery.

Web Server

To facilitate the use of our methods, we implemented a web server,
called AxPEP (https://cbbio.cis.um.edu.mo/AxPEP), to allow submis-
sion and prediction of AMPs from peptide sequences as well as large
DNA sequence files such as assembled genome DNA sequences. The
web system consists of a front-end HTTP server to accept user inputs
and to manage job queues, and a back-end application server to
execute prediction tasks. The application server is equipped with
2.6-GHz Intel Xeon processors that consist of a total of 32 cores
and 16-GB memory running on the CentOS 7.0 platform.

Users can either directly enter amino acid sequences in FASTA
format or upload them in a file. Only the one-letter codes of the 20
standard amino acids are accepted in a sequence. Three officially-
released prediction methods are currently available for selection: Am-
PEP, Deep-AmPEP30, and RF-AmPEP30. The former is our first
AMP prediction method constructed for general AMP prediction us-
ing RF13 (general here means the sequence length is not considered as
a factor in the prediction model) and the latter two are the methods
introduced in the present work. All input sequences should have at
least 5 residues and no more than 250 residues. To predict using
Deep-AmPEP30 or RF-AmPEP30, only sequences of up to 30 resi-
dues will be considered. Users can enter a job description and/or an
email address (both optional) for each submitted job; this email
address can be used later to retrieve results of all past jobs associated
with the address.

Once a job is submitted, a unique ID is assigned to the job and the
status page is displayed. This page is refreshed every 3 s to check
the queue and execution status. As soon as all prediction tasks are
finished, a result page is displayed. This page shows the tables of clas-
sification and prediction scores in two separate tabs. Sequences are
displayed in rows and methods are shown in columns; cells in the
table are color-coded to aid visualization, namely, green for positive
sequences (class = 1 or score R0.5) and pale yellow for negative se-
quences (class = 0 or score <0.5). Sequences that are considered
invalid for a method (e.g., sequence length >30 for Deep-AmPEP)
will be displayed as�1 (error). All result data are available for down-
load in a comma-separated values (CSV) file.

https://cbbio.cis.um.edu.mo/AxPEP


Table 3. Comparison of CNN, RF, and SVM Using Five-Best PseKRAAC Features by 10 Times 10-Fold Cross-Validation

Algorithm ACC AUC-ROC AUC-PR Kappa Sn Sp MCC

CNN (from Table 2 five-best PseKRAAC) 76.50 ± 0.37 82.48 ± 0.20 79.55 ± 0.5 53.00 ± 0.74 83.35 ± 0.86 69.65 ± 0.67 53.51 ± 0.78

RF 75.42 ± 0.23 80.58 ± 0.09 74.85 ± 0.21 50.84 ± 0.46 81.55 ± 0.42 69.28 ± 0.22 51.23 ± 0.48

SVMlinear 72.37 ± 0.24 77.90 ± 0.07 76.08 ± 0.14 44.75 ± 0.49 68.36 ± 0.29 76.39 ± 0.42 44.95 ± 0.50

SVMradial
a 56.90 38.95 47.80 13.75 74.39 39.36 23.56

Parameters used were as follows: RF,mtry = 1, ntree = 1,200; SVMlinear, cost = 1; SVMradial, gamma= 0.008569952, cost = 0.25. Values shown are mean ± SD (values were multiplied by
100). In the text, the model of CNN is referred to as Deep-AmPEP30 and RF as RF-AmPEP30.
aOne 10-CV was performed.
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Beside individual peptide sequences, our server also accepts genome
DNA sequences in FASTA format for screening AMPs from the
entire genome sequence. The uploaded genome DNA sequence file
will be processed and converted to peptide sequences from all six
translation frames using the user-selected codon table. Peptide se-
quences with lengths of 5–30 aa will be sent for AMP prediction using
Deep-AmPEP30.

Conclusions

Antimicrobial peptides are known to exhibit a broad spectrum of ac-
tivity, including antibacterial, anticancer, antifungal, and antiviral,
among others. Increasing reports of bacterial resistance to conven-
tional antibiotics urgently demand effective methods to discover
new AMPs. Short AMPs are better drug options because of their
low production cost, higher stability, and minimal damage to host
cells. To aid the discovery of short AMPs, we have developed a
sequence-based short AMP classification model, named Deep-Am-
PEP30, using RAAC and a convolutional neural network. With a
small dataset, the architecture of the deep learning model, the param-
eters, and the training process have to be carefully designed to ensure
fast convergence and sufficient training, but not overfitting. To this
end, we have designed a CNN model with a small number of layers,
i.e., two convolutional layers, two maximum pooling layers, and only
one hidden layer with 10 nodes in the dense network. We selected the
rectified linear unit (ReLU) function as the activation function to
facilitate fast convergence in learning and the batch normalization
and dropout strategy to prevent overfitting. This model was obtained
from an extensive experiment of different combinations of architec-
tures and parameters. For comparison, we tested some traditional
machine learning methods. Based on the RF classifier and tuning us-
ing grid search, we obtained a RF model that performed very close to
the CNN model, with slightly inferior performance in the train and
test datasets experiments. This model was named RF-AmPEP30.

Although there are a few existing AMP prediction methods available,
the development of the short AMP models is different from those
methods in several ways. To the best of our knowledge, this is the first
time AMPs with short chain lengths (5–30 aa) are targeted computa-
tionally. Deep-AmPEP30 and RF-AmPEP30 have higher accuracy for
the recognition of short-length AMPs compared to other existing
AMP prediction models. We have shown that a reduced amino
acid alphabet is enough to accurately recognize short AMPs. To inves-
tigate how a class or property of amino acids affects recognition accu-
racy and to determine the minimum amount of information needed
for recognition, a large number of reduced amino acid sets were stud-
ied. We found that a combination of five reduced sets of amino acids
based on evolutionary information, substitution score, hydrophobic-
ity, and contact potential energy similarity preserve high recognition
accuracy. Deep-AmPEP30 and RF-AmPEP30 outperform existing
AMP prediction methods in terms of ACC, AUC-ROC, AUC-PR,
kappa, and MCC. With a prediction speed of 70 s per 20,000 se-
quences, Deep-AmPEP30 and RF-AmPEP30 are the methods of
choice for large-scale prediction tasks requiring high efficiency,
such as virtual screening of sequences from a genome or computa-
tional mutagenesis studies of peptides.

In addition to the methodology development, here we have also
demonstrated the use of Deep-AmPEP30 to discover novel AMPs
from the C. glabrate genome, a gut commensal fungus expected to
interact with and/or inhibit other microbes of the gut microbiome.
Thirty short AMPs were identified with high prediction scores above
0.998. Three sequences, P3, P10, and P26, of length 20, 24, and 29,
respectively, were chosen for antibacterial assay. Remarkably, all three
peptides exhibited varying levels of potency against different bacteria,
with P3 having the strongest inhibitory effect that is comparable to
ampicillin. Taken together, our results suggest that Deep-AmPEP30
is a promising tool in identifying short-length AMPs, and its applica-
tion on the vast amount of publicly available genomic sequences
would leverage short-length AMPs to their full potential in novel
drug discovery and development.

Feature selection is important to find out the most compact and infor-
mative feature subsets for machine learning. This has been a topic of
intense research for the past two decades.36 Besides the popular
wrapper-based feature selection approach that was adopted in this
study, more recently developed methods are worthy of further explo-
ration. For example, the minimum-Redundancy-Maximum-Rele-
vance (mRMR) selects features using mutual information for
computing relevance and redundancy among features;37 the Max-
Relevance-Max-Distance (MRMD) selects features with strong
correlation with the dependent variable and a subset with lowest
redundancy features.38 Both of these methods are filter-based and
were demonstrated to be effective in bioinformatics predictive prob-
lems. Strategies that combine both filter-based and wrapper-based
Molecular Therapy: Nucleic Acids Vol. 20 June 2020 887
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Table 4. Comparison of Our Prediction Models with Existing Methods Using the Benchmark Dataset

Method ACC AUC-ROC AUC-PR Kappa Sn Sp MCC Reference

iAMP-2L 65.43 – – 31.85 82.98 47.87 32.95 Xiao et al.10

iAMPpred 70.74 – – 41.49 80.85 60.64 42.36 Meher et al.12

AmPEP 68.09 75.14 68.63 36.17 93.62 42.55 42.07 Bhadra et al.13

AMP Scanner DNN 73.40 80.66 77.78 46.81 80.85 65.96 47.34 Veltri et al.15

RF-AmPEP30 77.12 85.46 86.83 54.25 77.65 76.59 54.25 This study

Deep-AmPEP30 77.13 85.31 85.36 54.26 76.60 77.66 54.26 This study

All values were multiplied by 100.
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methods might achieve higher accuracy in faster speed than the
wrapper-based method alone.37
MATERIALS AND METHODS
Datasets

Training Dataset

The training dataset used for model construction and CV is a subset
of the training data from our previous work for AmPEP.13 Only se-
quences with a length of 5- to 30-aa residues were included, yielding
a set of 1,529 positive non-duplicated samples. To generate a balanced
training dataset, we selected an equal number of negative samples
randomly from the AmPEP’s non-AMP set while maintaining the
same sequence-length distribution as the positive set.

Benchmark Dataset

For comparing our proposed method to existing AMP prediction
methods, an independent dataset was constructed from the bench-
mark dataset of a recent publication.39 Sequences that are 5–30 aa
in length were taken as positive samples while the negatives were
selected in the same way as in our training dataset. We checked to
ensure that this benchmark dataset does not contain highly similar se-
quences (>90%) to the training dataset of either our method or exist-
ing AMP methods with which we made comparisons in this study.
Moreover, to get rid of redundancy and avoid bias, we used the
CD-HIT40 software with a cutoff of 80% to remove highly similar se-
quences within the set. Finally, we obtained 94 positive and 94 nega-
tive samples in the benchmark dataset.
Sequence-Encoding Methods

One of the most challenging problems in the development of
sequence-based prediction methods is to effectively encode a primary
sequence into feature vectors. Here, we explored four different
commonly used features and their combinations for short AMP pre-
diction, including AAC, CTD,41 all modes of PseAAC for protein
sequencing,42 and all types of PseKRAAC.29 Below, we introduce
them briefly.

AAC features are normalized counts of single amino acids or pairs
of amino acids. Such features are simple and powerful and have
been shown to perform on par with features based on protein do-
888 Molecular Therapy: Nucleic Acids Vol. 20 June 2020
mains or sequence information for protein interactions predic-
tion.43

CTD41 describes the composition, transition, and distribution of a
particular physicochemical property of amino acids in the
sequence. It clusters all amino acids into three groups depending
on the property being examined. There are seven properties rec-
ommended in the CTDmethod, which include charge, hydropho-
bicity, normalized van der Waals volume, polarity, polarizability,
secondary structure, and solvent accessibility.

PseAAC-General from the Pse-in-One server42 contains eight
different modes. They are the basic kmer (Kmer), auto covariance
(AC), cross covariance (CC), ACC, parallel-correlation PseAAC
(PC-PseAAC), SC-PseAAC, general PC-PseAAC (PC-PseAAC-
General), and general SC-PseAAC (SC-PseAAC-General). The
Kmer method uses the occurrence frequencies of k neighboring
amino acids as features to account for the local short-range
compositional effect in sequences. AC, CC, and ACC use the cor-
relation of the same property (AC), different properties (CC), or
both (AAC) between 2 aa separated by lag positions. A larger
lag value takes longer range sequential effects into account. The re-
maining PseAAC-related features combine the AAC and global
sequence-order effects via parallel correlation or series correlation.
The former computes correlation factors as mean square differ-
ences of the selected physicochemical properties between residue
pairs, while the latter computes correlation factors by the
multiplication of property values. All general methods accept
new user-defined physicochemical properties in addition to the
547 properties pre-populated in the Pse-in-One server. Two
important parameters in all PseAACmethods are l and the weight
factor w. In the case of l, the maximum positional distance of the
two residues is specified for which correlations are calculated;
meanwhile, w ˛ (0, 1) scales the correlation factors by a user-
defined value to control their impact relative to the AAC features.

PseKRAAC employs reduced amino acid alphabets to encode a
protein sequence. These are a set of alphabets, each of which con-
tains one or more residues clustered together by their evolu-
tionary, physiochemical, structural, or functional similarity. The
PseKRAAC server supports 17 types of reduced amino acids,
and each of them allows from 2 to 19 clusters. Following the
concept of PseAAC, users can specify three characteristic



Figure 2. Performance of AMP Classifiers

(A) Receiver operator characteristic curves of different

AMP classifiers and (B) their run time performances on the

benchmark dataset.

www.moleculartherapy.org
parameters: K is the tuple size, gap is the positional separation be-
tween the tuple, and l-correlation is the positional separation
within the tuple. The PseKRAAC features with gap = 0, l-correla-
tion = 0, and K = 1 are simply AAC using the reduced amino acid
alphabets. We illustrate in Figure S3 the computation of
converting a sequence into the corresponding feature vector using
an example sequence “FVKKRAAT” and type 7-cluster 15
reduced amino acid alphabets. In the type 7-cluster 15 alphabet
set, amino acids are grouped into 15 clusters based on their in-
ter-residue contact energies using the Miyazawa-Jernigan
matrix {(C),(K),(R),(W),(Y),(A),(FILV),(M),(D),(E),(Q),(H),(T-
P),(GS),(N)}. Each cluster is labeled as Ri, where i is the cluster
ID. To encode the example sequence into RAAC using the type
7-cluster 15 alphabet set, the sequence is first converted into
“R7R7R2R2R3R6R6R13” and then its composition is encoded in a
feature vector of {0,2,1,0,0,2,2,0,0,0,0,0,1,0,0}, where the first
element indicates that there are no R1s in the transformed
sequence, two R2s, one R3, and so forth.

Besides these four aforementioned feature encoding methods, we also
tested the co-variance methods (auto, cross, and auto-cross), autocor-
relation methods (Moran, Geary, and normalized Moreau-Broto),
and dimer and quasi-sequence-order encoding methods. The perfor-
mances of RF and SVM models from these features were far from
satisfactory and hence they were not included for further study.
Also note that as RAAC methods generate clusters of amino acids
based on the evolutionary data, substitution scores, hydrophobicity,
and contact potential energy, as well as other factors, RAAC encod-
ings represent evolutionary, physicochemical, and structure proper-
ties of protein sequences in some ways. Hence, we did not explore spe-
cific evolutionary-based, structure-based, and physicochemical
properties-based encoding methods.

Classifiers

We proposed a CNN classifier comprised of an eight-layer architec-
ture of the convolutional layers and fully connected neural network.
The final optimal model was the result of extensive 10-fold CV exper-
iments based on model accuracies. All hyper-parameters (e.g., num-
ber of convolutional layers, number of kernels, activation function,
Molecular T
dropout rate, batch size, number of hidden
layers and hidden nodes, optimizer, number of
epochs) were determined by systematically
testing ranges of different values.

Our final optimal model is depicted in Figure 4.
The first layer of our network was the input layer,
followed by the first convolutional layer, a
maximum pooling layer, the second convolutional layer, the second
maximum pooling layer, the flattened layer, the fully connected layer,
and the output layer. For each data sample, it was transformed into a
feature matrix of size N � 1 (where N is the number of features) to be
fed into the input layer. Batch normalization was applied to the input
layer with a batch size of 64. The first convolutional layer had 128 ker-
nels with a kernel size of 3� 1. Each kernel was slid through the input
vector with a stride value of 1 and no padding. Thus, each kernel gener-
atedN� 1 convoluted features via the convolution operation. The final
convoluted feature sizewas 128�N� 1.After convolution, the rectified
linear function (ReLU)44 was applied as the activation function to
generate outputs that were greater than 0. Then, the maximum pooling
layer reduced the dimensionality of the convoluted features to 128 �
floor(N/2)� 1. The second convolutional andmaximumpooling layers
performed convolution operation andmaximumpooling on the output
of the first maximumpooling layer using the same parameters. Outputs
of the second maximum pooling layer were reshaped into a vector of
128 � floor(N/4) � 1 convoluted features to be fed into the fully con-
nected neural network with 10 nodes in the dense layer. While ReLU
was used again as the activation function in the dense layer nodes, the
sigmoid function was used at the output layer; the output layer, in
turn, computed the probability of a sample to be an AMP or not with
a classification threshold of 0.5. To prevent overfitting, a dropout rate
of 20%45 was used in each maximum pooling layer.

The training process of our CNN consisted of two phases: feed forward
and back propagation. In the feed-forward phase, samples were passed
through the input layer to the output layer and errors were computed
using the cross-entropy loss function. Based on the obtained error,
bias and weights were updated by the RMSprop optimizer in the
back-propagation phase. The training was executed with 100 epochs.

Besides the CNN model, we tested two other traditional machine
learning algorithms, RF and SVM, and compared their performances
to those of the CNN model.

Feature Selection

Both PseAAC-General and PseKRAAC offer many feature modes; to
select the best feature modes from the available sequence-encoding
herapy: Nucleic Acids Vol. 20 June 2020 889
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Table 5. The Three Selected C. glabrata Genome Sequences for Experimental Validation and Their Predicted Ability to Cross Lipid Bilayer by CPPpred

ID Sequence Net Charge Length Deep-AmPEP30 RF-AmPEP30 DGa (kcal/mol) Log Pcalc
1 Log Pcalc

2

P3 FWELWKFLKSLWSIFPRRRP +4 20 0.999090 0.785833 �14.3 �19.3 �3.9

P10 ICTTLNWMVKLTCLTHVTLTTRWC +2 24 0.998451 0.627500 �12.8 �5.5 3.1

P26 RWPPTTTLCYLSRPRRCSWTSSVCRCTLT +7 29 0.999972 0.709167 �9.2 �31.7 �13.4

Log Pcalc of membrane permeability coefficient predicted using the dragging optimization method (log Pcalc
1) and the global optimization method (log Pcalc

2).
aWater-to-membrane transfer free energy by CPPpred..
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methods, we implemented the wrapper-based SFS method.46 Starting
with an empty feature set, we added a feature mode, one at a time, to
the set and evaluated the CNN classifier with this feature set using 10-
fold CV. Importantly, unlike general feature selection methods where
each feature is selected and included in the set independently, in our
implementation, all features of a feature mode were evaluated
together. This means that once a feature mode is selected based on
its better performance, all of its features are included into the subset.
The procedure continued until the classifier accuracy was not further
improved.

For PseAAC-General, the following feature modes (with default pa-
rameters) were subjected to feature selection: Kmer, AC, CC, ACC,
PC-PseAAC, SC-PseAAC, PC-PseAAC-General, and SC-PseAAC-
General. Once the best feature mode was determined, combinations
of parameter values were systematically tested to find the optimal pa-
rameters with the highest prediction accuracy in CV. In total, 74 CNN
classifiers were evaluated.

For PseKRAAC, the same feature selection procedure as for PseAAC-
General was performed. All 17 reduced amino acid types and up to 19
clusters for each type were evaluated for performances in the first
feature selection iteration; this corresponded to 323 CNN classifiers.
Subsequently, only the best 10 feature modes were subjected to
further feature selection iterations due to the intractable large number
of feature modes of PseKRAAC.
Evaluation Metrics

The performance of a prediction method was systematically assessed
by seven metrics: sensitivity (Sn), specificity (Sp), accuracy (ACC),
Matthew’s correlation coefficient (MCC),47 kappa statistic,48 AUC-
ROC,49,50 and AUC-PR.51 The first four metrics are defined as
follows:

Sn =
TP

TP + FN
; (1)

Sp =
TN

TN + FP
; (2)

ACC =
TP +TN

TP + FN +TN + FP
; (3)
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and MCC =
ðTP � TNÞ � ðFP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞ � ðTP + FNÞ � ðFP +TNÞ � ðTN + FNÞp ;

(4)

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the number
of false negatives. MCC considers all aspects of the prediction
method, making it one of the most comprehensive metrics.33 Values
of MCC are in the range of �1 (worst) to 1 (best). The value of �1
implies total disagreement between prediction and observation, and
0 implies that the prediction method is the same as any random
prediction.

To measure the reliability of the result, the kappa statistic can be used.
It is defined as follows:

Kappa =
po � pe
1� pe

; (5)

p0 =
TP +TN

TP + FN +TN + FP
; (6)

and pe =
ððTP + FNÞ � ðTP + FPÞ � ðTN + FNÞ � ðTN + FPÞÞ

ðTP + FN +TN + FPÞ2 : (7)

The kappa value indicates the level of agreement between the predic-
tion and the actual values. Its value is between �1 (perfect disagree-
ment) and 1 (perfect agreement), where 0 indicates a chance
(random) agreement. Classifiers with kappa greater than 0.75 are
considered high reliability, between 0.4 and 0.75 are considered mod-
erate reliability, and less than 0.4 are deemed low reliability.48

For methods that can return a numerical value such as the probability
of a sample belonging to a class, their overall predictive performance
can be analyzed using all possible classification thresholds. A curve of
Sn versus 1 � Sp is the ROC curve, and the area under this curve
(AUC-ROC) gives the probability of the method to rank a randomly
chosen positive sample higher than a randomly chosen negative sam-
ple.35,36 Likewise, the precision-recall curve focuses on the positive
samples by analyzing the correctly predicted positives across all pre-
dicted positives (the precision) versus the sensitivity (also called
recall) at a range of classification thresholds. The area under this curve
(AUC-PR) gives the probability of a predicted positive sample to be a
real positive.51



Figure 3. Anti-Bacterial Effect of Three Top-Ranked

Predicted AMPs against Four Different Bacteria

Species

Growth assay ofBacillus subtilis, Vibrio parahaemolyticus,

Pseudomonas aeruginosa, and Escherichia coli in the

absence (H2O) or presence of P3, P10, P26, and a control

peptide (Pcontrol) that is known to have no anti-bacterial

effect. Ampicillin was used as a positive control. Growth of

bacteria was measured by absorbance at OD600 over

time. The average of three independent experiments is

presented. Treatment showing an inhibitory effect against

the assayed bacteria is highlighted by a red box. A pink

box indicates a subtle but significant (e.g., consistent in all

three biological repeats) effect.
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In SilicoWhole-Genome Screening of C. glabrata for Novel AMP

Discovery

The genome sequences of C. glabrata (version s02-m07-r07) were
downloaded from the Candida Genome Database.52 Using our in-
house-developed script based on the Biopython package (version
1.68, Python version 2.7.5), all six reading frames of each chromo-
some sequence were processed to extract the open reading frames
(ORFs) using the standard genetic codon table (NCBI). An ORF is
a sequence of nucleotide triplets that begins with the start codon,
ends with the stop codon, and with no other stop codons in between.
As shown in Table S3, a total of 12,338,305 nt of the C. glabrata
genome were processed to obtain 456,723 ORFs; among them,
243,072 are in the range of 5- to 30-aa sequence length. These short
sequences were subsequently subjected to AMP prediction.
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Figure 4. The Architecture of Our CNN-Based Classifier for Short AMP Prediction

Themodel accepts a feature vector of N elements as input. First, the data values are normalized using a batch size of 64; then, the input is transferred into convoluted features

by two convolutional layers and two maximum pooling layers. Each convolutional layer applies 128 kernels using a kernel size of 3 � 1 with stride 1, while each maximum

pooling layer pools together data using a kernel size of 2 � 1 with stride 2. A dropout rate of 20% is applied in the maximum pooling step to prevent overfitting. Finally, all

convoluted features are flattened and fed into a fully connected neural network with 10 hidden nodes and 1 output node. The rectified linear function (ReLU) is used as the

activation function in the convolutional layer and by the hidden nodes, but the sigmoid function is used by the output node.
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Software Implementation

CNN classifiers were implemented in R (version 3.4.2) using the
Keras deep learning library kerasR (version 0.6.1). Sequence features
were generated using the propy package (version 1.0), Pse-in-One
server at http://bioinformatics.hitsz.edu.cn/Pse-in-One/home/, and
the PseKRAAC server (http://bigdata.imu.edu.cn/psekraac.ashx).
Peptide Synthesis and Preparation

Selected AMPs were commercially synthesized by ChinaPeptides
(Shanghai, China). Lyophilized peptides were dissolved in water to
a final concentration of 1 mg/mL. Dissolved peptides were kept at
�80�C in small aliquots until use.
Bioactivity Assay on Bacteria

Bacterial inhibition assay was carried out at 37�C in the 96-well plate
format using the BioTek Cytation 3 plate reader. Peptides were added
to bacteria cells at a concentration of 100 mg/uL. Bacterial growth was
measured by optical density (OD)600 every 15 min during 24 h and
plotted as absorbance at OD600 over time.
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