Skip to main content
. 2020 May 29;138:109947. doi: 10.1016/j.chaos.2020.109947

Table 10.

Performance analysis of various deep learning approaches in diagnosis of COVID-19.

Author Month & Year Method Classes Accuracy Specificity Sensitivity AUC Ref
Chen et al. Jan, 2020 UNet++
(Retrospective testing per patient)
2 95.24% 93.55% 100% [115]
Wang et al. Jan, 2020 DenseNet121-FPN, COVID19-Net 2 85% 71.43% 79.35% [75]
Li et al. Mar, 2020 COVNet 3 —- 96% 90% 0.96 [116]
Asnaoui et al. Mar, 2020 MobileNet_V2 2 96.27% 94.61% 98.02% —- [117]
Inception_Resnet_V2 96.09% 93.88% 98.53%
Resnet50 96.61% 94.92 98.43%
Abbas et al. Mar, 2020 DeTrac-ResNet-18 3 95.12% 91.87%, 97.91%, —- [62]
Ozkaya et al. Mar, 2020 CNN using Deep Features Fusion and Ranking Technique 98.27% 97.60% 98.93% —- [70]
Wang et al. Mar, 2020 Tailored CNN 3 92.3% —- —- [118]
Chowdhury et al. Mar, 2020 Sgdm-SqueezeNet 3 98.3% 99.0% [119]
Apostolopoulos et al. Apr, 2020 CNN with transfer learning 3 96.78% 98.66% 96.46% [120]
Afshar et al. Apr, 2020 Capsule Network 4 95.7% 95.8% 90% 0.97 [121]
Butt et al. Apr, 2020 Multiple CNN's 3 —- 92.2% 98.2% 0.99 [122]
Li et al. Apr, 2020 DenseNet 3 88.9% —- —- [123]
Ucar et al. Apr, 2020 Bayes-SqueezeNet 3 98.3% 99.1% —- —- [124]