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Cognitive decline is a severe concern of patients with mild cognitive impairment. Also, in patients with temporal lobe epilepsy,
memory problems are a frequently encountered problem with potential progression. On the background of a unifying hypothesis
for cognitive decline, we merged knowledge from dementia and epilepsy research in order to identify biomarkers with a high
predictive value for cognitive decline across and beyond these groups that can be fed into intelligent systems. We prospectively
assessed patients with temporal lobe epilepsy (N� 9), mild cognitive impairment (N� 19), and subjective cognitive complaints
(N� 4) and healthy controls (N� 18). All had structural cerebral MRI, EEG at rest and during declarative verbal memory
performance, and a neuropsychological assessment which was repeated after 18 months. Cognitive decline was defined as
significant change on neuropsychological subscales. We extracted volumetric and shape features from MRI and brain network
measures from EEG and fed these features alongside a baseline testing in neuropsychology into a machine learning framework
with feature subset selection and 5-fold cross validation. Out of 50 patients, 27 had a decline over time in executive functions, 23 in
visual-verbal memory, 23 in divided attention, and 7 patients had an increase in depression scores. *e best sensitivity/specificity
for decline was 72%/82% for executive functions based on a feature combination fromMRI volumetry and EEG partial coherence
during recall of memories; 95%/74% for visual-verbal memory by combination of MRI-wavelet features and neuropsychology;
84%/76% for divided attention by combination of MRI-wavelet features and neuropsychology; and 81%/90% for increase of
depression by combination of EEG partial directed coherence factor at rest and neuropsychology. Combining information from
EEG, MRI, and neuropsychology in order to predict neuropsychological changes in a heterogeneous population could create a
more general model of cognitive performance decline.

1. Introduction

Epilepsies and dementia are contributing substantially to the
world’s global burden of disease [1]. In 2005, there was an
estimate of more than 50 million people living with active

epilepsy [2]. In 2015, over 46 million people lived with
dementia, and this number is estimated to increase to 131.5
million by 2050 [3]. *e risk of unprovoked seizures in
Alzheimer’s dementia is eight to tenfold higher than in the
general population [4–6]. Alzheimer’s disease, mild
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cognitive impairment, and temporal lobe epilepsy share not
only core symptoms, such as cognitive dysfunction, but also
hippocampal atrophy [7]. Conversion rates from mild
cognitive impairment to Alzheimer’s disease within 30
months are 48.7% for amnestic subtype and 36.8% for
nonamnestic subtype [8]. By contrast, the question whether
patients with temporal lobe epilepsy can suffer from a
progressive cognitive decline or whether most of the cog-
nitive deficits are acquired at the initial insult, which cause
both temporal lobe epilepsy and cognitive deficits, is far
from clear [9–12]. *e potential contributors to cognitive
decline in temporal lobe epilepsy could be seizures, interictal
epileptiform events, or other mechanisms [13].

Studies on seizures in early Alzheimer’s disease suggest
that they may be the harbinger of cognitive decline [14, 15].
*e lifetime prevalence of seizures in mild cognitive im-
pairment/Alzheimer’s disease varies considerably between
studies [16, 17]. Routine electroencephalography (EEG)
detects interictal epileptiform activity in more than 40% of
patients with Alzheimer’s disease [18]. Precise assessment is
challenging because nonconvulsive seizures are hard to
recognize, especially in confused patients [19–21]. Cognitive
decline occurs earlier in patients with mild cognitive im-
pairment/Alzheimer’s disease when patients encounter
seizures, especially, when there is subclinical epileptiform
activity in the temporal lobe [14, 15, 18].

In humans, functional magnetic resonance imaging
(MRI) studies disclosed hippocampal hyperexcitability,
which was reversed under antiepileptic treatment [21, 22].
More recently, Lam et al. [23] detected scalp-silent mesial
temporal epileptic activity using intracranial electrodes,
providing evidence for the contribution of hippocampal
excitability in the prodromal stage of Alzheimer’s disease.
*ese findings suggest that there might be considerable
overlap in the pathological mechanisms underlying
cognitive decline in both diseases: temporal lobe epilepsy
and mild cognitive impairment/Alzheimer’s disease, and
it is a valid question whether there exist generic bio-
markers as a common denominator for progression of
cognitive decline.

Brain volumetry using MRI has been used to determine
whether the condition is progressive or not in mild cognitive
impairment/Alzheimer’s disease and in temporal lobe epi-
lepsy [24], but these studies never searched for similarities in
cognitive decline between the two disorders [7]. Based on the
large database of Alzheimer’s Disease Neuroimaging Ini-
tiative, conversion from mild cognitive impairment to
Alzheimer’s disease was predictable with an accuracy of
0.7–0.79 [25]. Structural measures in the temporal lobe and
its subregions such as the hippocampus or the entorhinal
cortex seem to be highly indicative for progression of the
disease [26–32]. It was early suggested that automation of
volumetric assessment could pave the way for clinical
implementation of prognostic consulting in the clinical
setting [33]. Moreover, wavelet features from the MRI have
been applied for classifying patients with Alzheimer’s de-
mentia and mild cognitive impairment [34–36].

Despite the considerable attention attracted by neuro-
imaging in the past decade [37], clinical use of the EEG for

diagnosis and prognosis of dementia was emphasized more
than 30 years ago [38]. After seminal work on the predictive
value of qualitative EEG analysis for the progression of
memory decline in Alzheimer’s disease [39, 40], it was
suggested to use quantitative EEG for the prediction of
cognitive decline [41, 42]. EEG properties correlate with
genetic biomarkers [43] and biological markers of micro-
vascular degeneration [44]. Event-related EEG potentials
[45–52] or bandpower in the delta, theta, alpha, and beta
range [49, 53–61] have been utilized to predict cognitive
decline. It seems that the EEG is most useful for predicting
cognitive decline when being recorded during cognitive
activation, allowing to measure the brain’s response to
cognitive effort [62]. Analyses of brain networks from the
EEGwere also implemented in prognostic studies [63] with a
distinction between stable mild cognitive impairment and
progression to Alzheimer’s disease by up to 86% [64] and in
differentiating normal elderly people with subjective cog-
nitive complaints with vs. without progression of cognitive
symptoms by 90% [65].

Besides advanced analysis of brain activity, behavioral
alterations predict future decline of cognitive functions.*at
is, impairment in cognitive domains as detected by neu-
ropsychological assessment is indicative for further deteri-
oration [66–72]. Moreover, depressive symptoms were
found to be linked to the progression from mild cognitive
impairment to Alzheimer’s disease [73, 74]. It is therefore
beneficial to include cognitive assessment and depression
scores in prognostic studies.

Finally, multimodal assessment is being suggested to
increase the accuracy of prognosis because different as-
sessment modalities such as structural MRI and functional
EEG may complement each other [75]. It was found that
simple power analysis of the EEG in the sense of bandpower
ratios was superior to hippocampal volume and led to a
prognostic accuracy of 88.3% for conversion to Alzheimer’s
disease [76].

In the presented prospective study, we selected candidate
biomarkers from both the resting and cognitive EEG, alone
or in combination with MRI volumetric features and/or
neuropsychological scores at baseline, in order to predict
decline on neuropsychological subscales in patients with
mild cognitive impairment, temporal lobe epilepsy, and
subjective cognitive complaints and healthy controls. By
fitting one model to these populations, we would like to
identify predictive biomarkers that are not restricted to one
neurological population but which could be generic markers
of cognitive decline.

2. Methods

2.1. Ethics Approval and Consent to Participate. *e study
was approved by the local Ethics Committee (Ethics
Commission Salzburg/Ethikkommission Land Salzburg;
number 415-E/1429) and was designed according to the
Declaration of Helsinki. Written informed consent was
obtained from all participants. Healthy participants were
remunerated for their expenditure of time.

2 Computational Intelligence and Neuroscience



2.2. Sample and Recruitment. Patients with amnestic mild
cognitive impairment and amnestic subjective cognitive
complaints were recruited in the memory outpatient clinic
of the Department of Neurology, Christian Doppler Medical
Centre, ParacelsusMedical University Salzburg, Austria.*e
diagnosis was assigned by the medical doctor according to
the results of the described multimodal examination
according to the criteria of Petersen [77]. We conformed to
the definition where amnestic mild cognitive impairment
equals to level three and amnestic subjective cognitive
complaints equals to level two of the global deterioration
scale for aging and dementia [78–80]. *e diagnosis of
amnestic mild cognitive impairment and amnestic subjec-
tive cognitive complaints indicates that the complaints and/
or deficits were detectable only in the memory domain and
not on other cognitive subscales.

*e multimodal neurological assessment included im-
aging (3T magnetic resonance tomography, and in suspi-
cious cases also single photon emission computed
tomography with Tc99-hexamethylpropylenaminooxim, for
cerebral blood perfusion) and neuropsychological testing.
We excluded patients when inflammatory, vascular, meta-
bolic, or traumatic causes, as well as major depression,
psychosis, or any pharmacological therapy, could better
explain cognitive impairment or cognitive complaints.

Patients with refractory unilateral temporal lobe epilepsy
were recruited in the epilepsy outpatient clinic of the De-
partment of Neurology, Paracelsus Medical University
Salzburg, Austria. Diagnosis was based on multimodal
neurological assessment, including imaging (3T magnetic
resonance tomography and single photon emission com-
puted tomography with Tc99-hexamethylpropylenami-
nooxim), neuropsychological testing, and video EEG
examination for up to five days. We excluded patients with
progressive lesions or immunological causes of epilepsy.

*e sample of healthy participants was recruited among
the students of the Paris Lodron University of Salzburg,
Austria, as well as among senior citizens associations in
order to closely resemble the age range of the patient groups.
Healthy participants were free of a history for neurological
or psychiatric diseases and were not receiving any psy-
choactive medication.

2.3. MRI. T1-weighted MRI volumes were acquired using a
Siemens (Erlangen, Germany) Magnetom TrioTim syngo
MR B17 at 3 Tesla, a 12-channel head coil, and the following
parameters: sagittal orientation, 192 slices per slab, 256mm
FoV read at 93.8%phase, TR (repetition time)� 2300ms, TE
(echo time)� 2.91ms, TI (inversion time)� 900ms, FA (flip
angle)� 9 deg, and a slice thickness of 1mm resulting in a
voxel size of 1× 1× 1mm3.

We extracted three types of features from MRI data:
volumetry, local binary patterns, and wavelets.

2.3.1. MRI Volumetry. *e automated segmentation was
performed using a set of 30 hand labeled atlases (83 regions
each, for a list of the regions, see Supplementary material)
made publicly available by Hammers et al. [81]. After brain

extraction using the brain extraction tool in the functional
MRI of the Brain Software Library (available from http://fsl.
fmrib.ox.ac.uk), all participants were diffeomorphically
registered using advanced normalization tools (available
from http://stnava.github.io/ANTs/) to each atlas. *e final
segmentation was obtained by using majority voting to fuse
the registration outcomes for each subject. *e result was a
labeled volume, containing labels for the 83 cortical and
subcortical structures.

*e volume of the segmented regions was normalized by
the sum of all volumes, that is, we calculated the percent each
region took in relation to the sum of all segmented regions.
*is comes down to scaling to global brain volume, which is
different to the more usual approach of scaling to total
intracranial volume (including the CSF space) as a measure
of head size. Total intracranial volume is usually not affected
by disease, whereas global brain volume decreases with
disease severity in neurodegenerative conditions.

2.3.2. Local Binary Patterns. Local binary patterns can be
used to describe two-dimensional textures. According to
[82], we calculated a local binary pattern descriptor for the
three-dimensional MRI data. In short, for each voxel, the
three planes spanned by the coordinate system are used to
extract two-dimensional local binary patterns. *e three
resulting histograms are then concatenated to a single
feature vector. In our setup, we slightly modified this ap-
proach in order to get a region-based local binary pattern
feature representation. For this purpose, the local binary
pattern volume is masked to the specific region before
histogram calculation and concatenation. *e final output is
a feature vector per subject per region.

2.4. Wavelets. *e discrete wavelet transform has a long
history in two-dimensional image representation and tex-
ture analysis [83]. It takes advantage of decomposing the
image into a detail (high-pass) and an approximation (low-
pass) part on multiple resolutions. In our setup, we used the
stationary discrete wavelet transform [84] to extract feature
representations of different resolution and detail level from
each three-dimensional volume.

*e feature volumes are then masked to the individual
brain regions and the wavelet coefficients in the masked
region represented by an estimated generalized Gaussian
[85]. *e concatenation of the estimated parameters (of the
generalized Gaussian) over all resolutions and detail/ap-
proximation combinations leads to the final feature vector.

2.5. Neuropsychological Assessment. Neuropsychological
assessment was performed at baseline and at 18-month
follow-up. *e test battery included matrices, mosaics, and
repeating numbers from Wechsler’s intelligence test [86], a
verbal memory test [87], the diagnosticum for cerebral
damage [88], the Regensburg verbal fluency test [89], the test
for attentional performance flexibility [90], and Beck’s
Depression Inventory [91]. In addition, healthy controls
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were examined with the Montreal cognitive assessment [92],
in order to screen for unknown cognitive impairment.

From the neuropsychological test results, we formed
domain-specific composite scores which indicated whether a
participant had a decline of at least one standard deviation
according to the test manuals on one of the included sub-
scales. Subjects without a decline included those who did not
show a significant decline as well as those who showed
improvement. We included only domains for the purpose of
the prediction analysis in which the number of participants
with a decline was large enough for the machine learning
and cross validation algorithm. For the purpose of classi-
fication analysis, the number of participants must be equally
balanced in the two groups that should be classified, that is,
in this case, the participants with vs. without decline.
*erefore, we included composite scores of decline based on
z-scores in the following cognitive domains:

(i) Executive functions, based on 7 scales: matrices and
repeating numbers from 9.

(ii) Wechsler’s intelligence test [86], Regensburg verbal
fluency test version 1 and 2, subscales formal lexical
verbal fluency, semantic categorical fluency, and
semantic category transition [89], test for atten-
tional performance, and subscale summary score for
flexibility [90].

(iii) Visual and verbal memory, based on 5 scales, of
which 4 are from the verbal memory test [87], that
is, learning, consolidation, recall, and recognition,
and the fourth is the summary score of the diag-
nosticum for cerebral damage [88].

(iv) Divided attention based on the two summary scales
from the test for attentional performance flexibility
[90] and summary score of two tasks for divided
attention.

Moreover, we included depression as a factor that could
be predicted, in order to extend previous research that
predicted decline based on depressive symptoms at baseline.

2.6. EEG Procedure and Task. Recordings started with a
resting condition which lasted for 2-3min. After that, the
first session included the learning condition of 72 pairs of
German nouns, immediately followed by the cued recall and
recognition. A second EEG session took place around 2
weeks later and consisted only of rest, cued recall, and
recognition. Each task was preceded by a training session
that included written instruction on the screen. Each trial
ended with the participant’s response, followed by an in-
tertrial interval of 1 s. Participants were seated in front of a
desktop in order to allow a familiar distance to the screen
and comfortable reach to the keyboard. All participants had
normal or corrected to normal vision (glasses or contact
lenses).

*e task was presented on a standard 19″ screen and
prepared in Presentation (Neurobehavioral Systems Inc.).
*e stimuli were centered text in black letters on a white
screen in font Arial, 48 pt.

2.7. EEG Registration. EEG was recorded in a quiet room
using a BrainCap with a 10–20 system and a BrainAmp
(Brain Products GmbH, Germany) 16-bit analog-to-digital
converting amplifier. *e sampling rate was 500Hz. Of the
32 recorded channels, one was used to monitor the lower
vertical electrooculogram and one was used to measure
electrocardiographic activity. Two channels were positioned
at the earlobes for rereferencing purposes to remove the bias
of the original reference, which was placed at FCz. Data
analysis was conducted for a subset of 17 electrodes: F3, F4,
C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, and Pz.
Impedances were kept below 10 kΩ.

*e two EEG sessions were arranged to take place at the
same time of the day. For most participants, EEG was
performed within the same time range around noon (1 pm).

2.8. Data Preparation. Data were preprocessed with Brain
Vision Analyzer (Version 1.05.0005, Brain Products
GmbH). In order to rereference all channels, a new reference
was built by averaging the signal of earlobe electrodes.
Butterworth zero-phase filters were used for a high-pass
filter from 1Hz (time constant 0.1592 s, 48 dB/oct), and an
additional notch filter (50Hz) was applied.

An automatic artefact detection was carried out in order
to exclude artefacts. Maximal allowed voltage step per
sampling point was 50 μV (values which exceeded this
threshold were excluded within a range of ±100ms),
maximal allowed absolute difference on an interval of 200ms
was 200 μV, and lowest allowed absolute difference during
an interval of 100ms was 0.5 μV (values which exceeded this
were marked with a surrounding of ±500ms).

*e preprocessed data were exported into a generic data
format and imported toMatlab (release R2017b,Mathworks,
Massachusetts, USA).

*e data were segmented into 1000ms segments (i.e.,
500 sampling points) for each participant and each condi-
tion. For each condition (learning/recall), the segment
started 100ms before stimulus onset and ended 900ms
afterwards. If the segment overlapped with a marked arte-
fact, it was excluded.

2.9.Measures of Interaction. For each segment, we estimated
a set of measures of interaction between the selected 17
channels. *e measures were calculated with the functions
mvfreqz.m and mvar.m from the BioSig toolbox [93] with a
model order of 10. To estimate the multivariate autore-
gressive model, we used partial correlation estimation with
unbiased covariance estimates [94]. *e multivariate pa-
rameters in the frequency domain that can be derived from
these transfer functions were computed for 1Hz frequency
steps between 2 and 125Hz. *e following measures were
extracted: auto and cross spectrum [95], direct causality [96],
transfer function [97], transfer function polynomial [97],
real- and complex-valued coherence [98], partial coherence
[99], partial directed coherence and partial directed co-
herence factor [100], generalized partial directed coherence
[101], directed transfer function [102], direct directed
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transfer function and full frequency directed transfer
function [103], and Geweke–Granger causality [104, 105].

We averaged the measures in classical frequency ranges
delta (2–4Hz), theta (5–7Hz), alpha (8–13Hz), beta
(14–30Hz), gamma (31–80Hz), and high gamma
(81–125Hz). We concatenated all of the nonredundant
values from these interaction matrices for all frequencies of
interest.

2.10. StatisticalAnalysis. Age was compared between groups
with a classical univariate ANOVA. Equality of distribution
of women and right-handed participants across groups was
assessed with a chi-squared test.

*e neuropsychological characteristics of the subgroups
at inclusion time and at follow-up were evaluated using a
nonparametric repeated measures ANOVA with a para-
metric bootstrap [106] with factor group and the two
neuropsychological assessments (baseline, 18-month follow-
up) as within subject factor. We chose a semiparametric
repeated measures MANOVA that only requires metric
data, but allows for nonnormality and variance heteroge-
neity [106]. *is method is implemented in the R-package
MANOVA.RM [107]. We used it with the parametric
bootstrap which showed themost favourable performance in
unbalanced designs and was therefore generally recom-
mended [106].

2.11. Classification Analysis. We conducted classification of
participants with vs. without decline on the respective
subscales with all possible combinations of feature vectors. A
detailed list is included in the Supplementary Section.

For the EEG, we could augment the sample size by
considering each segment individually for the classification.
*at is, upon classification, we created one sample for each
EEG segment. *is way, we obtained, e.g., a maximum of 72
samples per participant for the learning, recall, and recog-
nition conditions. For the rest data, the maximum number
was 180 samples for the 3min of rest. Note that depending
on the segments that were excluded because of artefacts,
these numbers could be significantly lower.We assumed that
this would increase the robustness of the model, since we
considered the intraindividual variance of the EEG. When
these values were combined with MRI or neuropsychology,
we simply added the same MRI feature vector or neuro-
psychological feature vector to each of the EEG feature
vectors. *is was done because an accurate noise model that
would allow for classical data augmentation could not be
estimated reliably based on the small dataset. *is is a rather
conservative approach and at worst would lead to low
classification accuracies.

For the k-fold cross validation, we grouped the segments
participantwise, so that all segments of one patient were
included in one partition. *is rather conservative approach
was chosen because it can be assumed that the features are
more similar within one participant than between
participants.

We performed a classification in the sense of supervised
learning with a linear kernel function (dot product) and

quadratic programming in order to find the separating
hyperplane, resulting in a 2-norm soft-margin support
vector machine, by using the Matlab functions svmtrain and
svmclassify from the statistics andmachine learning toolbox.

2.12. Cross Validation and Feature Subset Selection. It is
known that when this length exceeds the size of the sample, it
can cause artificially high accuracies due to overfitting.
Because of the high dimensionality of the data, we imple-
mented a feature subset selection procedure in order to limit
the feature vectors to a maximum length of 30, i.e., ap-
proximately two-thirds of the size of the sample.

Classification and feature subset selection was done in a
nested design with 3 layers with 5-fold cross validation (an
illustration can be found in Figure 1 in the Supplementary
section). We implemented an outer layer as a division of the
data into 20% of the data for testing the resulting model and
80% for feature vector optimisation and cross validation, i.e.,
submitted to the middle layer. *e middle layer is a first
inner loop, implemented again with 5-fold cross validation.
*is loop aims to estimate the consistency of selected fea-
tures, since each run yields a different feature vector. *e
inner layer is a second, thus, nested inner loop, again with 5-
fold cross validation in order to perform adequate feature
subset selection. So-called k-fold cross validation consists of
k repetitions of leaving out N/k samples as the training set,
while the remaining N− (N/k) samples are used during the
training step.

More details about the algorithm are described in the
Supplementary materials.

3. Results

3.1. Sample. We recruited a total sample of 71 participants
from May 2012 to December 2015. Out of these, there were
20 patients with mild cognitive impairment, seven patients
with subjective cognitive complaints, 17 patients with
temporal lobe epilepsy (eight right-lateralized temporal lobe
epilepsy; nine left-lateralized temporal lobe epilepsy), and 26
healthy controls. Follow-up of the neuropsychological ex-
amination after 18 months was obtained from 51 patients.
*e largest proportion of dropouts occurred in the temporal
lobe epilepsy group, where several patients underwent
surgical intervention and were therefore excluded from
further analysis because the resection of brain tissue would
interfere with the spontaneous or disease-associated de-
velopment of cognitive performance.

*e patients’ characteristics are given in Table 1. *e
groups did not differ significantly in sex (χ2(4)� 7.04;
p � 0.15) and right-handedness (χ2(4)� 3.67; p � 0.45), but
different in terms of age (F(4, 46)� 10.43; p< 0.001). *is
was mainly due to the very young group of patients with
right-lateralized temporal lobe epilepsy (coefficients
t− value� −4.54; p � 0.00004) and the older mild cognitive
impairment group (coefficients t− value� 2.14; p � 0.04).

Supplementary Tables S1–S4 provide further details on
participants recorded at baseline. Table S1 provides the
results of assessment of pathological findings within the
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hippocampus based on structural MRI by a board certified
neuroradiologist, Table S2 provides self-reported medication
of all participants in this study, Table S3 provides the results
of the assessment of pathological findings and signs of
sleepiness in the EEG by a board certified neurophysiologist,
and Table S4 provides clinical aspects of patients with ep-
ilepsy, specifically whether seizures occurred within 24 h
before or after the EEG recording took place.

3.2. Cognitive Decline. Test results for the effects of group and
cognitive changes over the 18-month follow-up, as well as
interaction between group and change, are given in Table 2, and
average raw scores on the scales per subgroup are given in
Supplementary Table S5. Montreal cognitive assessment in
healthy controls resulted in an average score of 27.78
(SD� 1.59).

On all subscales except Beck’s Depression Inventory,
healthy controls showed the highest values, except for the group
of patients with subjective cognitive complaints, who performed
even better on some subscales. Patients with temporal lobe
epilepsy scored lowest on the intelligence test, verbal fluency,
attentional performance, and on the percentile rank of the
diagnosticum for cerebral damage. For verbal memory, the
meanswere comparable for patientswith temporal lobe epilepsy
and mild cognitive impairment. Finally, patients with temporal
lobe epilepsy showed the highest scores on Beck’s Depression
Inventory. In summary, patients with temporal lobe epilepsy
were broadly affected on all assessed scales, while patients with
mild cognitive impairment and subjective cognitive complaints
were mainly affected in the verbal memory test.

After Bonferroni correction, the effects need to be
interpreted at p< 0.002. Decline was significant for cate-
gorical fluency. None of the interactions of group and de-
cline was significant. *ere were group effects in intelligence
subscales, verbal fluency, verbal memory consolidation,
visual reaction, depression, and in the percentile rank of the
diagnosticum for cerebral damage.

By means of our definition of relevant decline, Table 3
indicates the numbers of patients or participants in each
subgroup of the assessed sample. In absolute numbers, on all
scales but for the worsening of depression, there were more
patients with mild cognitive impairment with decline than
without cognitive decline, while for all other groups, the
number of patients or participants without decline was equal
or larger than the number with decline.

3.3. Prediction of Cognitive Decline. We separately evaluated
classification accuracy for participants with and without
decline, which can be understood as sensitivity (how many
participants with decline were classified correctly) and
specificity (how many participants without decline were
classified correctly). If one of these two values was below
70%, we concluded that the result was rather a statistical
artefact of the classifier to be biased towards one of the two
groups. We chose the rather strict benchmark of 70% be-
cause in some prediction scenarios, the sample sizes were
misbalanced as can be seen in Table 3. *e worst mis-
balancing was obtained for prediction of a significant change
in depression, where approximately only 15% showed a
worsening at follow-up. Since the other groups were almost
equally balanced with, e.g., 46% of patients with a decline in
visual-verbal memory and in order not to be too strict, we
chose 70% as a compromise.

In Table 4, we list the results where sensitivity and
specificity were at least 70%. Supplementary Table S6 pro-
vides numbers of samples for each of these results and the
subgroups with and without decline, and Table S7 provides
accuracy, sensitivity, and specificity for subgroups. Most of
these effective predictions combine at least 2 modalities, thus
suggesting the importance of multimodal assessment.

Structural MRI was used in combination with partial
coherence from EEG during recognition or recall with or

Table 2: Effects of group, cognitive decline, and interaction be-
tween group and decline.

Group Decline Interaction
WTS p WTS p WTS p

Wechsler’s intelligence test, IQ values
Matrices 32.91 <0.001 0.01 0.91 1.27 0.87
Mosaics 33.61 <0.001 1.39 0.24 8.27 0.08
Repeating numbers 25.22 <0.001 0.21 0.65 3.92 0.42
Regensburg verbal fluency test, RWT, T-values
Verbal fluency 70.62 <0.001 0.04 0.85 4.02 0.4
Categorical fluency 48.8 <0.001 11.12 0.001 6.30 0.18
Semantic fluency 85.19 <0.001 2.99 0.08 5.67 0.23
Category transition 273.01 <0.001 0.48 0.49 15.19 0.004
Verbal memory test, VLMT, T-values
Learning 16.15 0.003 2.25 0.13 1.86 0.76
Consolidation 32.2 <0.001 0.55 0.46 1.37 0.85
Recall 15.87 0.003 0.23 0.63 7.28 0.12
Recognition 13.31 0.01 0.08 0.77 5.58 0.23
Attentional performance, TAP, T-values
Flexibility (sum) 5.47 0.24 0.31 0.58 13.31 0.01
Acoustic reaction 1 1.48 0.83 0.36 0.55 2.25 0.09
Visual reaction 1 24.47 <0.001 0.001 0.98 0.49 0.98
Errors 1 7.55 0.11 5.58 0.02 7.07 0.13
Misses 1 7.58 0.11 1.8 0.18 2.89 0.58
Acoustic reaction 2 3.59 0.46 0.006 0.94 5.77 0.22
Visual reaction 2 16.96 0.002 3.28 0.07 3.17 0.53
Errors 2 3.02 0.55 4.13 0.04 4.93 0.30
Misses 2 9.34 0.05 0.99 0.32 2.51 0.64
MWT IQ 12.66 0.005 4.64 0.031 0.36 0.95
DCS, percentile rank 61.88 <0.001 4.60 0.03 13.16 0.01
BDI, sum score 21.15 <0.001 0.34 0.56 1.44 0.84
WTS�Wald-type statistics; MWT�multiple-choice lexical test; DCS� test
for cerebral damage; BDI�Beck’s Depression Inventory.

Table 1: Sample characteristics of the subgroups at inclusion time.

Sample MCI SCC TLEr TLEl HC
N 19 4 6 3 18
Mean age 65.06 67.17 31.85 48.54 57.05
Median age 65 69 28 53 61
Age SD 8.36 7.74 10.54 8.97 14.80
Age range 49–76 56–75 21–50 38–54 24–74
N women 8 3 2 3 12
N right-handed 19 4 5 3 18
N� number; MCI�mild cognitive impairment; SCC� subjective cognitive
complaints; TLEr� right-lateralized temporal lobe epilepsy; TLEl� left-
lateralized TLE; HC� healthy controls; SD� standard deviation.
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without neuropsychological baseline testing in order to
predict executive function decline. *e selection of neuro-
psychological measures is illustrated in Supplementary
Figure 2. Most selected subscales except for Beck’s De-
pression Inventory, recognition of verbal material, and the
scales for divided attention included tests that were included
in the executive function scale. *us, executive function
decline was predicted by the baseline in this cognitive do-
main, combined with measures of divided attention, intel-
ligence, depression, and verbal memory.

*e MRI features that were selected for prediction of
executive function decline in combination with EEG during
recognition and neuropsychology or recall without neuro-
psychology are shown in Figure 1.

Without neuropsychology, more and also different re-
gions from MRI were selected. For example, when focusing
on the frontal region, while the combination with neuro-
psychology included only the bilateral pre-subgenual frontal
cortex left, the classification without neuropsychology in-
cluded the middle frontal gyrus right, the inferior frontal
gyrus left, and the subgenual frontal cortex left.

For visual-verbal memory, classification accuracy based
on wavelet features from the MRI was at 80% without and

86% with neuropsychological measures. Only two neuro-
psychological measures were selected (recall on the verbal
learning andmemory test and errors on the test for flexibility
in attentional performance), and they were selected only in
one out of 5 cross validation runs. *e regions from which
the MRI-wavelet features were extracted are shown in
Figure 2.

*e two selections overlapped to a large extent.
However, occipital regions were included to a lesser
extent when neuropsychological features were included
and frontal regions were included to a larger extent
alongside neuropsychological features. It needs to be
considered that no patients with temporal lobe epilepsy
contributed to this classification (see Supplementary
Table 7).

Divided attention decline was predicted with wavelet
features and one neuropsychological feature (errors on
flexibility in the test for attentional performance flexibility)
by 81% and by structural MRI analysis, i.e., volumetry, and
EEG imaginary coherence by 79%. Figure 3 shows that the
interaction of brain regions in the alpha frequency range is
most indicative, i.e., most features were selected from this
frequency range.

Table 3: Number of participants per group and per cognitive domain with a decline in cognitive performance of at least one standard
deviation on at least one of the included subscales.

Sample Executive functions Visual-verbal memory Divided attention Depression
Total 50 50 47 47
No change 23 27 24 40
Change 27 23 23 7

MCI
No change 7 9 8 15
Change 12 10 11 3

SCC
No change 0 2 2 3
Change 4 2 2 1

TLE right
No change 4 3 1 4
Change 2 3 2 0

TLE left
No change 3 3 2 1
Change 0 0 1 2

HC
No change 9 10 11 17
Change 9 8 7 1

MCI�mild cognitive impairment; SCC� subjective cognitive complaints; TLE� temporal lobe epilepsy; HC� healthy controls.

Table 4: Classification results with both sensitivity for decline as well as specificity for no decline >70.

Prediction Acc Spec Sens MRI EEG EEGfeat PSY
Executive 76 77 75 Structural Recognition 2 pCOH Yes
Functions 77 72 82 Structural Recall 2 pCOH No
Visual-verbal 80 77 83 Wavelet No No No
Memory 86 95 74 Wavelet No No Yes
Divided 81 84 76 Wavelet No No Yes
Attention 79 79 79 Structural Rest 2 iCOH No
Acc� accuracy; Spec� specificity; Sens� sensitivity; MRI�magnetic resonance imaging; EEG� electroencephalography; feat� features; MCI�mild cog-
nitive impairment; SCC� subjective cognitive complaints; TLEr� right-lateralized temporal lobe epilepsy; TLEl� left-lateralized TLE; HC� healthy controls;
pCOH� partial coherence; iCOH� imaginary coherence; PDCF� partial directed coherence factor.
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*e interactions selected within this range represent
frontal to parietooccipital, central to parietooccipital, within
posterior, and within occipital interdependencies. *e MRI
regions selected for prediction of divided attention decline
are represented in Figure 4.

*e wavelet features were extracted from classical re-
gions known to be important for divided attention, such as
the bilateral inferior and superior frontal gyri and the bi-
lateral pre-subgenual and subgenual frontal cortex. In
contrast, in combination with the EEG, only the volumes of

Recognition

Recall

Saggital: le� Coronal: posterior Axial: top Coronal: front

Figure 1: MRI regions selected for prediction of executive functions decline. For the combination with EEG during recognition and
neuropsychology, volumetry from the following regions was selected as features: amygdala right, caudate nucleus right, medial, lateral, and
posterior orbital gyrus left, superior temporal gyrus middle part right, bilateral lateral ventricle excluding temporal horn, subcallosal area left,
bilateral pre-subgenual frontal cortex left, cerebellum right, superior temporal gyrus anterior part right, and anterior and posterior cingulate
gyrus right. For the combination with EEG during recall without neuropsychology, volumetry from the following regions was selected as
features: bilateral amygdala, anterior temporal lobe lateral part left, parahippocampal and ambient gyrus right, superior temporal gyrus middle
part right, fusiform gyrus right, bilateral insula, lateral remainder occipital lobe left, anterior cingulate gyrus right, bilateral posterior cingulate
gyrus, middle frontal gyrus right, bilateral caudate nucleus, bilateral nucleus accumbens, thalamus right, corpus callosum, lateral ventricle
excluding temporal horn left, inferior frontal gyrus left, postcentral gyrus left, superior parietal gyrus left, cuneus right, posterior orbital gyrus
left, substantia nigra left, subgenual frontal cortex left, subcallosal area right, and bilateral pre-subgenual frontal cortex L.

Saggital: le� Coronal: posterior Axial: top Coronal: front

Without neuropsychology

With neuropsychology

Figure 2: MRI regions selected for prediction of visual-verbal function decline.*e following regions were selected for wavelet features: middle
and inferior temporal gyrus right, insula right, lateral remainder occipital lobe right, thalamus left, corpus callosum, lateral ventricle excluding
temporal horn left, lateral ventricle temporal horn right, third ventricle, anterior orbital gyrus right, bilateral inferior frontal gyrus, superior
frontal gyrus right, lingual gyrus left, bilateral cuneus, bilateral medial orbital gyrus, posterior orbital gyrus left, bilateral substantia nigra,
bilateral subgenual frontal cortex, bilateral subcallosal area, bilateral pre-subgenual frontal cortex, and bilateral superior temporal gyrus anterior
part. For the combination with neuropsychology, the following regions were selected for wavelet features: anterior temporal lobe lateral part
right, middle and inferior temporal gyrus right, insula left, middle frontal gyrus left, inferolateral remainder parietal lobe left, caudate nucleus
left, lateral ventricle excluding temporal horn left, lateral ventricle temporal horn right, third ventricle, bilateral inferior and superior frontal
gyrus, bilateral lingual gyrus, cuneus right, bilateral medial orbital gyrus, posterior orbital gyrus right, substantia nigra left, subgenual frontal
cortex right, bilateral subcallosal area, bilateral pre-subgenual frontal cortex, and bilateral superior temporal gyrus anterior part.
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the inferior frontal gyrus left and the bilateral subgenual
frontal cortex were selected.

Depression was predicted at 83% by partial directed
coherence factor at rest and neuropsychological scales. *e
subset of selected features from the partial directed coher-
ence factor extended over a broad frequency range from
theta to high gamma and was most pronounced for inter-
actions with frontal left and parietal right signals. However,
the maximum of cross runs in which such features were
chosen was 2 out of 5, thus questioning the generalizability
of these results. In contrast, the selection of neuro-
psychological subscales for the prediction of increase of

depressive symptoms was more consistent, with two sub-
scales reaching 5 out of 5 cross validation runs, and 3 others
4 out of 5 cross validation runs. *e choice of neuro-
psychological subscales suggests that the predictability of
depression is rather nonspecifically related to performance
in various cognitive domains, such as executive functions,
visual and verbal memory, intelligence, and attention. *e
Beck Depression Inventory score itself was also among the
selected measures, but was chosen in 3 out of 5 cross val-
idation runs only. Since the prediction of depression was
rather a secondary outcome in this study, the selected
features are represented in Supplementary Figure 3.

2–4Hz 5–7Hz 8–13Hz 14–30Hz 31–80Hz 81–125Hz

4
3.5
3
2.5
2
1.5
1
0.5
0

Figure 3: EEG features selected for prediction of divided attention decline. Imaginary coherence topoplots during rest in 6 frequency
ranges. *e colors indicate the selection of the respective areas/frequencies for prediction of executive function decline. *at is, the color
from dark blue (0) to yellow (4) indicates how often the respective regional interaction in a specific frequency was selected in the 5 cross
validation runs (4 was the maximum). *e higher the number of selections, the more reliable the result. *e topographical representation
illustrates the interaction matrix of all possible combinations of electrodes. *e head is represented as the large circle and the electrode
positions as smaller circles on this large circle. *e colored small circles indicate again a head, so that connections between the respective
region on the large circle and the colored region in the small circle can be inferred.

Saggital: le� Coronal: posterior Axial: top Coronal: front

Wavelet

Structural

Figure 4: MRI regions selected for prediction of divided attention decline. For the prediction of divided attention decline, wavelet MRI
features were selected from the following regions: insula left, corpus callosum, third ventricle, precentral gyrus left, straight gyrus right,
anterior orbital gyrus right, bilateral inferior frontal gyrus, bilateral superior frontal gyrus, postcentral gyrus right, superior parietal gyrus
right, lingual gyrus right, cuneus right, bilateral medial orbital gyrus, bilateral lateral orbital gyrus, posterior orbital gyrus left, bilateral
substantia nigra, bilateral subgenual frontal cortex, bilateral subcallosal area, bilateral pre-subgenual frontal cortex, and bilateral superior
temporal gyrus anterior part. For the prediction of divided attention decline by structural MRI volumetry, the following regions were
selected: parahippocampal and ambient gyrus right, brainstem excluding substantia nigra, bilateral posterior cingulate gyrus, middle frontal
gyrus left, inferolateral remainder parietal lobe left, nucleus accumbens right, thalamus right, lateral ventricle including temporal horn right,
lateral ventricle temporal horn left, straight gyrus left, anterior orbital gyrus right, inferior frontal gyrus left, postcentral gyrus left, superior
parietal gyrus right, medial orbital gyrus right, bilateral lateral orbital gyrus, posterior orbital gyrus left, bilateral subgenual frontal cortex,
subcallosal area right, and bilateral superior temporal gyrus anterior part.
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4. Discussion

In this research project, we elaborated general models for the
prediction of decline in cognitive domains. We identified
shared predictors in patients with prodromal dementia and
with temporal lobe epilepsy. *e prediction of decline after
18 months in cognitive domains of executive functions,
visual-verbal memory, and divided attention involved
characteristics from MRI. EEG characteristics were useful in
prediction of executive function decline and depression, but
not for visual-verbal memory, and to a minor extent for
divided attention. Finally, neuropsychological baseline di-
agnostics were most informative for all domains but exec-
utive functions, for which a similar or even better prediction
was also obtained without neuropsychological features.
Moreover, we could show that not only depression at
baseline predicts cognitive decline, but also depression is
predictable by cognitive impairment at baseline and by EEG
biomarkers.

*ese results suggest (1) that there exist some general
characteristics that are shared among different neurological
populations and (2) that multimodal assessment of these
characteristics is useful for the prediction of neuro-
psychological changes.

4.1. Multimodal Assessment. Prediction of conversion from
mild cognitive impairment to Alzheimer’s disease was made
based on neuropsychology with an accuracy of 76% [70] and
based on MRI by 75.05% [108]. Given that cognitive decline
can also be predicted by neuropsychological assessments at
baseline [66, 67, 69, 71, 72] and that cognitive assessment is
much cheaper than imaging, it seems justified to ask why the
effort should be made to apply additional examinations of
EEG or MRI.

Multimodal assessment has been demonstrated to be a
valid approach for the prediction of disease progression in
patients with mild cognitive impairment [109–113]. It was
found that the combination of EEG with neuropsychological
assessment increases the prognostic accuracy for cognitive
decline [114], for example, at 78.5% [109]. Our results are
well in line with these findings, with accuracies above those
reported for prediction based on one modality. Moreover,
we could also replicate the importance of depression for
prediction of further decline [73, 74] and extend these
findings by prediction of worsening of depressive symptoms.
As for cognitive decline, worsening of depression is pre-
dicted by depressive symptoms at baseline, but also by
dysfunctions in other cognitive domains. *is is very
plausible since the irreversible decay of one’s own cognitive
functioning is a change which is difficult to accept.

*e EEG was discussed to be an important source of
information for normal and pathological ageing such as mild
cognitive impairment and Alzheimer’s disease [63]. It was
claimed that the contribution of the EEG to clinical appraisal
of mild cognitive impairment or Alzheimer’s disease and its
progression should not be limited to the identification of
comorbidity with epilepsy [115].*e predictive value of EEG
biomarkers [62] or functional MRI biomarkers

[32, 116–118] can be increased when they are acquired
during performance of specific tasks. Our results do not
perfectly line up with these findings. For executive function,
the EEG measures obtained during recall or recognition
were most helpful, but for divided attention or depression,
rest was more valid. Well in line with our results, measures
for executive functions predict cognitive decline [68].

For example, the use of dual-tree complex wavelet
transforms resulted in a classification accuracy of Alz-
heimer’s disease vs. healthy controls of approximately 93%
in Alzheimer’s Disease Neuroimaging Initiative dataset and
97% in the Open Access Series of Imaging Studies dataset
[34]. However, classification into stages rather than into
progression of decline is much easier to accomplish.

In general, by comparing our results to previous re-
search, it must be considered that the reported accuracies of
70–79% based on Alzheimer’s Disease Neuroimaging Ini-
tiative [25] were obtained for the clinical question of con-
version from mild cognitive impairment to Alzheimer’s
disease, while the presented analysis aimed to predict pro-
gression in specific cognitive domains.

As an outlook, we may anticipate that not only other
modalities but also other characteristics may be assessed by
MRI or EEG. For instance, the assessment of structural
connectivity by means of diffusion tensor imaging has
proven to be especially useful to predict memory decline in
patients at risk for Alzheimer’s disease [119, 120].

4.2. Generalizability. An association between electroen-
cephalographic markers and memory is far more established
in epilepsy, than in mild cognitive impairment/Alzheimer’s
disease. For example, resting-state hippocampal theta con-
nectivity obtained by magnetoencephalographic source re-
construction was found to be correlated with memory
performance [121]. Moreover, there is a link between grey
matter volume of the hippocampus, connectivity as revealed
by fMRI, and memory performance [122] and even between
hippocampal volume and structural connectivity [123]. A
connectivity study based on the EEG identified the temporal
lobe as an important node of brain networks involved in
episodic memory retrieval [124]. *e alterations in func-
tional connectivity may be related to structural vulnerability
due to epilepsy-associated damage, which can result in
abnormal increase of neuronal connectivity [125]. Never-
theless, there are still many open questions with respect to a
potential dementing course in subtypes of epilepsy and there
exist no studies using these biomarkers in order to predict
decline on memory subscales, except for studies assessing
the mainly short-term effect of seizures and interictal epi-
leptiform events [10, 13].

Machine learning is commonly used to predict pro-
gression of dementia [37, 109]. Nevertheless, the use of
machine learning techniques needs to be done carefully,
since many of the early studies using machine learning in
neuroscience have not fully addressed the problem of
overfitting the model to the training data, either because of
the use of lengthy feature vectors that exceeded the size of
the sample or because no strict separation between training
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and testing datasets was done. A special case of overesti-
mation of the classification performance that is not easily
recognized by the reader is when the features are preselected
and then the preselected features are used for cross vali-
dation. In that case, the resulting accuracy may be much
higher than that without the preselection, but the result is
valid only for the present sample. Such a procedure sounds
plausible for multimodal prediction [126], but leads to poor
generalizability. For example, with our data sample, we
ended up with accuracies close to 100 when we performed
the feature selection separately for neuropsychology, MRI,
and EEG, and then merged the resulting feature vectors. In
contrast, the presented approach is much more strict and
robust against overfitting.

4.3. Limitations. In our study, the sample of patients was
rather small, especially for specific subsamples, such as
patients with subjective cognitive complaints and patients
with temporal lobe epilepsy. As an additional source of bias,
the subgroups are unbalanced in terms of age, since natu-
rally, mild cognitive impairment occurs in the elderly, while
temporal lobe epilepsy may occur at all ages. *is potential
bias could be overcome in future studies with an older
sample of temporal lobe epilepsy patients.

*e first andmain limitation is that only for the prediction
of executive function decline, decline in divided attention, and
worsening of depression, the sample size was large enough in
all subgroups. *e prediction of visual-verbal memory relied
only on the groups of patients with mild cognitive impair-
ment, subjective cognitive complaints, and healthy controls.
*e group of patients with temporal lobe epilepsy was more
difficult to recruit, as these refractory patients often undergo
surgical treatment, whichmeant that they were not eligible for
the study at follow-up. Future studies should aim at multi-
center recruitment to overcome this problem.

We found some variability in predictability of cognitive
domain functioning depending on whether EEG data from
the first or the second session were used. *is might be an
indicator of poor reliability or alternatively point towards
some inherent properties of repeated testing of such a kind.
For instance, we strongly assume that the first cued recall
and recognition induced reconsolidation [127], thus af-
fecting memory performance at the delayed session. *is
means that the second session’s EEG pattern might be quite
different from the first session and thus explains why the one
or the other session is more informative.

Also relating to the two repeated sessions, we need to
consider what happens in the period of 2 weeks. With re-
spect to the temporal lobe epilepsy patients, we reported
only seizure occurrence in proximity to the learning session.
Patients with temporal lobe epilepsy may have experienced
seizures during the 2 weeks, which may additionally have
affected the recall. A valid documentation of the effect of
seizures would require accurate EEGmonitoring of ictal and
interictal activity in the retention period. *is is beyond the
scope of the present work, but should be considered in future
studies. *e potential of interference between seizures and
memory contents is still subject to debate [7].

Another factor that was not feasible to be recorded in a
reliable way was a full record of medication in the follow-up
period of 18 months. Alterations in medication from
baseline could contribute to cognitive changes.

Furthermore, is quite striking that a large portion of the
healthy controls are classified as showing a decline. *e fact
that their MoCA scores fall within normal range at baseline
argues against the possibility that these healthy controls were
actually not healthy. However, since we advertised for
participation by mentioning that the study included a
thorough evaluation of cognitive performance, we cannot
rule out that participants with cognitive concerns partici-
pated. *is population may therefore resemble the pop-
ulation of patients with subjective cognitive complaints.
Neuropsychological differentiation of patients with subjec-
tive cognitive complaints from healthy controls requires very
sensitive methods to detect subthreshold differences [128].

Finally, it is possible that the automated segmentation is
a weakness that should be overcome technically [129]. Single
tools differ largely between each other in terms of hippo-
campal volume. It is possible that this variability contributes
to varying extent of usefulness of hippocampal volumetry in
the prediction of memory decline [130].

4.4. Conclusions. We argue that the prediction of cognitive
decline on specific subscales as well as the course of de-
pression is best by the combination of neuropsychological
examination, imaging, and neurophysiological assessment
and thus by examination techniques that are readily avail-
able but not routinely used in clinical practice. *e as-
sessment of shared characteristics in neurological
populations may open up new perspectives for the devel-
opment of intelligent diagnostic systems that can be inte-
grated into clinical practice.

*e present study tried to provide further evidence for
the unifying hypothesis of cognitive decline in temporal lobe
epilepsy and dementia or its prodromal stages of subjective
cognitive complaints and mild cognitive impairment
[23, 131]. However, beca use of the limited sample size, the
results can be at most regarded as encouraging for future
research.
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