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Abstract

Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during 

early stages of the disease. Evidence suggests that genetic factors in combination with 

environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic 

systems. In particular, the N-methyl-D-aspartate receptor (NMDAR), a major glutamate receptor 

subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical 

for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, 

any deviation from normal NMDAR expression and function can have devastating consequences. 

Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes 

contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from 

early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. 

Epigenetics is referred to as modifications that alter gene transcription without changing the DNA 

sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could 

contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute 

to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in 

SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may 

consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction 

during the early stages would be a promising avenue for prevention and therapeutic intervention of 

cognitive and social deficits that remain untreatable. Finally, we discuss potential questions 

regarding the epigenetic of SZ and future directions for research.
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Introduction

Schizophrenia (SZ) is a severe mental illness that affects approximately 1% of the 

population and confers devastating consequences for the affected person as well as their 

family members. Patients with SZ suffer from a combination of positive, negative, and 

cognitive symptoms that severely impact interpersonal relationships as well as the ability to 

function in society. Despite decades of intense basic and clinical research, the exact etiology 

of SZ remains unknown. Still, SZ is recognized as a neurodevelopmental disorder, and the 

pathophysiological process involves multiple disrupted brain circuits and neurotransmitter 

systems that are closely related to the onset of symptoms (Jaaro-Peled et al., 2010; Lewis 

and Gonzalez-Burgos, 2008; Weinberger, 1987). Although psychosis emerges late in 

adolescence or early adulthood, the earliest cognitive symptoms are evident much earlier 

(Costa et al., 2006; Crow, 2007; Niwa et al., 2010; Walsh et al., 2008).

For over the past 50 years, the dopamine (DA) model has been the leading neurochemical 

hypothesis of SZ. This model has proven heuristically valuable, with all current medications 

for SZ functioning to primarily block DA receptor subtype D2 (Gray and Roth, 2007; 

Tamminga and Lahti, 1996). However, cognitive dysfunction is a core feature of SZ that 

strongly correlates with functional outcome, and current therapeutics do not adequately 

address this aspect of the disease. Therefore, it is unlikely that dopaminergic dysfunction, on 

its own, can fully account for the wide range of symptoms and neurocognitive deficits seen 

in SZ. The key to forestalling the disorder is to detect and prevent early stages of risk and 

prodrome with novel therapeutic targets for early treatment (Insel, 2010; Lieberman et al., 

2006). It is thus critical to understand the early developmental changes that contribute to the 

progression of SZ.

The N-methyl-D-aspartate (NMDA) receptor-mediated glutamatergic model provides a 

critical alternate approach for conceptualizing the brain abnormalities associated with SZ 

(Harrison and Weinberger, 2005; Lewis and Moghaddam, 2006; Lisman et al., 2008). 

Although it remains unclear what changes induce the onset of cognitive dysfunction, 

NMDAR hypofunction appears to be a convergence point for progression and symptoms of 

SZ, especially for cognitive deficits (Cohen et al., 2015; Coyle, 2006; Lisman et al., 2008; 

Marek, 2010; Moghaddam, 2003; Nakazawa et al., 2017; Snyder and Gao, 2013). NMDARs 

are crucial in synaptic plasticity, learning and memory, and proper neuronal functioning. 

Importantly, NMDARs contribute to circuit formation for early postnatal stages of brain 

development, which is otherwise known as the “critical developmental window.” Numerous 

studies have indicated that the maturation of brain circuitry is usually coincident with the 

NMDAR subunit switch (e.g., GluN2B-to-GluN2A and GluN3A-to-GluN3B) that occurs at 

the onset of the critical period of development (Monaco et al., 2015; Monyer et al., 1994; 

Quinlan et al., 1999; Roberts et al., 2009; Sheng et al., 1994; Snyder et al., 2013; Wang and 

Gao, 2009; Wang et al., 2008). The NMDAR subunit shift marks the transition from juvenile 

to “adult” neural processing (Dumas, 2005; Henson et al., 2010) and the switch makes the 

NMDARs extremely vulnerable to genetic and environmental risk factors (Brenhouse et al., 

2008; Spear, 2000). It is likely that convergent mechanisms target NMDAR, which in turn 

contribute to negative symptoms and neurocognitive dysfunction directly (Lau and Zukin, 

2007), as well as to positive symptoms via dysregulation of brain DA systems indirectly.
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Still the question remains, how do early life experiences influence genes to alter the course 

of normal brain development. SZ is most likely due to a complex interaction between 

environmental risk factors and genetic susceptibility (Harrison and Weinberger, 2005). The 

high heritability rate of SZ points to a strong genetic component for the disease (Cardno and 

Gottesman, 2000). Indeed, recent genome-wide association studies (GWAS) have identified 

108 genetic risk loci in post-mortem SZ tissue (Ripke, 2014) that have an important role for 

many patients (Birnbaum and Weinberger, 2017; Coelewij and Curtis, 2018; Weinberger, 

2017). Yet, the genetic mutations discovered are unlikely to account for all SZ cases or for 

the complex symptomology present (Rodriguez-Murillo et al., 2012). Further, GWAS 

studies indicate only a familial liability close to 20%, suggesting that some other 

mechanisms aside from simple genetic mutation contribute to the heritability rate for SZ 

(Agerbo et al., 2015). The answer may be epigenetics, which has been gaining attention for 

its role in mental illness. During the past two decades, understanding of epigenetic processes 

in chromatin stability, gene regulation, response to environmental factors, and disease states 

has grown rapidly (Allis and Jenuwein, 2016). Epigenetic mechanisms tightly control gene 

expression and repression without any alteration to the DNA sequence, and importantly may 

provide a mechanism for the missed heritability in SZ (Akbarian, 2014; Trerotola et al., 

2015).

Epigenetic mechanisms for SZ - epigenetic changes to NMDAR genes 

contribute to NMDAR hypofunction

Epigenetics is a complex biological process that regulates access to DNA and thus the ease 

with which genes can be transcribed. Negatively charged DNA is packaged around an 

octamer of positively charged histones (H), termed H2A, H2B, H3, and H4 to form a 

nucleosome, a unit of chromatin. Nucleosomes are connected by linker DNA which is 

stabilized by H1. In addition to packaging DNA, chromatin provides a scaffold for proteins 

to interact with DNA, including transcriptional machinery as well as repressor proteins. 

While once thought to be static, it is now known that chromatin in and of itself is a dynamic 

structure contributing to the accessibility of DNA (Maeshima et al., 2016). Chromatin is 

further regulated by alterations to DNA through methylation and post-translational 

modification of histones.

DNA methylation is a process involving the addition of a methyl group to cytosines within 

DNA. This occurs most frequently at CpG dinucleotides, regions of DNA where a cytosine 

nucleotide is followed by a guanine nucleotide in the linear sequence of bases (Bayraktar 

and Kreutz, 2018). DNA methylation is catalyzed by related DNA methyl transferases 

(DNMTs) that include DNMT1, DNMT3A, DNMT3B, and DNMT3L (Guidotti et al., 2011; 

Zhubi et al., 2009). These modifications alter gene transcription and can be highly stable and 

heritable. However, evidence also suggests that DNA methylation patterns can be 

dynamically regulated in response to learning and memory or life experience (Day and 

Sweatt, 2011). In contrast, histone modification is a more dynamic and complex process 

with a myriad of post-translational modifications occurring in concert (Peterson and Laniel, 

2004). These include ubiquitylation, acetylation, methylation, and sumoylation of lysines, 

phosphorylation of serines and threonines, and acetylation and methylation of arginines. 
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This multitude of modifications on chromatin either constrict or loosen the physical 

attraction/interaction between DNA and histone amino-acid tails, leading to changes in gene 

transcription. Regulation of histone tails is more readily reversible than DNA methylation 

and likely plays an important role in plasticity processes and diseases (Christopher et al., 

2017). However, a fundamental question raised is when and how epigenetic changes 

contribute to SZ, and more specifically how they result in NMDAR hypofunction during the 

early stages of the disease.

There are many ways in which epigenetics could contribute to the SZ disease process. 

Firstly, there could be global alterations to epigenetic machinery such as histone 

deacetylases (HDACs) or DNMTs. Data suggest alterations in the expression of various 

methyltransferases and demethylases in SZ (Morishita et al., 2015). Further, several studies 

examining DNA methylation in SZ patients found evidence for hypomethylation in specific 

human populations (Melas et al., 2012; Shimabukuro et al., 2007). However, there is also 

evidence for hypermethylation in distinct cellular populations (Veldic et al., 2004; Zhubi et 

al., 2009), supporting the notion that global methylation changes could occur in a brain 

region or neuronal population-specific manner. For example, one report found that DNMT1 

mRNA and protein levels are significantly increased in the telencephalic GABAergic 

interneurons of SZ patients (Veldic et al., 2004), while another showed overexpression of 

DNMT3A in distinct GABAergic interneuron populations, and overexpression of both 

DNMT1 and DNMT3A in peripheral blood lymphocytes (Zhubi et al., 2009). Interestingly, 

levels of DNMT3A are altered in the prefrontal cortex (PFC) following chronic defeat stress 

(Elliot and Chapman, 2016; Hammels et al., 2015a; Hammels et al., 2015b). Moreover, 

prenatal stress, a risk factor in SZ, alters DNMT1 and DNMT3a protein levels, leading to a 

reduced number of GABAergic interneurons and altered circuit function (Matrisciano et al., 

2013). Similarly, early life stress altered plasticity of GABAergic synapses onto ventral 

tegmental area dopamine neurons via epigenetic mechanisms involving HDACs (Authement 

et al., 2015). Bahari-Javan and colleagues demonstrated that early life stress increased 

HDAC1 levels, resulting in altered PFC development and SZ-like phenotypes (Bahari-Javan 

et al., 2017).

Interestingly, a recent neuroimaging study found reduced expression of HDACs in the 

dorsolateral prefrontal cortex of SZ patients and this correlated with cognitive deficits 

(Gilbert et al., 2018). The same group previously showed reduced HDAC2 mRNA levels in 

the dorsal lateral prefrontal cortex (PFC) of SZ patients (Schroeder et al., 2017). These 

findings are especially interesting because in mice, HDAC2 expression has been shown to 

regulate dendritic spines, long-term potentiation, and performance on cognitive tasks (Guan 

et al., 2009), and HDAC2 was enriched in the promoter of NMDAR subunits compared to 

HDAC1. However, in this study, HDAC2 knockout mice had increased long-term 

potentiation (LTP) and improved performance on certain cognitive tasks, which is 

contradictory to the human study. Future studies are needed to better understand changes to 

HDACs in normal development and disease models. Still together, these data demonstrate 

that life experiences can alter epigenetics, impacting the development of brain regions 

important in SZ and targeting epigenetic machinery may hold therapeutic value (Collier et 

al., 2016; Ovenden et al., 2018).
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Another possibility is that specific SZ-related genes may be epigenetically regulated. SZ 

human post-post-mortem studies demonstrate epigenetic modifications on several important 

genes. This includes hypermethylation of the REELIN promoter (Abdolmaleky et al., 2005; 

Grayson et al., 2005) and DNA methylation changes in the HTR2A, encoding the serotonin 

receptor type 2A (Cheah et al., 2017) and catechol-O-methyltransferase (COMT) promoter 

(Gao et al., 2017). Further, SZ patients had a reduction in the activating histone marker 

H3K4me3 on the glutamate decarboxylase (GAD) 1 promoter, which regulates GAD67 γ-

aminobutyric acid (GABA) synthesis enzyme expression and this corresponded to reduced 

GAD1 mRNA levels (Huang et al., 2007). Of note, this change was found only in females 

while the methylation changes for COMT were driven by male patients. Together these data 

point to the possibility of sex differences in SZ epigenetics.

Given the importance of NMDARs both for normal cognitive function and their role in SZ, 

understanding if and how they are epigenetically regulated is of particular interest. Several 

studies have demonstrated that NMDAR epigenetic regulation contributes to normal brain 

development and plasticity processes. Specifically, histone methylation at gene promoters is 

associated with developmental regulation and region-specific expression of ionotropic and 

metabotropic glutamate receptors in human brain (Stadler et al., 2005). As listed in Table 1, 

there is a close association with HDAC2 and the promoter of Grin2a and Grin2b (Graff et 

al., 2012; Guan et al., 2009; Qin et al., 2018). Further, in the prefrontal cortex, distal 

regulatory Grin2b sequences are controlled by H3K4me and H3K9me and this is highly 

associated with the maintenance of working memory (Bharadwaj et al., 2014) and affective 

and motivational behaviors via setbd1, which encodes an H3K9 methyltransferase (Jiang et 

al., 2010).

Epigenetic regulation of NMDAR has been found with environmental insults and in mental 

illness. Prenatal Bisphenol A (a chemical used to make plastic for food container) exposure, 

which is linked to neurodevelopment disorders, alters Grin2b methylation in both mice and 

humans (Alavian-Ghavanini et al., 2018b), suggesting that environmental exposures could 

impact epigenetic regulation of NMDARs. Interestingly, these results are sex-specific and 

suggest that epigenetic regulation may differ in a sex-specific and cellular specific manner. 

Epigenome-wide methylation analysis in major depressive disorder, found Grin2a to be 

hypermethylated in both human PFC and hippocampus (Kaut et al., 2015). Yet, analysis of 

NMDAR mRNA levels in post-mortem brain tissue of patients with SZ has resulted in 

conflicting findings with some studies reporting increases, decreases, or no change in 

transcript levels (Coyle et al., 2012). This inconsistency hinders our ability to identify 

whether the pathophysiological mechanisms underlying SZ are a direct result of diminished 

NMDAR subunit proteins (Weickert et al., 2013). Still, while the use of post-mortem brain 

tissue provides a specific link to SZ, it only allows for analysis of a very specific 

examination of adult tissue and misses any potential changes that occur earlier in brain 

development. Nevertheless, evidence suggests that NMDA receptor subunits, especially 

GRIN2B, are bidirectionally regulated by different epigenetic markers under various 

conditions (Table 1), including DNA methylation and histone methylation and acetylation 

(Table 1, Figure 1).
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In particular, the higher order of chromatin relevant to the GRIN2B gene locus was recently 

reported (Bharadwaj et al., 2014). As shown in Figure 1, it is possible that multiple intronic 

and intergenic DNA sequences, up to 450kb downstream from the GRIN2B/Grin2b 
transcription start site (TSS), for example, could compete for access to the TSS. These 

sequences are loaded with multiple transcription factors and are in physical proximity to the 

GRIN2B/Grin2b transcription start site (Bharadwaj et al., 2014). Interestingly, the sequences 

interacting with the GRIN2B promoter appeared to harbor single nucleotide polymorphisms 

(SNP) and are implicated with liability for working memory and SZ (Bharadwaj et al., 

2014). Therefore, epigenetic markers associated with DNA methylation or histone 

modification may target the GRIN2B promoter and carry disease-associated sequence 

polymorphisms. This consequently may either facilitate or repress expression in a highly 

dynamic and activity-dependent manner for access to the GRIN2B promoter sequences 

(Bharadwaj et al., 2014). Importantly, this GRIN2B higher order chromatin study and others 

(Table 1) have provided a deeper insight into the understanding of the neurobiology of and 

novel treatment avenues for common psychiatric disease (Rajarajan et al., 2018).

Interestingly and importantly, epigenetic regulation of NMDARs is known to be an 

important factor in the critical developmental period of the NMDAR subunit switch through 

repressor element 1-silencing transcription factor (REST). Historically, REST was thought 

to only play a critical role early in neuronal differentiation, brain development, and 

neurodegenerative diseases (Hwang and Zukin, 2018; Tamminga and Zukin, 2015). 

However, REST is now known to be involved in synaptic plasticity, normal aging, and 

disease processes (Lu et al., 2014; Rodenas-Ruano et al., 2012). REST binds within the 

promoter region of target genes and recruits co-repressor CoREST and mSin3 that recruit 

multiple proteins and possess enzymes that catalyze the posttranslational modifications of 

histone tails (Andres et al., 1999). These include, but are not limited to, multiple HDACs, 

histone methyltransferases, and DNMTs (Qureshi and Mehler, 2009). While it has been 

known that REST functions during embryogenesis to epigenetically regulate many genes, 

including Grin2b, Zukin and colleagues discovered an important role for REST in mature 

neurons (Rodenas-Ruano et al., 2012; Schoenherr and Anderson, 1995). They found that 

REST is activated at a critical window of time in hippocampal neurons, possibly through the 

actions of the prion protein, and acts to repress Grin2b expression via epigenetic remodeling 

(Rodenas-Ruano et al., 2012; Song et al., 2018). Thus, under normal physiological 

conditions, epigenetics plays a fundamental role in regulating NMDAR levels leaving open 

the possibility that this process could be dysregulated in SZ.

Studies from SZ animal models indicate that NMDAR subunit levels are reduced in a brain 

region and developmental time window specific manner (Gulchina et al., 2017; Snyder and 

Gao, 2013). Using the prenatal methylazoxymethanol acetate (MAM) prenatal exposure 

model, we found reduced expression of NMDAR subunits in the juvenile hippocampus that 

altered NMDAR function during this critical stage of development. We also recently 

demonstrated that GluN2B expression and function are compromised in PFC of this SZ 

model. Further, this protein loss during the juvenile period is correlated with an aberrant 

increase in the epigenetic transcriptional repressor REST and the repressive histone marker 

H3K27me3 at the Grin2b promoter, as assayed by chromatin immunoprecipitation (ChIP)-

quantitative polymerase chain reaction (Gulchina et al., 2017). These studies provide 
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evidence that epigenetic regulation of NMDARs could contribute to the disease process of 

SZ (Figure 2).

NMDAR hyopfunctionality induces epigenetic changes in other proteins 

and/or genes that lead to synaptic dysfunction and symptoms in SZ

In addition to epigenetic regulation of NMDARs themselves, it is important to consider the 

consequence of NMDAR hypofunction to epigenetic processes. Neuronal activity is 

translated into transcription alterations in a variety of genes, dependent upon the type and 

duration of stimulation (Flavell and Greenberg, 2008). These changes are critical both for 

the normal development of neuronal networks but also for incorporating sensory experiences 

in postnatal life. Kyrke-Smith and Williams recently proposed that neuronal network 

function, particularly for synaptic plasticity, is dependent upon proper expression of a wide 

variety of proteins regulated through epigenetic changes (Kyrke-Smith and Williams, 2018). 

The mechanism(s) by which this occurs is a very active area of research, but data suggest 

that epigenetic changes together with NMDARs play a critical role (Jarome and Lubin, 

2014; Tyssowski et al., 2018). Calcium influx through NMDARs activates a calcium 

calmodulin-dependent kinase II (CaMKII)- cAMP response element-binding protein 

(CREB)-P signalling pathway that alters levels of H3K27ac to control dendritogenesis 

(Bustos et al., 2017). In another example, contextual fear conditioning led to a rapid, time-

dependent increase in histone H3 phosphorylation in hippocampal area CA1. Interestingly, 

this was blocked by MK801, an NMDAR antagonist (Chwang et al., 2006). Similarly, 

NMDAR activation in hippocampal slices increased ERK2 and acetylation of histone 3 

(Levenson et al., 2004). Neuronal stimulation induced long-term potentiation, which 

requires NMDAR activation, increased expression of HDAC1 as well as the HDAC 

interacting protein DnaJ Heat Shock Protein Family (Hsp40) Member B5 (Ryan et al., 

2012).

Based on these data, it is reasonable to hypothesize that alterations to glutamatergic synaptic 

transmission, due to NMDAR hypofunction as in SZ, could contribute to a disruption in 

network functioning and/or improper network formation. For example, ablation of NMDARs 

during postnatal development led to epigenetic repression of Kv1.1-type potassium 

channels, altering neuronal excitability and impairing dendritic maturation (Frangeul et al., 

2017). Further, inhibiting NMDAR activity prevented increases in histone H3 acetylation 

and phosphorylation in striatal tissue extracts (Li et al., 2004). Conversely, NMDAR 

blockade with MK-801 increased phosphorylation of histone 3 (H3) at serine 10 in the 

medial PFC, which is associated with chromatin relaxation and increased probability of gene 

expression (Mackowiak et al., 2013). Together these data suggest that any increase or 

decrease in NMDAR function will impact epigenetic processes, resulting in an alteration in 

normal synapse and circuit function.

One of the most important properties of the NMDA receptor is their calcium permeability. 

Along with changes to cellular excitability, NMDAR hypofunction also leads to drastic 

alterations in calcium influx and cellular signalling. Evidence indicates that the activity of 

epigenetic machinery could be impacted by the changes to calcium influx. Calcium is the 
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critical second messenger that allows synapse to nucleus communication to alter gene 

transcription (Bading, 2013). NMDAR mediated calcium influx, along with calcium from 

voltage-gated calcium channels (VGCC) engages a variety of signalling cascades to transmit 

information about neuronal activity in the dendrites to the nucleus (Bading, 2013). Data 

suggests a high fidelity between synaptic activation and the nuclear calcium signal which 

can be disrupted by NMDAR or VGCC blockade {Bengtson, 2010 #39226}. Once in the 

nucleus, calcium can lead to activation of CREB-CREB binding protein (CBP) dependent 

transcription. Interestingly, CBP partially functions as a histone acetyltransferase (HAT) as 

well as associates with many HATs to regulate chromatin and thus gene transcription (Chan 

and La Thangue, 2001). Additionally, epigenetic machinery itself can be targeted by 

calcium-induced signaling cascades. For example, DNMTs undergo post-translational 

modifications, which likely regulate their functional activity (Denis et al., 2011). DNMTs 

are phosphorylated by protein kinase C and protein kinase B (AKT) among others (Denis et 

al., 2011). Interestingly, calcium entry through NMDARs can trigger activation of CaMKII 

and subsequently AKT (Sutton and Chandler, 2002). Thus, it is possible that reduced 

NMDAR function, as seen in SZ, will affect protein kinase activation that may, in turn, alter 

DNMT functionality or expression. In fact, NMDAR mediated calcium entry is critical for 

both short-term and long-term synaptic plasticity. Therefore, alteration of NMDAR function 

could consequentially regulate other proteins or genes that are critically involved in synaptic 

functions (Figure 3).

Brain-derived neurotrophic factor (BDNF) is a neurotrophic that is involved in 

neurodevelopment, synaptogenesis, and neuroplasticity (Angelucci et al., 2005; Poo, 2001). 

Recent work confirmed that reduced BDNF levels in humans are significantly associated 

with SZ (Rodrigues-Amorim et al., 2018). Interestingly, epigenetic regulation of BDNF 

itself is suggested to play a role in psychiatric disorders, including SZ (Ikegame et al., 2013; 

Mitchelmore and Gede, 2014). In the hippocampus, BDNF secretion in response to activity 

requires activation of calcium-responsive transcription factors and is at least partially 

dependent on calcium influx through NMDARs (Kolarow et al., 2007; Tao et al., 2002). In 

hippocampal cultures, NMDA stimulation and resulting calcium influx, increased 

phosphorylation of MeCp2 leading to increased BDNF mRNA levels (Zhou et al., 2006). 

Work by Lipsky’s group expanded these findings with CHIP to show that NMDA activation 

results in multiple epigenetic changes to the BDNF promoter, including a decrease in histone 

H3 at lysine 9 dimethylation (H3K9me2) and increases in H3K4me2 and H3K9/14 

acetylation (H3AcK9/14) (Tian et al., 2009). Furthermore, Lau et al. show that BDNF-

induced neuroprotection is mediated by synaptic NMDA-receptor-dependent nuclear 

calcium signals activating transcription of inhibin b-A (activin A). Activin A, in turn, 

reduces toxic extrasynaptic NMDAR-mediated calcium influx, shields neurons from 

mitochondrial dysfunction, and protects against stroke-induced brain damage (Lau et al., 

2015). Therefore, NMDAR dysfunction could significantly impact BDNF levels that in turn 

could negatively impact other systems involved in the pathophysiology of SZ. For example, 

an interaction between BDNF and dopamine receptor type 3 is implicated in SZ (Gourion et 

al., 2005). A clearer link exists between BDNF and GABA deficits (Hashimoto et al., 2005; 

Lu et al., 2009), as well as BDNF and DA dysfunction (Krebs et al., 2000), but the 
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correlation between NMDAR hypofunction and BDNF, and whether NMDAR hypofunction 

can affect BDNF secretion in the brain, remain to be explored.

Targeting NMDAR dysfunction during early stage is a promising avenue for 

prevention and therapeutic intervention of cognitive and social deficits

Early NMDAR hypofunction is a promising proposed mechanism for the development of 

SZ. However, it is critical to progress from a better understanding of disease mechanisms to 

promising therapeutic interventions. Unfortunately, less information can be gathered from 

the developing human SZ brain. Diagnosis is often in late adolescence and early adulthood 

and patients have already developed neuropathophysiological deficits that underlie cognitive 

and social impairments before treatment begins. It is unknown if treatment could fully 

reverse alterations to neuronal network development. Intervention during PFC development 

in patients at-risk for SZ presents a therapeutic window that is currently unopened.

As reviewed above, mounting evidence indicates that NMDAR hypofunction occurs during 

the early stages of postnatal development and is proceeded by disruption of the 

dopaminergic systems. The current therapeutic approaches target this later dopaminergic 

dysfunction to minimize the symptoms of SZ (Yang and Tsai, 2017). Further, current 

antipsychotic medications demonstrate minimal therapeutic efficacy in treating cognitive and 

social deficits in SZ (Kim et al., 2017). However, therapeutic agents that have previously 

failed to demonstrate efficacy in clinical trials may be more effective when employed during 

the earlier stages of development, specifically during the initial stages of NMDAR 

hypofunction (Li et al., 2015b). Indeed, treatment during juvenile development (Li et al., 

2017b; Xing et al., 2018) with a metabotropic glutamate receptors (mGluR)2 agonist/

mGluR3 antagonist or mGluR2/3 agonist has demonstrated ameliorative effects on 

NMDAR-mediated neurotransmission, working memory function, and social behaviors, as 

well synaptic morphology in the mPFC in animal models.

The mGluR2/3 subtypes of glutamate receptors have long been linked with SZ, and 

mGluR2/3 agonism has been proposed to target the dysfunctional glutamatergic system, 

particularly NMDAR hypofunction (Li et al., 2015b; Maksymetz et al., 2017; Moghaddam, 

2004; Walker and Conn, 2015). In a series of recent studies using the MAM SZ model, we 

found that targeting NMDAR hypofunction during the early stage of development is 

effective to prevent SZ-like cognitive and social phenotypes in adult. In juvenile MAM 

animals, synaptic GluN2B protein levels are significantly decreased resulting in reduced 

NMDA-excitatory postsynaptic currents. Further, this protein loss was correlated with an 

aberrant increase in the enrichment of the epigenetic transcriptional repressor REST and the 

repressive histone marker H3K27me3 at the Grin2b promoter, as assayed by ChIP-qPCR 

(Gulchina et al., 2017). In adulthood, MAM animals exhibited PFC-dependent learning and 

memory deficits. Excitingly, both prefrontal NMDAR hypofunction and cognitive deficits 

were prevented by treatment with either mGluR2/3 modulators mGluR2 agonist/mGluR3 

antagonist LY395756 (Li et al., 2017a) and mGluR2/3 agonist LY379268 (Xing et al., 2018) 

in the juvenile, but not adult (Li et al., 2015a) rats. Both LY395756 LY379268 prevented 

NMDA dysfunction, learning deficits, and cognitive flexibility. We also found that the 
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preventive effects of LY379268 were mediated by improving GluN2B-NMDAR function via 

inhibiting GSK3β (Xing et al., 2018).

Our work confirmed that NMDAR hypofunction is a feature of early postnatal development, 

with epigenetic hyper-repression of the Grin2b promoter being a contributing factor. The 

selective loss of GluN2B protein and subsequent synaptic dysfunction weakens the PFC 

function during development and may underlie early cognitive impairments in SZ models 

and patients. The latter is supported by the efficacy of glutamatergic modulators to prevent 

both prefrontal NMDAR hypofunction and cognitive deficits, highlighting the importance of 

targeting glutamatergic dysfunction as a potential early intervention for SZ. Altogether, 

these findings emphasize the importance of developmental NMDAR function in the 

maturation of cognitive functions, a process which is disrupted and can be subsequently 

recovered in the MAM model for SZ by a brief pharmacological intervention during juvenile 

development.

Another avenue of therapeutic intervention is targeting HDACs. HDACs compact chromatin 

structure and repress gene transcription. Clinical studies have demonstrated that HDAC 

inhibitors are efficacious when given in combination with atypical antipsychotics in the 

treatment of SZ (Fischer et al., 2010; Kurita et al., 2012). Specifically, chronic atypical 

antipsychotics downregulated the transcription of mGluR2 by decreasing histone acetylation 

at its promoter in mouse and human frontal cortex. Conversely, HDAC inhibitors prevented 

the repressive histone modifications induced at the mGluR2 promoter by atypical 

antipsychotics and augmented their therapeutic-like effects, suggesting that HDAC2 is a 

promising new target to improve SZ treatment (Kurita et al., 2013a). Furthermore, it has 

been reported that HDAC2 regulates atypical antipsychotic responses through the 

modulation of mGluR2 promoter activity in adult mice (Kurita et al., 2012). Kurita et al also 

reported repressive epigenetic changes at the mGluR2 promoter in the frontal cortex of 5-

HT2A knockout mice (Kurita et al., 2013b). Specifically, disruption of 5-HT2A receptor-

dependent signaling in mice was associated with decreased acetylation of histone H3 (H3ac) 

and H4 (H4ac) and increased H3K27me3 enrichment at the mGlu2 promoter, suggesting 

transcriptional repression of mGluR2 expression and possible indirect regulation of 

NMDAR function. However, despite the importance of the therapeutic potential of HDAC 

inhibition, it remains unclear exactly if and how HDAC inhibitors, mGluR, and NMDARs 

are related. More research is needed.

One question raised by these studies is whether positive allosteric modulators of mGluR2 

would work better for SZ treatment and if this is related to NMDAR regulation (Ellaithy et 

al., 2015). Allosteric signaling through a mGluR2 and 5-HT2A heteromeric receptor 

complex has shown its potential contribution to SZ (Moreno et al., 2016). Ibi et al reported 

that antipsychotic-induced HDAC2 transcription via nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) leads to synaptic and cognitive side effects (Ibi et al., 

2017), suggesting a protective effect on cognition from antipsychotics. In addition, Mitchell 

et al found that MEF2C transcription factor is associated with genetic and epigenetic risk 

architectures of SZ and improves cognition in mice (Mitchell et al., 2018). However, 

whether these effects have anything to do with glutamatergic dysfunction is unknown. A 

recent study reported that vorinostat, a histone deacetylase inhibitor, facilitates fear 
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extinction and enhances expression of the hippocampal GluN2B-containing NMDA receptor 

gene (Fujita et al., 2012). In addition, it has been shown that basal, but not evoked, NMDAR 

activity regulates gene expression in part through HDAC4, and, that HDAC4 has 

neuroprotective functions under conditions of low NMDAR activity, at least in hippocampal 

neuronal cultures (Chen et al., 2014). However, whether HDAC inhibitors would have side 

effects in the juvenile brain by regulating NMDAR activity directly is another concern that is 

worth exploring.

Potential questions regarding the epigenetics of SZ and future directions 

for research

SZ is a polygenic condition whose exact etiology remains unknown. Recent research 

highlights NMDAR hypofunctioning as an attractive hypothesis of its molecular basis 

(Snyder and Gao, 2013); however, NMDAR hypofunction itself could not explain the other 

anatomical and clinical abnormalities such as GABAergic deficits (Gonzalez-Burgos and 

Lewis, 2008) and dopaminergic dysfunction (Howes and Kapur, 2009) found in SZ. 

Although SZ is a neurodevelopmental disorder, the visible onset traditionally appears in later 

adolescence and is preceded by a period of apparent abnormality. Understanding exactly 

when and how brain development moves off course is of critical importance. Most likely 

there is more than one molecular mechanism involved and they are all governed by common 

factors. Reelin, Nrg1, and BDNF have been linked to SZ and they have three common 

features: their involvement in the GABAergic interneuron migration, in the proper 

functioning of the NMDA receptors, and they are all subject to similar epigenetic control 

(Moreau and Kullmann, 2013). Considering all of these aspects for treatment and how they 

are intertwined should improve the chances of successful therapeutic intervention. Future 

directions for treatment include mGluR2 positive allosteric modulators (PAM), selective 

mGluR2 agonist and mGluR effects through regulation of epigenetic mechanism, and 

treatment in different animal models, especially genetic models during early stage and 

multiple behavioral evaluations (Ellaithy et al., 2015; Griebel et al., 2016; Maksymetz et al., 

2017; Matrisciano et al., 2016).

Operating under the hypothesis that SZ is a disorder of synaptic dysfunction, one may 

believe a single treatment, or combination of therapeutic agents will be able to completely 

recover cognitive deficits in this disorder. However, we must not forget the overt structural 

damage to the SZ brain. Decreases in grey and white matter, as observed by fractional 

anisotropy, demonstrate reductions in myelination (Green et al., 2004). Therefore, we must 

consider cognitive impairments, and even positive and negative symptoms, can likely only 

recover to a certain degree if treatment begins in the later stages, given our current inability 

to treat these structural alterations (Green et al., 2004). Nonetheless, functional improvement 

for patients will lessen the economic burden of this debilitating illness as well as the 

psychosocial burden on family and caregivers. These steps to independence for SZ patients 

are the ultimate goal of our research endeavors.

There are many outstanding questions for epigenetic changes in the developing brain, 

particularly the effects on behaviors associated with cognitive function and sociability, as 
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recently pointed by Kenerne et al (Keverne et al., 2015) in the Sackler Colloquium. For 

example, what are the roles of DNA methylation, including CpG islands, in NMDAR 

hypofunction? How does DNA methylation affect NMDAR subunits change during 

development? What are the relations among different epigenetic marks with NMDAR 

subunit composition and function during development in both normal brain and animal 

models for SZ? What are the roles of long noncoding RNAs in the modification of neuronal 

nuclear architecture, especially on NMDAR hypofunction occurrence? A large body of 

behavioral epigenetic studies attempts to correlate epigenetic marker changes (e.g., acetyl-

histone H3) at global levels and in mixed populations of cells with phenotypic changes. 

However, specific changes at gene and single cell levels correlating with behavioral changes 

remain largely unknown. This is particularly true for NMDAR function in GABAergic 

interneurons and glial cells. The role of glial in normal and disease conditions is rapidly 

expanding and cannot be ignored for SZ. What are the epigenetic mechanisms for NMDAR 

subunit changes during the early development that would eventually be triggered to initiate 

the onset of SZ symptoms, especially early cognitive and social deficits? Answering these 

questions will provide not only new insights into the understanding of neuropathophysiology 

but also eventual early interventions for SZ.
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Abbreviations

CREB-CBP cAMP response element-binding protein (CREB)-CREB binding 

protein

DA dopamine

DISC1 disrupted-in-schizophrenia 1

DNMT DNA methyltransferase

DTNBP1 dystrobrevin binding protein 1

GABA gamma-aminobutyric acid

GWAS genome-wide association study

HAT acetyltransferase

HDAC histone deactelyases

DNA methyl transferases

NRG1 neuregulin 1

MAM methylazoxymethanol acetate

NMDA N-methyl-D-aspartate
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PFC prefrontal cortex

REST repressor element 1-silencing transcription factor

SZ schizophrenia

VGCC voltage-gated calcium channels
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Figure 1. 
Epigenetic markers and their functions in the regulation of NMDA receptors. Epigenetic 

markers that could potentially regulate the genes associated with NMDA receptor subunits, 

e.g., the GRIN2B gene locus (Bharadwaj et al., 2014). Multiple intronic and intergenic DNA 

sequences, up to 450kb downstream from the GRIN2B/Grin2b transcription start site (TSS), 

compete for access to the TSS. These sequences are loaded with multiple transcription 

factors and are in physical proximity to the GRIN2B/Grin2b transcription start site. It was 

proposed that transcriptional regulation at the GRIN2B/Grin2b locus involves a dynamic and 

competitive interplay of multiple effectors, each of which could engage with the GRIN2B 
promoter [Modified from Bharadwaj et al, 2014, Neuron (Bharadwaj et al., 2014). Copyright 

requested through the Copyright Clearance Center’s RightsLink® service](Rajarajan et al., 

2018).
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Figure 2. 
A schematic representation of epigenetic changes to NMDARs on pyramidal neurons in 

Schizophrenia (SZ). A. Under normal conditions, NMDARs are subjected to both activating 

(green hexagons) and repressive epigenetic markers (red ovals). This balance allows for the 

proper expression of NMDARs. However prenatal insult, early life stress, or inherited 

epigenetic marks, switch the balance creating an over-abundance of repressive epigenetic 

markers. These modifications lead to a repression of NMDAR transcription and the 

NMDAR hypofunction found in SZ. B. Top panel, NR2B-NMDAR levels are persistently 

high in the developing mPFC and play a critical role in synaptic plasticity and PFC-

dependent cognitive functions. However, in the MAM SZ model, animals are vulnerable to 

cognitive dysfunction due to the significant loss of synaptic NR2B-NMDARs in the critical 

juvenile period. Bottom panel, NR2B-NMDAR loss in juvenile MAM rat mPFC is due to 

epigenetic modifications within the promoter of Grin 2b. REST (red ovals) and H3K27me3 
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(black triangles) enrichment levels in saline mPFC are higher at the Grin2b response 

element (RE1) site compared to the Grin1 and Grin2a RE1 sites, demonstrating selective 

REST regulation of Grin2b is an endogenous repressor mechanism. In the MAM mPFC, 

REST and H3K27me3 enrichment levels are greatly elevated compared to the saline group, 

demonstrating the hyper-repression of the proximal promoter region of Grin2b (Modified 

from Gulchina et al, 2017, J. Neurochem. Copyright requested through Copyright Clearance 

Center’s RightsLink® service).
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Figure 3. 
Mechanism of NMDAR hypofunction and its consequences. A. Mechanisms of NMDA 

hypofunction in excitatory pyramidal neurons. Genetic and other risk factors lead to 

epigenetic alterations with the promoter regions of NMDARs. These, in turn, lead to reduced 

mRNA and protein expression with pyramidal neurons culminating in NMDAR 

hypofunction. B. NMDAR hypofunction within excitatory pyramidal neurons induces a 

cascade of downstream effects that alter synaptic development and sub-sequential 

GABAergic and dopaminergic dysfunction. Together these changes to neuronal network 

formation and function induce the learning, cognitive, and social deficit found in 

schizophrenia.
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Table 1.

Epigenetic regulation of NMDA receptor subunits.

Treat
ment

NMDAR subunit expression Epigenetic
effect

Reference

Human brain 
development

H3K4me2 causes GRIN1, 2A and 2C increase in PFC, but no change in 
CB; H3K4me2 causes GRIN2B increase for 27 folds in CB; H3K27me3 
induces no change in GRIN1, 2A-C in CB; GRIN2D not detectable; 
H3K4me2/3 is high at GRIN2B promotor in fetal/infant vs adult in CB.

Open: H3K4me2 and 
3 Closed: H3K27me3 
H4K20me3

(Stadler et al., 
2005)

Treatment Effector NMDAR
subunit
expression

Epigenetic
effect

Effect on gene
expression

Gene
altered

Reference

Chronic stress GRIN1 
increase

H3K27ac decrease Gene 
expression

P300 (Nasca et al., 2015)

MEF2C GRIN1 
increase

H3K4me3 Gene 
expression

(Mitchell et al., 
2018)

REST GRIN1, 
GRIN2A

H3K9/14me, 
H3K9/14ac

Gene silencing  mSin3A,CoREST, 
HDACs-1/2, G9a, 
MeCP2

(Noh et al., 2012)

HDAC2 GRIN2A 
decrease

H4K12ac Gene silencing (Graff et al., 2012); 
(Guan et al., 2009)

HDAC2 GRIN2A 
decrease

Gene silencing (Qin et al., 2018)

Glutamate in 
cultured 
hippocampal 
neurons

GRIN2A 
increase

H4ac, H3K4me3, 
H3K9me3, 
H3K27me3

Gene 
expression

(Kiese et al., 2017)

GRIN2A 
increase

DNA 
hypermethylation

Gene 
expression

OTX2, LYNX1, 
GPR

(Kaut et al., 2015)

GRIN2A 
increase

H3K27ac Gene 
expression

(Sun et al., 2016)

SETDB1 GRIN2B 
decrease

H3K9me2/3 Gene silencing HP-1a (Jiang et al., 2010)

REST GRIN2B 
decrease

H3K27me3 increase, 
H3K4me3 decrease

Gene silencing G9a (Rodenas-Ruano et 
al., 2012) (Tamminga 
and Zukin, 2015)

REST GRIN2B 
decrease

H3K27me3 Gene silencing RE-1 (Gulchina et al., 
2017)

Kmt2a/
Mll1

GRIN2B 
decrease

H3K4me1/2/3 Gene silencing (Bharadwaj et al., 
2014)

Kmt1e/
SETDB1

GRIN2B 
decrease

H3K9me3 Gene silencing HP-1 (Bharadwaj et al., 
2014)

GRIN2B 
increase

H3K27ac Gene 
expression

AP-1, NRF-1 (Bharadwaj et al., 
2014)

Imipramine GRIN2B 
increase

H3K9ac increase, 
H3K27ac increase, 
HDAC3 & 4 decrease

Gene 
expression

(Nghia et al., 2015)

Chronic 
ethanol (CIE) 
and TCA

GRIN2B 
increase

DNA methylation, 
H3K9ac

Gene 
expression

AP1, CRE (Qiang et al., 2010), 
(Qiang et al., 2014)

ERK GRIN2B 
increase

H3K9me2 increase Gene 
expression

H/Kmts-G9a, KDM-
LSD1

(Gupta-Agarwal et 
al., 2014)

Prenatal 
Bisphenol A 
exposure

GRIN2B 
increase

DNA methylation Gene 
expression

(Alavian-Ghavanini 
et al., 2018)
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Treatment Effector NMDAR
subunit
expression

Epigenetic
effect

Effect on gene
expression

Gene
altered

Reference

Vorinostat HDAC GRIN2B 
increase

HDAC inhibition Gene 
expression

p-CREB (Fujita et al., 2012)
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