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Abstract

We perform a statistical analysis for understanding the effect of the environmental tempera-

ture on the exponential growth rate of the cases infected by COVID-19 for US and Italian

regions. In particular, we analyze the datasets of regional infected cases, derive the growth

rates for regions characterized by a readable exponential growth phase in their evolution

spread curve and plot them against the environmental temperatures averaged within the

same regions, derive the relationship between temperature and growth rate, and evaluate

its statistical confidence. The results clearly support the first reported statistically significant

relationship of negative correlation between the average environmental temperature and

exponential growth rates of the infected cases. The critical temperature, which eliminates

the exponential growth, and thus the COVID-19 spread in US regions, is estimated to be TC

= 86.1 ± 4.3 F0.

1. Introduction

The daily number of new cases infected by COVID-19 is currently exponentially growing for

most countries affected by the virus. However, this exponential growth rate varies significantly

for different regions over the globe. It is urgent and timely to understand the reasons behind

this regional variation of the exponential growth rates. Little information is known about this

matter, while there are indications that the environmental temperature may be a factor; for

instance, northern and colder US and Italian regions experienced much more incidents than

others.

Typically, the evolution curve of the spread of the coronavirus initiates with a pre-exponen-

tial phase, which is characterized by a mild logarithmic growth, followed by the outbreak, that

is, the phase of the exponential growth. Social-distancing measures against the spread may

affect the evolution curve in a way that the exponential growth slows down (decelerated phase)

and starts to decline (decline or decay phase [1]), depending though on the effectiveness and

applicability of these measures. However, after the decline of the spread at some place, new

infected cases may outbreak in other places, marked with insignificant number of cases until
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that moment. Then, a newly growth phase may appear. For example, Fig 1 (left) shows the evo-

lution curve of the spread for the infected cases in mainland China; clearly, we observe the

whole growth−decay cycle, as well as, a new re-growth phase.

Super-strict measures, such as complete shut down and quarantines, can successfully lead

to the deceleration of the exponential growth of infected cases [2]. Unfortunately, they cannot

be successfully applied and followed within vast regions, and especially, for a long and indefi-

nite period of time. Inevitably, measures may be loosened during the decay phase − if not ear-

lier, leading to the birth of an equally disastrous re-growth phase.

The exponential growth is the most effective phase for the evolution curve of infected cases;

and the most important question regarding this evolution is still open [3]: What can influence
the exponential growth rate, and thus, “flatten the curve”? Measures, strict or not, may affect the

evolution of new infected cases, by shifting the spread curve from the exponential to the decel-

erated growth. It should be noted though that measures do not affect the exponential growth

rate itself, but only the period of time that this exponential phase applies. Then, what factors

do affect the exponential growth rate?

The age distribution in the place where the outbreak occurs is unlikely to be a factor;

indeed, the number of new cases is known to be positively correlated with age, however, the

exponential growth rate (China: 0.169; US: 0.121; Italy: 0.090 –decreasing rate) appears to be

negatively correlated to the age median of these countries (China: 37.4; US: 38.1; Italy: 45.5 –

increasing age); hence, the age is likely irrelevant to the rate variations.

In addition, culture in social activities may be a factor; for example, this might be contribut-

ing in the observed differences among the exponential rates in the cases of China, Italy, and

US (Fig 1). However, what is causing the major variation of exponential rates among different

regions of the same culture? It is apparent that culture does not constitute the main factor

influencing the exponential rate.

Fig 2 shows the regional variation of infected cases (left) during the exponential growth

phase and the average winter temperature (right) in Italy. The possible negative correlation,

observed between regional number of infected cases and winter temperature in Italy, is an

indication of the influence of temperature on the exponential growth, but it certainly does not

constitute a necessary condition. The reason is that the map plots the total number of the

infected cases Nt, which is not dependent only on the exponential growth rate λ, but also on

the initial number of cases N0.

It is generally accepted that the initial infected cases in Italy were travelled directly from

China; since some destinations are more favorable than others, then, the initial number of

cases N0, as well as the current number of cases Nt (which is proportional to N0), should be

subject of regional variation. Therefore, there is a non-negligible possibility, the observed

regional variation of the number of infected cases Nt to be caused by the regional distribution

of the initial cases N0. In such a case, main airport cities would have incredibly high number of

infected cases outplaying a possible negative correlation of daily infected cases with regional

average temperature T; the latter may be one of the reasons of the high numbers of cases

observed in New York City and Rome.

On the other hand, in their letter to the White House, members of a National Academy of

Sciences committee said that "There is some evidence to suggest that [coronavirus] may transmit
less efficiently in environments with higher ambient temperature and humidity; however, given
the lack of host immunity globally, this reduction in transmission efficiency may not lead to a sig-
nificant reduction in disease spread without the concomitant adoption of major public health
interventions" [4].

Nevertheless, it has to be stressed out that there were no statistical analyses focused on the

exponential growth rates of the infected cases in regions with different temperatures. For
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instance, several authors (e.g., [5, 6]) found insignificant correlations between temperatures

and confirmed cases. However, their analysis was performed on the number of the infected

cases Nt, which is subject to the randomness of the initial cases N0 as explained above, and not

Fig 1. Evolution of new cases infected by COVID-19 (on linear-log scale) for mainland China (left) and US & Italy (right); phases (color-coded): Pre-exponential

(pre-exp), exponential (exp) growth, decelerated growth, decay (or decline), and possibly, a re-growth. Day t = 1 corresponds to 1/15/2020 for China, 2/20/2020 for

Italy, 2/27/2020 for US. Evolution in China cases follows the whole growth-decay cycle, and a new re-growth phase. Italian cases are characterized by a milder exponential

rate, entered the phase of decelerated growth on March 12. US suffers with a larger exponential rate, and it is not clear whether has entered the decelerated growth phase.

The exponential growth rate for China rose as high as λ = 0.169±0.017, while for Italy and US the rates were λ = 0.090±0.004 and 0.121±0.003, respectively (with

correlation coefficient> 0.99).

https://doi.org/10.1371/journal.pone.0233875.g001

Fig 2. Regional distribution of infected cases Nt by 3/25/2020 (left), and average winter temperature T in mainland Italy (right).

https://doi.org/10.1371/journal.pone.0233875.g002
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on the exponential growth rate λ, which is clearly dependent on physical characteristics of the

coronavirus, binding protein, and environment.

Analysis of regional cases can show whether the speculated negative correlation between tem-

perature and number of infected cases is true, meaning a negative correlation between tempera-

ture and exponential growth rate. If the environmental temperature plays indeed a substantial

role on the virus spread, then, this can provide promising results, such as, the estimation of the

critical temperature that may eliminate the number of daily new cases in heavily infected regions.

The purpose of this paper is to improve our understanding of the effect of environmental

temperature on the spread of COVID-19 and its exponential growth rate. In particular, we cal-

culate the exponential growth rates of infected cases for US and Italian regions, derive the rela-

tionship of these rates with the environmental temperature, evaluate its statistical confidence,

and determine the critical temperature that eliminates this rate.

2. Theory

2.1 Modeling behind “flattening the curve”

A standard model for describing the evolution of the infected cases by viruses can be con-

structed as follows

dx
dt
¼ EðxÞ � IðxÞ; with EðxÞ ¼ l � x; IðxÞ ¼ 1 � xb; ð1Þ

where x(t)�N(t)/Nmax, x0�N0/Nmax; N(t) is the number of total infected cases evolved from

the initial N0�N(0) cases, Nmax is the maximum possible number of infected cass; λ is the

exponential growth rate, and becomes clear for x(t)<<1 where I is negligible, leading to:

xðtÞ ¼ x0 � expðltÞ or NðtÞ ¼ N0 � expðltÞ; for x< < 1 where IðxÞ ffi 1: ð2AÞ

Typically, data of infected cases are daily provided and updated. Thus we set the readout of

N(t) on a daily basis, such as: Nt�N(t/[d]). Hence, we may write

xt ¼ x0 � expðltÞ or Nt ¼ N0 � expðltÞ; ð2BÞ

with where xt�Nt/Nmax with t indicating the time on a daily basis, (t = 1d, 2d, . . .).

The function of negative feedback I models the factors that flattens the curve, such as, the

measures taken against spreading. While these factors are not affecting the exponential growth

rate λ, they become more effective as the number of cases increases, getting closer to Nmax;

exponent b controls the effectiveness of these factors; strict {loose} measures correspond to

smaller {larger} values of b.

Fig 3 shows the evolution curve of the number of new (ΔNt = Nt+1−Nt) and total infected

cases (Nt), as well as, how this curve flattens for stricter measures (i.e., smaller values of b).

As observed in Fig 3(A), stricter measures, nicely modeled by decreasing b, do not affect the

exponential rate λ but they successfully flatten the curve. However, the same can be achieved

by downgrading the exponential growth rate, as shown in Fig 3(B).

It is apparent, then, how much useful would it be to know the factors that can flatten the

curve by decreasing directly the exponential growth rate, instead of applying stricter measures.

Applied measures could be loosen and shorter!

Model (1) originates from the logistic map family (e.g., [7], and references therein; [8]);

other complicate versions, such as, the Susceptible–Infectious–Recovered models (e.g., [9])

may be expressed by multi-dimensional differential or difference equations (e.g., [10], and ref-

erences therein; [11]), but still, the curve flattening is governed by the same features. The two

composites, the exponential growth E and the negative feedback I, are just the main and
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necessary conditions for reproducing the growth-decay phases of the spread curve. Their

interplay shows how the spread curve can be flattened as a result of stricter measures, indepen-

dently of the existent exponential rate.

2.2 Main factors influencing the exponential growth rate

What are the main factors that can affect the exponential growth rate λ of COVID-19 spread?

The rate λ is expected to have positive correlation with the reproduction number R0 (e.g.,

proportional to its logarithm), and negative correlation with the incubation period τ (e.g.,

inverse proportional) [12]. The number R0 is a measure of how contagious a disease is; it pro-

vides the average number of people in a susceptible population that a single infected person

will spread the disease over the course of their infection [9], and depends on the physical char-

acteristics of coronavirus [13]. The incubation period τ is the time elapsed between exposure

to coronavirus and first symptoms; during this period, an infected individual cannot infect

others; other characteristic periods and time intervals are the latent period between exposure

and infection, and the generation time, mostly concerned with transmission process [14].

Characteristic values for COVID-19 are τ~5–6 days and R0~2–4 [15]. The rate expression can

be written as λ/lnR0/τ, and involves all the physical characteristics of the mechanisms of infec-

tion and the environmental interactions; this can be easily derived, considering difference

equations (that is, iterated discrete maps) (e.g., see: [16–18]). Setting the time to be given in

discrete τ-steps (t = 1τ, 2τ,. . .), then, by definition of R0 (average number of people that a single

infected person will spread the disease), we have Nt = R0Nt−τ, that is,

Nt ¼ R0Nt� t ¼ � � � ¼ R0

t
tN0; thus; ð3AÞ

Nt ¼ N0 � exp
1

t
lnR0 � t

� �

: ð3BÞ

Fig 3. Plots of total Nt and new ΔNt infected cases according to model (1), showing the flattening of the spread curve

with the interplay of (a) stricter measures (decreasing b), or (b) weaker rates (decreasing λ). (Input panels show graphs

on semi-log scale.).

https://doi.org/10.1371/journal.pone.0233875.g003
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We note that the number of the infected cases does not vary for times t taken in-between

the integer multiples of τ, but this is not expected in mixtures of populations with random

characteristics. Indeed, in a mixture of M evolving infected populations with different initial

number of cases N0
(m) and starting times t0

(m), m = 1, 2, . . ., M, the total number of infected

cases N at a continuous time t is given by

NðtÞ ¼
XM

m¼1

N0
ðmÞ � exp

1

t
lnR0 � ðt � t0

ðmÞÞ

� �

¼ N0 � exp
1

t
lnR0 � t

� �

; ð3CÞ

with N0 �
XM

m¼1

N0
ðmÞ � expð�

1

t
lnR0 � t0

ðiÞÞ; ð3DÞ

which coincides with (3b), but with time t varying on a daily basis, independently of the larger

value of τ ~ 5 days [15]. Therefore, we set the readout of the total number of infected cases N
on a daily basis, such as: Nt�N(t/[d]); then, Eq (3D) matches Eq (2B),

Nt ¼ N0exp
1

t
lnR0 � t

� �

� N0expðl � tÞ; ð4Þ

where the exponential rate is given by:

l ¼ ðlnR0Þ=t: ð5Þ

The main factors that can affect the exponential rate λ are: (a) culture in social activities,

and (b) environmental temperature and/or other thermodynamic parameters. Intense cultural

and social activities have reasonably a positive correlation with R0. As previously mentioned,

measures against the virus spread do not effectively influence the exponential growth rate; e.g.,

they do not change the culture in social activities, which are characteristics of the particular

population, but they just cease these social activities for some period of time. In terms of

modeling, measures appear only in the negative feedback factor I and not in the E factor of

model in Eq (1), while the culture, together with the environmental temperature, are the two

main parameters affecting R0 directly. Potentially, the environmental temperature T can affect

all the parameters influencing exponential rate. We approach this dependence by (i) a linear

approximation of the phenomenological relationship between exponential rate and tempera-

ture, and (ii) the connection of reproduction number with Arrhenius behavior (with negative

activation energy):

(i) The temperature can affect the physical properties of coronavirus, such as, the incuba-

tion time τ, as well as, the reproduction number R0 that depends on these physical properties

[13]. A linear approximation absorbs the (weak) temperature dependence of any parameters

involved in the exponential rate; then, Eq (5) is linearly expanded as:

lðTÞ ffi
1

t
lnðRNTP

0
Þ þ j@l=@TjNTP � ðTNTP � TÞ þ OðT2Þ; ð6Þ

where we set the intercept to be given in normal conditions of atmospheric temperature and
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pressure (NTP) (that is, T = 20 C0, P = 1atm). Then, we rewrite the exponential rate as:

lðTÞ ¼ l0 � ð1 � TC
� 1 � TÞ; with ð7AÞ

l0 �
1

t
lnðRNTP

0
Þ þ j@l=@TjNTP � TNTP; p2 ¼ � l0TC

� 1 � � j@l=@TjNTP; ð7BÞ

where λ0 and p2 are the intercept and slope of the linear relation (7a).

(ii) Coronavirus uses their major surface spike protein to bind on a receptor—another pro-

tein that acts like a doorway into a human cell [19]. The whole process is a slow chemical reac-

tion, where the mechanism behind can lead to rates negatively correlated with temperature,

i.e., increasing rate with decreasing temperature. This is consistent to reaction rate expressed

by the Arrhenius exponential with negative activation energy exp[|Ea|/(kBT)] [20]. Then, the

effective reproduction number R0(T) is expressed as a product combining the reproduction

number in the absence of temperature effect, R0
1, and the Arrhenius exponential rate,

namely,

R0ðTÞ ¼ R0
1 � exp½jEaj=ðkBTÞ�; with R1

0
¼ RNTP

0
� exp½� jEaj=ðkBT

NTPÞ�: ð8Þ

Then, Eq (5) gives

lðTÞ ¼ �
1

t
½jEaj=ðkBT

NTPÞ � lnðRNTP
0
Þ� þ

1

t
ðjEaj=kBÞ � T

� 1: ð9Þ

We rewrite this expression as:

lðTÞ ¼ l0 � ð� 1þ TC � T
� 1Þ; with ð10AÞ

l0 �
1

t
½jEaj=ðkBT

NTPÞ � lnðRNTP
0
Þ�; p2 ¼ l0TC � jEaj=ðtkBÞ; ð10BÞ

where −λ0 and p2 are the intercept and slope of the linear relation (10a), respectively.

Reactions of negative activation energy are barrier-less, relying on the capture of the mole-

cules in a potential well. Increasing {decreasing} the temperature leads to a reduced {gained}

probability of the colliding molecules capturing one another. Due to the negative activation

energy, decreasing the environmental temperature reduces the probability of virus-protein

reaction, thus the virus may stay inactive on air or surfaces and eventually die.

Exponential growth is related to community spread through outdoors activities, while the

decelerated growth caused by effective measures is related to indoors activities: Exponential

growth exists once the disease is still effective and the measures are loosened, allowing people

to outdoor social activities; however, exponential growth decelerates followed by the decay

phase, once effective measures hold people in small groups indoors. Therefore, exponential

growth rate must be related to outdoors (rather than indoors) activities, and thus to the envi-

ronmental temperature. As long as the exponential growth takes place, the environmental tem-

perature has an effective role on the chemical reaction between virus and spike protein.

It should be noted that both the models (7b) and (10b) consider that the exponential rate λ,

or the reproduction number R0, are subject to a component influenced by the culture in social

activities (intercept λ0) and a component mostly influenced by the temperature (linear term

with slope p2). In this way, the slope may indicate some universal quantity involved, such as,

the (negative) activation energy.
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Next, we employ the above two expressions of exponential rate λ and temperature T, Eqs

(7A and 10A), in order to set the two types of statistical models for fitting (Τ, λ) measurements

for US and Italian regions.

3. Methods

3.1 Data

We use publicly available datasets of: (1) average environmental temperature of US and Italian

regions (e.g., see: www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-

datasets/climate-normals; it.climate-data.org; www.weather-atlas.com); (2) time series of the

number of daily infected cases of US and Italian regions (e.g., see: www.thelancet.com; www.

protezionecivile.gov.it).

3.2 Data analysis

We analyze the datasets of regional infected cases in US and Italy, derive the relationship of the

exponential growth rate of the number of cases with temperature, and evaluate its statistical

confidence. First, we derive the exponential growth rates of the infected cases characterizing

each examined region of US and Italy; then, we plot these values against the environmental

temperatures of each region, and perform the corresponding statistical analysis. We proceed

according to the following steps:

i. Collect the time series of the current infected cases Nt for all US and Italian regions.

ii. For each of the US and Italian regions, we plot log (Nt) and log (ΔNt) with time t, detect the

time intervals of linear relationship corresponding to the phase of exponential growth, fit

the data-points within this region, and derive the slope (on linear-log scale), that is, the

exponential growth rate λ. The total Nt and new cases ΔNt should be characterized by the

same exponential rate, λ, thus the slopes resulted from the linear fits of log (Nt) and log

(ΔNt) with time are (weighted) averaged (Fig 4).

iii. Collect environmental temperature data, and calculate the temperature averaged over the

whole examined region. The incubation period τ is longer than the time scale of a single

day or night, thus the temperature is averaged over the daily and nightly measurements.

iv. Co-plot all the derived sample values (Τ±δΤ, λ±δλ), where each pair corresponds to each

examined region; then, apply a linear fitting in order to derive the linear relationship

between T and λ, as well as, evaluate the statistical confidence of this relationship; repeat

the same for all US and Italian regions.

v. Determine the critical temperature TC for which the rate becomes negligible; to eliminate

the uncertainties of TC as a fitting parameter, we perform the linear fitting with the statisti-

cal model λ = λ0 (1−Τ/TC) instead of λ = p1+p2�T.

vi. Repeat (iv) and (v) with pairs of (T-1±δT-1, λ±δλ); we estimate again TC by performing the

linear fitting with the statistical model λ = λ0 (-1+ΤC/T) instead of λ = p1+p2�T-1.

3.3 Statistical analysis

The hypothesis to be tested is that the exponential growth rate λ varies linearly with tempera-

ture; (x is set to be the temperature or its inverse). This is tested by examining the chi-square

corresponding to the fitting of the two-parameter linear statistical model λ(x;p1,p2) = p1+p2x to
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the given N data points, (The number of data point, N, should not to be confused with the

number of cases, Nt). Therefore, we minimize the chi-square w2ðp1; p2Þ ¼
PN

i¼1
siðp2Þ

� 2

ðli � p1 � p2xiÞ
2
, where the total variance that characterize each data point is now given by

σi(p2)2 = σλi2+p2
2σxi

2 [21]. The global minimum of the chi-square function χ2(p1,p2) gives the

optimal parameter values, ðp�
1
; p�

2
Þ, by solving the normal equations @χ2(p1,p2)/@p1 = 0 and

@χ2(p1,p2)/@p2 = 0; the minimum chi-square value is w2
min ¼ w

2ðp�
1
; p�

2
Þ. The statistical errors of

these values are given by dpa;�st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
red � H� 1

aa

p
, α = 1,2, where H is the Hessian matrix of the

chi-square at the global minimum, and H� 1
aa

is the α-th diagonal element of its inverse matrix

[22,23]; w2
red ¼

1

N� 2
w2
min is the reduced chi-square value for degrees of freedom (dof) equal to M

= N-2. The propagation errors of the measurements fðxi � sxi; li � sl iÞg
N
i¼1

are given by

dpa;�pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð@p�
a
=@xiÞ

2
s2

xi þ ð@p�a=@liÞ
2
s2
l i

q

, α = 1,2, where the derivatives are numerically

derived.

We will use two linear statistical models, (a) λ(T) = λ0�(1−TC
−1�T), and (b) λ(T−1) = λ0�(−1

+TC�T−1), as given by (Eqs 7A and 10A); both can be written with the linear expression:

lðx; p1; p2Þ ¼ p1 þ p2 � x; where ð11AÞ

ðiÞ x ¼ T; p1 ¼ l0; p2 ¼ � l0TC
� 1; and ðiiÞ x ¼ T � 1; p1 ¼ � l0; p2 ¼ l0TC: ð11BÞ

The statistical confidence of the dependence of the exponential growth rate on the environ-

mental average temperature may be sufficiently high, leading to the acceptance of any of the

two statistical models. The goodness of the fitting of each model is evaluated using two types of

statistical tests, the "reduced chi-square", the "p-value of the extremes", and their combination

(e.g., [24–26]), while Student’s t-test is also used for evaluating the statistical confidence of the

derived slopes:

Fig 4. Linear fitting of the number of the total Nt and new ΔNt infected cases with time (on linear-log scale) for the states of California and Illinois, where the slope

reads the exponential rate λ. The resulted rates from the linear fitting of log (Nt) (black) and log (ΔNt) (red) are (weighted) averaged (blue). The phases are color-coded as

in Fig 1.

https://doi.org/10.1371/journal.pone.0233875.g004
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• Reduced Chi-Square: The goodness of fitting is estimated by the reduced chi-square value,

w2
red ¼

1

Mw
2
min. The meaning of w2

red is the portion of w2
min that corresponds to each of the dof, and

w2
red has to be ~1 for a good fit. Therefore, fitting is characterized as "good" when w2

red~1, other-

wise there is an overestimation, w2
red<1, or underestimation, w2

red>1, of the errors. One order of

magnitude less, w2
red = 0.1, or more, w2

red = 10, can be set as the accepted limits, i.e., 0.1� w2
red�10.

• P-value of the extremes: The goodness of fitting is evaluated by comparing the estimated

minimized chi-square value, w2
min, and the chi-square distribution,

Pðw2; MÞ ¼ 2
� M

2

GðM
2
Þ
e� 1

2
w2

ðw2Þ
M
2
� 1

, that is, the distribution of all the possible χ2 values (parameter-

ized by the dof = M). The likelihood of having a χ2 value, equal to or larger than the esti-

mated value w2
min, is given by the complementary cumulative distribution. The probability of

taking a result χ2, larger than the estimated value w2
min, defines the p-value that equals

Pðw2
min � w

2 <1Þ ¼
R1
w2
min

Pðw2; MÞdw2. The larger the p-value, the better the fitting. Accord-

ing to this method, the probability of taking a result with χ2 being extremer than the

observed value w2
min, defines the p-value of the extremes; this equals the minimum between

the two probabilities, Pð0 � w2 � w2
minÞ and its complementary, Pðw2

min � w
2 <1Þ. Fits asso-

ciated with p-values smaller than the significance level of 0.05 are typically rejected.

• Combined P-value and Chi-Square: The p-value of the extremes has very similar behavior

with the reduced chi-square [27, 28], because, (i) the p-value attains the optimal value

(p = 0.5) when chi-square does (w2
red = 1), (ii) larger values of 1-2p corresponds to larger val-

ues of jw2
red � 1j, (iii) both fractions (1−2p)/(1+2p) and j1 � w2

redj=ð1þ w
2
redÞ range from 0 to

1, reduced to 9/11 when the accepted limits, p = 0.05 or 0.1�w2
red�10, are reached. Then, a

combined measure can be defined by the sum of the squares of these fractions, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð1 � 2pÞ=ð1þ 2pÞ�2 þ ½ð1 � w2
redÞ=ð1þ w

2
redÞ�

2

q

.

• Student’s t-test: This is another test for evaluating the statistical confidence of the slope

derived from the linear fitting of the temperature-rate sample points (Ti±δTi, λi±δλi) and

(Ti
-1±δTi

-1, λi±δλi). We examine, whether the slope p2±δp2 has significant difference from

the zero slope (null hypothesis: slope is zero), by performing the Student’s t-test with tm =

p2/δp2, where the corresponding p-value is derived from the integration of t-distribution

Ptðt; MÞ ¼
G½1

2
ðMþ1Þ�ffiffiffiffiffi
pM
p

GðM
2
Þ
ð1þ t2=MÞ�

1
2
ðMþ1Þ

for t�tm<1, i.e., ptðtm; MÞ ¼
R1

tm
Ptðt; MÞdt. The Stu-

dent’s t-test is not passed for the null hypothesis that the examined slope equals zero, when

the corresponding pt-value is smaller than the acceptable confidence limit of 0.05; then, the

null hypothesis is rejected, imposing that the slope has statistically significant difference for

zero. In addition, we compare the slopes estimated for US with those estimated for Italian

regions, by deriving tm ¼ jbUS � bITj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
US þ s

2
Τ

p
and

Mm ¼ ðs
2
US þ s

2
ΤÞ

2
=ðs2

US=MUS þ s
2

Τ=MITÞ, and then, finding again pt(tm;Mm); the t-test

is passed for the null hypothesis that the examined slopes are equal, when the corresponding

pt-value is larger than 0.05; in this case, the null hypothesis is accepted, thus there is no statis-

tically significant difference between the two slopes.

4. Results

The linear fitting of log (Nt) or log (ΔNt) with respect to time t within the region of exponential

growth phase, resulted to the respective rates (which are given by the fitted slopes); their

weighted averages are shown in Table 1 for US and in Table 2 for Italian regions, while plotted
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against the average regional temperature in Figs 5 and 6, respectively. The method of weighted

fitting for double uncertainties (xi±δxi, λi±δλi), as described by [21], is used for estimating the

fitting parameters λ0, TC, together with their statistical, propagation, and total errors. The fits

of the linear statistical model with temperature, xi = Ti, (left panels in Figs 5 and 6), as well as

of the alternative statistical model with inverse temperature, xi = Ti
-1, δxi = δTi�Ti

-2, (right pan-

els in Figs 5 and 6), are both characterized with high statistical confidence, attaining high p-val-

ues (>0.05) and reduced chi-squares w2
red values (close to 1); also, both fits provide similar

estimations of TC. The fitting results are shown in Table 3.

We also examine whether the sample points (Ti±δTi, λi±δλi) are subject to statistically sig-

nificant concentrations or rarefactions, namely, whether possible heterogeneities within the

distribution of sample points plays significant role in the fitted relationship. For this, we derive

the temperature-rate relationship and its statistical confidence by fitting the homogenized set

of sample points, instead of the raw sample points; then, we examine whether the fitting

parameters differ from those derived from fitting the raw sample points. We homogenize the

sample points by grouping them in temperature bins of ΔT ~ 1 C0 (e.g., see: [29]). We estimate

the weighted mean and error of the rates included in each bin. In the case of US regions we

Table 1. Averaged temperatures and estimated exponential rates of US regions.

Region T [C0] δT [C0] λ [d-1] δλ [d-1]

MI -1.23 4.2 0.1709 0.0096

WI -0.7 2.6 0.1704 0.0099

MA 1.7 3.5 0.1495 0.0183

CT 2.9 4.0 0.1463 0.0062

PA 3.1 2.9 0.1349 0.0019

WA 3.7 3.5 0.1432 0.0162

NJ 4.5 3.9 0.1523 0.0114

IN 5.1 5.2 0.1237 0.0064

OH 5.1 4.2 0.1256 0.0092

IL 5.2 4.0 0.1482 0.0050

CO 5.6 4.6 0.1108 0.0200

NY 5.8 2.8 0.1203 0.0096

MO 6.5 2.8 0.1322 0.0079

VA 7.4 2.8 0.0946 0.0015

TN 8.8 5.2 0.1266 0.0098

NC 9.7 1.9 0.1398 0.0073

SC 11.3 2.8 0.1027 0.0044

GA 13.3 2.8 0.1169 0.0096

CA 14.2 3.9 0.0908 0.0017

LA 15.2 4.2 0.1081 0.0122

TX 15.3 5.7 0.1083 0.0070

AZ 17.0 2.7 0.0786 0.0087

FL 19.5 4.6 0.1033 0.0072

(1) The given values of exponential growth rate and its uncertainty is the result of the weighted averaging of the rates

derived from total and new infected cases; (2) the environmental temperature is averaged over the time period, from

τ~5 days before the appearance of the 1st case, to 1st April; (3) the standard deviation of temperature is given by the

half difference between highest and lowest values within the examined time period, divided by
p

2 (similar to the

standard deviation for a sinusoidal function); (4) NY: The temperature refers to the New York City, instead of the

whole state, which suffers from the vast majority of the state infected cases.

https://doi.org/10.1371/journal.pone.0233875.t001
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also performed a homogenization of rates, by grouping the temperature-binned means in rate

bins of Δλ ~ 0.01 d-1. In the case of sample points with inverse temperatures, (Ti
-1±δTi

-1,

λi±δλi), the procedure is exactly the same. Homogenized datasets result in a smooth relation-

ship between the values of binned temperature and rate, as it can be observed in the plots of

rate against temperature or inverse temperature (left or right lower panels, respectively), and

for both US and Italy regions (Figs 5 and 6, respectively). The results are highly supportive of

the negative correlation between rate and temperature. The results are shown in Table 4. We

observe that the linear relationships of the growth rate with temperature or inverse tempera-

ture are characterized by high statistical confidence for the homogenized datasets (p-values

much higher than the significant limit of 0.05; w2
red far from the significant limits of 0.1 and 10).

Therefore, the arrangement of sample points do not affect significantly the fitting results.

In addition, as shown in Tables 3 and 4, the linear fits of sample points (Ti±δTi, λi±δλi) and

(Ti
-1±δTi

-1, λi±δλi) do not pass the Student’s t-test for the null hypothesis that their slopes

equals zero, i.e., the corresponding pt-values are smaller than the acceptable confidence limit

of 0.05; therefore, the negative correlation of environmental temperature with the exponential

rate is statistically significant (accepted with confidence 95%).

In order to improve the statistics of the estimated critical temperature, we combine the sam-

ple points (Ti±δTi, λi±δλi) of US and Italian regions. First, we perform the Student’s t-test to

compare the slopes from these regions; we find high pt-values (>0.05) for both fits of x = T
and x = T-1, thus, the two populations are likely characterized by the same slope. The respective

intercept λ0 does not pass the same test, i.e., the intercepts corresponding to US and Italian

regions are likely different; (that is expected, given of the different culture). A universality may

characterize the slopes of two countries, either for the fits with x = T or x = T-1, i.e., p2 = (@λ/

@T)NTP or p2 = |Ea|/(τkB), respectively.

Table 2. Averaged temperatures and estimated exponential rates of Italian regions.

Region T δT λ δλ

Aosta Valley -4.0 2.8 0.1187 0.0041

S Tyrol 2.2 2.7 0.0887 0.0080

Abruzzo 4.8 3.1 0.1055 0.0127

Piedmont 6.2 3.1 0.0983 0.0068

Molise 7.5 3.2 0.0667 0.0158

Basilicata 7.5 3.2 0.0621 0.0141

Friuli Venezia Giulia 7.5 1.8 0.0816 0.0147

Veneto 7.6 2.5 0.0674 0.0027

Liguria 7.7 2.4 0.0693 0.0106

Tuscany 7.8 3.0 0.0900 0.0127

Umbria 8.1 3.1 0.0900 0.0127

Lazio 11.1 2.4 0.0906 0.0065

Lombardy 8.1 2.9 0.0942 0.0089

Emilia Romagna 8.3 3.0 0.0695 0.0095

Marche 10.4 2.0 0.0696 0.0140

Calabria 10.5 2.5 0.0939 0.0155

Sicily 11.0 2.3 0.0762 0.0053

Campania 11.6 2.0 0.0604 0.0076

Similar to the notes (1)-(3) of Table 1.

https://doi.org/10.1371/journal.pone.0233875.t002
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Next, we perform the linear fits of the sample points (Ti±δTi, λi±δλi) and (Ti
-1±δTi

-1,

λi±δλi) for the mixed set of US and Italian data, once the rates of the Italian regions are shifted

by Δλ; (this is allowed, since it has just be shown that a universality is likely characterized the

slopes). The optimal fitting is obtained for that shift Δλ, for which the reduced chi-square is

~1, the p-value of the extremes is ~0.5, and the combined measure ~0 (see previous section).

Fig 7 shows how the combined datasets of temperature-rates from US and Italian regions lead

to the optimal fitting. (Note that the optimization is not performed for the binned datasets,

since they are characterized by smaller p-values–see, Figs 5 and 6). The results are shown in

Table 5; we observe that the optimization is reached for two values of the shift Δλ; we estimate

the weighted average of the results corresponding to the two shifts. The weighted mean is per-

formed separately for the fitting cases of x = T and x = T-1; however, the weighted mean of the

critical temperature is performed for all four results.

Table 5 includes the weighted means of slopes for the fits x = T or x = T-1, with slopes p2 =

−|@λ/@T|NTP and p2 = |Ea|/(τkB), respectively. The latter can be used for deriving the activation

Fig 5. Linear fitting of rates with (left) temperatures and (right) inverse temperatures for US regions. The fitting is weighted with double uncertainties (i.e., on both

the temperature and rate values). The analysis is first completed for the raw measurements (upper) and then repeated for the binned averages (lower).

https://doi.org/10.1371/journal.pone.0233875.g005
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energy, where τ = 5.2±1.1 d [15], where we find |Ea| = 0.212±0.057 eV. The value of the critical

temperature is TC = 303.2±2.4 K (86.1±4.3 F0 or 30.1±2.4 C0). In addition, using (Eqs 7B and

Fig 6. As in Fig 5, but for Italian regions.

https://doi.org/10.1371/journal.pone.0233875.g006

Table 3. Fitting parameters of temperature–rate values for US and Italian regions.

US/ Model λ0 [d-1] δλ0 [d-1] p2
� δp2 TC [C0] δTC [C0] χ2

red p-value pt-value

x = T, p1 = λ0, p2 = -λ0TC
-1 0.1688 0.0125 -0.00554 0.00133 30.4 5.4 0.85 0.34 2.2×10−4

x = T-1, p1 = -λ0, p2 = λ0TC 1.455 0.288 444 107 32.0 4.8 0.84 0.32 2.3×10−4

Italy/ Model λ0 [d-1] δλ0 [d-1] p2 δp2 TC [C0] δTC [C0] χ2
red p-value pt-value

x = T, p1 = λ0, p2 = -λ0TC
-1 0.1173 0.0169 -0.00465 0.00206 25.3 7.8 0.95 0.49 0.019

x = T-1, p1 = -λ0, p2 = λ0TC 1.20 0.47 361 166 26.7 7.5 0.90 0.43 0.022

� Units of the slope p2 are [d-1K-1] when x = T, and [d-1K] x = T-1.

https://doi.org/10.1371/journal.pone.0233875.t003
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19B) we derive the reproduction number R0, i.e.,

1

t
lnðRNTP

0
Þ ¼ l

x¼T
0
� jpx¼T

2
j � ðTNTP=½C0�Þ;

1

t
lnðRNTP

0
Þ ¼ px¼T� 1

2
� ðTNTP=½K�Þ� 1

� l
x¼T � 1

0
; orð12AÞ

1

t
lnðRNTP

0
Þ ¼ l

x¼T
0
� ð1 � TNTP � TC

� 1Þ;
1

t
lnðRNTP

0
Þ ¼ l

x¼T� 1

0
� ðTC=T

NTP � 1Þ: ð12BÞ

The two formulae in Eq (12B) provide the value of 1

t
lnðRNTP

0
Þ as 0.0572±0.0098 and 0.0534

±0.0146, respectively, with weighted mean 0.0560±0.0084; then, we find RNTP
0
ffi 1:34� 0:10,

that is, the reproduction number for T = 20 C0. The corresponding number at T = 0 C0 is

R0(0C0)ffi2.47±0.45, while by substituting the estimated parameters in Eq (8), we derive the

Table 4. Fitting parameters of binned temperature–rate values for US and Italian regions.

US/ Model λ0 [d-1] δλ0 [d-1] p2
� δp2 TC [C0] δTC [C0] χ2

red p-value pt-value

x = T, p1 = λ0, p2 = -λ0TC
-1 0.1645 0.0089 -0.00488 0.00096 33.7 5.1 0.41 0.16 1.9×10−3

x = T-1, p1 = -λ0, p2 = λ0TC 1.331 0.2417 409 81 34.4 4.9 0.41 0.16 0.021

Italy/ Model λ0 [d-1] δλ0 [d-1] p2 δp2 TC [C0] δTC [C0] χ2
red p-value pt-value

x = T, p1 = λ0, p2 = -λ0TC
-1 0.1086 0.0127 -0.00420 0.00154 25.9 6.8 1.34 0.24 2.0×10−3

x = T-1, p1 = -λ0, p2 = λ0TC 1.0374 0.2889 313 115 28.3 5.8 1.28 0.27 0.021

� Same units as in Table 3.

https://doi.org/10.1371/journal.pone.0233875.t004

Fig 7. Fitting of datasets combined for US and Italian regions, with the latter’s rates shifted by Δλ. The optimal fitting corresponds to shifts Δλ~ 0.031 and ~0.058, for

which the reduced chi-square is ~1, the p-value of the extremes is ~0.5, and the combined measure ~0.

https://doi.org/10.1371/journal.pone.0233875.g007
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Table 5. Fitting parameters of combined US and optimally shifted Italian regions.

Δλ [d-1], x = T λ0 [d-1] δλ0 [d-1] p2 [d-1K-1] δp2 [d-1K-1] TC [C0] δTC [C0] TC [F0] δTC [F0]

0.03098 0.1631 0.0116 0.005717 0.00136 28.538 4.97058 83.3684 8.947044

0.05766 0.1781 0.0113 0.005853 0.00126 30.429 4.85595 86.7722 8.74071

Weighted Mean 0.1708 0.0110 0.00579 0.00093 - - - -

Δλ [d-1], x = T-1 λ0 [d-1] δλ0 [d-1] p2 [d-1K] δp2 [d-1K] TC [C0] δTC [C0] TC [F0] δTC [F0]

0.02926 1.531 0.303 463 113 29.4 4.3 84.9 7.8

0.05899 1.575 0.282 480 107 31.5 4.2 88.8 7.6

Weighted Mean 1.555 0.208 472 78 30.1� 2.4 86.1 4.3

� The weighted mean of TC in [C0] or [F0] takes into account all four estimated values.

https://doi.org/10.1371/journal.pone.0233875.t005

Fig 8. Relationship of the reproduction number R0 and its uncertainty with environmental temperature T. According to this, new affected cases cease (R0 = 1)

when temperature climbs to TC~30 C0 or (~86 F0).

https://doi.org/10.1371/journal.pone.0233875.g008
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general relationship for any temperature (expressed in K), also plotted in Fig 8:

R0ðT½C
0�Þ ¼ ð1:334� 0:10Þ � exp½ð2450� 660ÞðT � 1 � 293:15� 1Þ�: ð13Þ

5. Discussion and conclusions

Up-to-date there is no systematic statistical analysis of the effect of the environmental temper-

ature T (and possibly other weather parameters) on the exponential growth rate of the cases

infected by COVID-19, while a statistically confident relationship between temperature and

growth rate (either with positive or negative correlation) was unknown.

The presented analysis led to the first statistically confident relationship of negative correla-

tion between the exponential growth rate and the average environmental temperature, derived

for US and Italian regions. In particular, we analyzed datasets of regional infected cases in US

and Italy, derived the exponential growth rates for each of these regions and plotted them

against environmental temperatures averaged within the same regions, derived the relation-

ship of temperature—growth rate, and evaluated its statistical confidence.

The performed statistical analysis involved fitting of linear statistical models with the data-

sets of environmental temperature (or its inverse) and exponential growth rate. The two linear

models developed and used for the statistical analysis are (a) λ(T) = λ0�(1−TC
−1�T), and (b) λ

(T−1) = λ0�(−1+TC�T−1). The statistical confidence of fitting was evaluated using the reduced

chi-square values, the p-value of extremes, and a testing measure that combines both of these

values; also, the Student’s t-test was used to compare the derived slopes.

The sample points of temperature (or inverse temperature) and exponential growth rate

were also tested for statistically significant concentrations or rarefactions, that is, for possible

heterogeneities within the distribution of sample points that could have significant role in the

results. The statistical analysis of the homogenized temperature-rate data points concluded

that the negative correlation between temperature and exponential rate is stable, having no sta-

tistically significant variability due to concentrations or rarefactions, and it is characterized by

a high statistical confidence.

Fig 9. Anti-correlation between the spatial distributions of the exponential growth rates of the infected cases (left) and of the average environmental temperature (right).

https://doi.org/10.1371/journal.pone.0233875.g009
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We also performed a Student’s t-test and ensured that the difference between the sample

means of US and Italian regions is not statistically significant. A universality is likely character-

izing the slope of the temperature-rate relationship. This verifies the modeling developed and

used by this analysis, where the exponential rate λ, or the reproduction number R0, are subject

to a component influenced by the culture in social activities (intercept λ0) and a component

influenced by the temperature (slope p2). In this way, the slope may indicate to a universal

quantity involved, such as, the (negative) activation energy.

Having shown that the derived slopes for US and Italian regions are characterized by no sta-

tistically confident difference, we improved the statistics of the estimated fitting parameters by

combined the sample points of US and Italian regions. From the derived relationship, among

others, we were able to estimate the values of the (negative) activation energy Ea, as well as the

reproduction number R0 at normal conditions and how this depends on temperature.

Therefore, the results clearly showed that there is indeed statistically significant negative

correlation of temperature on the exponential growth rate of the cases infected by COVID-19.

Fig 9 shows the anti-correlation between the mapped exponential rates and average environ-

mental temperature of the US regions examined by this analysis, which they are characterized

by a readable exponential growth phase in their evolution spread curve.

Fig 10. According to the statistically confident relationship between exponential growth rate of infected cases shown in Fig 8,

the critical temperature, which eliminates the exponential growth, and thus the COVID-19 spread, is TC = 86.1 ± 4.3 F0. The

plot shows also the May-June daily, nightly, and 24h-averaged environmental temperatures in San Antonio, Texas, averaged over

the last three years. The daily average temperatures will be clearly above the estimated TC threshold in the second half of May; thus,

the plot suggests a possible date for loosening the strict measures in San Antonio, that is, May 24.

https://doi.org/10.1371/journal.pone.0233875.g010
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Given the negative correlation of the environmental temperature with the exponential

growth rate, it was reasonable to ask for the critical temperature that eliminates the exponential

rate, and thus the number of daily new cases in infected regions. This was found to be

TC~86.1 ± 4.3 F0 for US regions. It is straightforward to ask when the environmental tempera-

ture will climb above this critical value. As an example, Fig 10 plots the daily average tempera-

tures in San Antonio, Texas, shown that it will be clearly above the estimated TC threshold by

the end of May.

The resulted high statistical confidence of the negative correlation of the environmental

temperature on the exponential growth rate of the cases infected by COVID-19 is certainly

encouraging for loosening super-strict social-distancing measures, at least, during the sum-

mery high temperatures. However, we are, by no-means, recommending a return-to-work

date based only on this study. But we do think that this should be part of the decision, as well

as an inspiration for repeating the same analysis in other heavily infected regions. The steps of

these analyses may be followed as:

i. Identify different outbreaks in regions with the same culture in social activities and different

environmental temperature;

ii. Estimate the exponential growth rates for these regions from the time series of infected

cases;

iii. Plot the derived rates against the environmental temperature averaged for these regions,

and repeat the analysis of this study to determine the temperature-rate relationship and its

statistical confidence.
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