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Artificial intelligence (AI) technologies for applications in 
radiology are continually gaining interest among health 

care providers (1). The topic of interpretability of machine 
learning is not new, but it has received increasing attention 
in the last few years, arguably because of the increased pop-
ularity of complex approaches such as deep learning (DL). 
The interpretability of an AI program is generally defined 
as the ability of a human to understand the link between 
the features extracted by an AI program and its predictions. 
Because DL applications have multiple hidden layers, it is 
difficult for humans to understand how they reach their 
conclusions, which is commonly known as the “black-box 
problem” of AI technology. As an example, simple and im-
perceptible changes can be added within input images to 
“fool” DL approaches (2); because we do not know how 
they were fooled, the perception of DL approaches as black 
boxes is increased.

We believe it is essential to involve the radiology com-
munity in the research and development of AI interpret-
ability methods. In this article, we aim to introduce the 
topic of interpretable AI, describe the main approaches 
of interpretability, and provide insights into the current 
trends and challenges that need to be addressed to effec-
tively streamline these methods in clinical practice. (A 
glossary of commonly used terms is available in Appendix 
E1 [supplement].)

Interpretability in Machine Learning
Several attempts have been made to create a formal defini-
tion of AI interpretability (3). An interpretable machine 
learning algorithm can be described as one in which the 

link between the features used by the machine learning 
system and the prediction itself can be understood by a 
human (4). Other definitions converge toward producing 
explainable models to end users while preserving high lev-
els of accuracy (5). For example, a simple linear regression 
model that predicts the likelihood of cancer using a few 
features, such as smoking status, age, and family cancer 
history, would be classified as an interpretable machine 
learning algorithm because a human expert can use his or 
her domain knowledge to interpret how the AI model is 
using the information (ie, in the form of weights for each 
feature) to make predictions.

It is worth noting that a linear model is not necessarily 
interpretable. Similarly, a machine learning model based 
on hand-crafted features, such as a decision tree, is not nec-
essarily interpretable just because the individual features 
are based on specific domain knowledge and are under-
standable by a human. The number and complexity of the 
model’s features directly affect the interpretability of the 
model (3). A linear model with thousands of parameters 
can be hard to understand, as can a model that uses inscru-
table features.

DL is a subfield of machine learning concerned with 
methods that rely on deep neural networks as prediction 
models. DL models are currently the least interpretable 
machine learning models because of their large number of 
model parameters. For example, a DL network that pre-
dicts a diagnosis based on radiographic images of a patient’s 
lungs would not be considered interpretable. It is very dif-
ficult for a human, without the help of dedicated computa-
tional tools, to understand the interactions among the vast 
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internal information of the analyzed model. Instead, they operate 
directly on the input and output of a model and typically analyze 
how changes (ie, perturbations) to the input affect the output 
of the model (11). In practice, interpretability approaches that 
operate on black-box models are much easier to integrate with 
systems in which internal access to a prediction model is limited, 
such as in commercial AI solutions.

Global versus Local
Global interpretability methods seek to assess the common pat-
terns in the overall population that drive a model’s predictions 
(12,13). For example, by analyzing a model on an entire set of 
medical images, global interpretability methods provide expla-
nations of which patterns in the data are most important for 
the model’s predictions. Hence, global interpretability is suited 
during development and validation of AI solutions to verify that 
the learned patterns, extracted from the population, are coherent 
with existing domain knowledge. Furthermore, global interpret-
ability methods can be used to detect biases in the training data 
that a model might be using to make predictions (14).

In contrast, local interpretability methods seek to explain 
why a prediction model makes a specific prediction for a given 
input (ie, “everyday explanations,” as stated by Miller [15]). Lo-
cal interpretability enhances explanations for a given sample, 
which can be an image voxel, a complete image volume, or a set 
of patient-specific data.

Explanations through Visualizations
Visualization techniques provide powerful means to gener-
ate and convey insights into the behavior of machine learn-
ing models that are useful for model interpretation. Basic 
approaches to visualize the importance of input features to a 
model’s output include partial dependence plots (PDPs) and 
individual conditional expectation (ICE) plots (16), which are 
both methods for black-box models that aim to show the de-
pendency between a model’s features and predictions. PDPs 
and ICE plots are assessed using the training set of a machine 
learning model by varying the value of one predictor at a time 
and reporting how the model’s predictions change over a pop-
ulation average (global) or individual (local) contribution of 
a feature, respectively. Conceptually, an important feature is 
expected to influence the model’s predictions when its value is 
changed. In radiology applications in which features are hand-
crafted and based on prior knowledge (contrary to data-driven 
features that are generated by an algorithm), PDPs and ICE 
plots could be used to visualize the impact of that feature and 
validate the prior knowledge they represent. One main dis-
advantage of these methods is that they assume uncorrelated 
features, which might invalidate generated descriptions when 
applied to data in which correlations among features do ex-
ist. For example, in brain morphometry in which a patient’s 
age is correlated with cortical-thickness measurements, an ICE 
plot would create data points combining unrealistic age and 
cortical-thickness values.

Image-specific saliency maps (eg, Simonyan et al [13], Zhou 
et al [17]) were among the first local interpretability methods. 

number of neurons within such a model. However, the neural 
networks used in DL are based on a well-defined mathemati-
cal formulation. Although it is not practical, it would be theo-
retically possible for a human to comprehend every computation 
performed in a deep neural network.

Interpretability methods are approaches designed to explic-
itly enhance the interpretability of a machine learning algorithm, 
despite its complexity. Figure 1 (6,7) shows examples of popular 
interpretability techniques applied on medical images, such as 
guided backpropagation (8), gradient-weighted class activation 
mapping (Grad-CAM) (9), and regression concept vectors (6), 
which are described in detail below. (A web-based demonstra-
tion of interpretability approaches is available at https://www.
imimic-workshop.com/demo.) Different categorizations have been 
proposed for interpretability methods. For more detailed discus-
sions of these taxonomies, the reader is pointed to Lipton (3) and 
Doshi-Velez and Kim (10). In the next sections, a summary is 
provided for a variety of different interpretability methods.

Black Boxes versus White Boxes
Interpretability approaches can be categorized by whether they 
need the internal information and structure of a model (eg, 
model parameters and architecture for DL models) to oper-
ate, which is also referred to as the level of transparency, or 
level of accessibility to the internal information of a model. 
Interpretability methods that require access to the model’s 
internal information are referred to as methods operating on 
“white boxes.” For example, in convolutional neural networks 
(CNNs), a radiologist may use the flow of the gradients to a 
given layer of the network to yield a map, which can be overlaid 
on a radiographic image, that is informative of which anatomic 
regions are important for predicting a given class or disease (eg, 
Selvaraju et al [9]; see also examples in Fig 1a).

Interpretability methods operating on black boxes (also re-
ferred to as model-agnostic methods) do not require access to the 

Abbreviations
AI = artificial intelligence, CNN = convolutional neural network, 
DL = deep learning, Grad-CAM = gradient-weighted class activa-
tion mapping, ICE = individual conditional expectation, LIME 
= local interpretable model-agnostic explanations, PDP = partial 
dependence plot, TCAV = testing with concept activation vectors

Summary
Interpretability methods hold the potential to improve understand-
ing, trust, and verification of radiology artificial intelligence systems; 
active involvement of the radiology community is necessary for their 
development and evaluation.

Essentials
 n Radiology artificial intelligence (AI) systems often have numerous 

computational layers that can make it difficult for a human to in-
terpret a system’s output.

 n Interpretability methods are being developed such that AI systems 
can be explained by using visualization, counterexamples, or se-
mantics.

 n By enhancing their interpretability, AI systems can be better veri-
fied, trusted, and adopted in radiology practice.

http://radiology-ai.rsna.org
https://www.imimic-workshop.com/demo
https://www.imimic-workshop.com/demo
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Figure 1: Examples of interpretability methods used on medical images. (a) Guided backpropagation and gradient-weighted class 
activation mapping (Grad-CAM) used on MRI to interpret areas of a brain image used by a deep learning model classifying the input 
image as a high-grade glioma. (Adapted and reprinted, with permission, from reference 7). Importance of pixels are color-coded as 
red = high importance, blue = low importance. (b) Regression concept vectors used to assess relevance of selected features describing 
curvature, tortuosity, and dilatation of retinal arteries and veins from retinal images, analyzed by a deep convolutional neural network. In b, 
examples of a correctly and wrongly classified image are shown, allowing the interpretation that the network is more sensitive to curvature 
and dilatation concepts for the classification of normal images, while being more sensitive to tortuosity for disease images. (Adapted and 
reprinted, with permission, from reference 6). Avg = average, cti = cumulative tortuosity index, Pn, Ppre, Pplus = network probabilities for 
normal, pre, and pre-plus classes.

http://radiology-ai.rsna.org
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gradient-based method proposed to overcome the lack of speci-
ficity observed in previously proposed methods and was pro-
posed as a generalization of class activation maps (17) for CNN 
models. The basic idea of Grad-CAM is that image pixel attri-
butions can be better visualized when calculating the gradient 
from the output to a given deeper layer (as opposed to calculat-
ing the gradient until the input layer of the model). Grad-CAM 
reconstructs maps as a weighted combination of forward neuron 
activation, with weights based on global average pooling and 
backpropagation outputs to a target layer. See Fig E1 (supple-
ment) for formulation and Figure 1a for an example of guided 
backpropagation and Grad-CAM, highlighting the contrast-
enhancing rim as an important area to classify the input T1-
weighted contrast-enhanced MR image as a high-grade glioma.

In the approaches presented above, one important rationale 
of their design is that of discarding negative gradient values, 
which are assumed to not contribute with relevant information 
to the saliency map. In subsequent studies, this assumption has 
been countered with the rationale that negative gradient infor-
mation (eg, absence of information) can contribute to the in-
terpretability along with positive gradient information. This has 
been supported through experiments by Ancona et al (19), in 
which it was shown that occlusion of negative evidence produces 

The basic principle of these meth-
ods is to highlight areas of an im-
age that drive the prediction of a 
model. The importance of these 
areas can be obtained by investi-
gating the flow of the gradients 
of a DL model calculated from 
the model’s output to the input 
image or by analyzing the effect 
of a pixel (or region) to the out-
put when that pixel (or region) is 
perturbed. This type of visualiza-
tion facilitates interpretability of 
a model but also serves as a con-
firmatory tool to check that ma-
chine-based decisions align with 
common domain knowledge.

In radiology, saliency maps 
can be integrated easily into the 
radiology workflow because they 
work at the voxel level; hence, 
these visualization maps can be 
fused or merged with patient 
images and computer-generated 
results. The main concept of 
gradient-based saliency maps for 
DL models is illustrated in Figure 
2. The main mechanism of these 
methods consists of calculating 
the gradient from the output of 
the DL model to the input im-
age space, which yields so-called 
reconstruction saliency maps that 
show image regions that mostly 
activate a given class, k. Figure 2c shows example areas activat-
ing class “cardiomegaly.” The underlying idea of gradient-based 
approaches is that the magnitude of the gradient reflects the at-
tribution of voxels (or pixels for two-dimensional images) to the 
prediction output of a model. Depending on the type of layer 
employed, different approaches have been proposed to calculate 
the gradient at layer l from layer (l + 1). For linear layers, the 
same process of backpropagation, used during the optimization 
of the network during the training phase, can be used to com-
pute the reverse gradient (Fig 2c). For layers with nonlineari-
ties, different approximations to the reverse gradient have been 
proposed (see Fig E1 [supplement]) and are described below in 
more detail. Simonyan et al (13) consider positive activations 
during the forward pass (Fig 2b), whereas the deconvolution 
network (DeconvNet) by Zeiler and Fergus (18) only considers 
positive reconstructed outputs at layer (l + 1). Both approaches 
were designed specifically for CNNs, and DeconvNet is specific 
to the rectified-linear-unit type of layer (see Fig 2a for examples 
of activation functions); hence, they are limited in the type of 
model on which they can be used.

Guided backpropagation (8) combines these two approaches 
and considers positive forward activations and positive recon-
structed outputs at layer (l + 1). Grad-CAM (9) is another 

Figure 2: Gradient-based saliency maps for image classification. (a) Basic concepts of neuron activation. A neuron is 
activated via a weighted combination of inputs and application of an activation function, g. (b) Gradient-based methods 
rely on a forward and a backward pass. Given an input image x, a class k is maximally activated through forward passing 
throughout all layers of the network. All positive forward activations are recorded for later use during the backward pass. To 
visualize the contribution of pixels in the image to the class k, all activations are set to zero except for the studied class k, and 
then (c) backpropagation uses the chain rule to compute gradients from the output to the input of the network. ReLU = rectified 
linear unit, tanh = hyperbolic tangent.

http://radiology-ai.rsna.org
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image. Results of this study showed that for some methods, such 
as guided backpropagation and guided Grad-CAM, the tests 
failed because the saliency maps were insensitive to these pertur-
bations. As stated by Adebayo et al (22), explanations that do not 
depend on model parameters or training data might still provide 
useful information about prior information incorporated in the 
model architecture (eg, a specific DL model mostly driven by 
edge information on an image). We note that these findings need 
to be corroborated for medical images.

Interpretability methods producing saliency maps have been 
developed mainly for classification tasks in which the output 
of the model is a class label. These methods could, in practice, 
be extended to segmentation tasks (ie, highlighting areas of the 
image of importance to the segmentation result) by perform-
ing pixel-wise saliency mapping and then fusing all pixel-wise 
saliency maps into a single map that explains which areas of the 
image are important for the segmentation result. However, this 
approach does not account for potential neighboring interpixel 
correlations and might artificially produce larger pixel attribu-
tion values in central areas of a segmentation result, as a conse-
quence of a spatial accumulation of pixel attributions as opposed 
to a higher importance of a given pixel to a segmentation result.

Local interpretable model-agnostic explanations (LIME) 
(11) is a local interpretability method (explanations at the sam-
ple level) that operates on black-box (model-agnostic) models. 
The main idea of LIME is to produce explanations of a com-
plex model (eg, a DL model) by locally approximating it with 
a simple one (eg, a linear model) around the input sample be-
ing interpreted and then producing explanations of the simple 
model that are understandable to a human. The main concept of 
LIME for disease classification of chest radiographs is illustrated 
in Figure 3. Given an input sample (Fig 3, A), LIME first creates 
a set of perturbed versions (or instances) of the input. For im-
ages, this can be done by generating masks occluding regions of 

an increase in the target output. Some of these recently proposed 
approaches making a distinction between negative and positive 
gradient information are presented below.

DL important features (DeepLIFT) is another saliency 
method based on backpropagating an output activation 
through layers of a DL model (20). DeepLIFT works by first 
measuring reference activation values of each neuron of the DL 
model during the forward pass (see Fig 1b). These reference ac-
tivation values are obtained on a given reference input and then 
are used to measure the relative effect of activations produced 
by the input image being interpreted. Unlike gradient-based 
approaches, DeepLIFT uses a reference state to measure input 
contributions, even when its gradient is zero or when the gradi-
ent has discontinuities.

Layer-wise relevance propagation (21) was proposed to over-
come the problem of shattered gradients, which affects the sta-
bility of the gradient calculation and worsens with the depth of 
a DL model. Layer-wise relevance propagation decomposes the 
output activation as a sum of layer-wise relevance values, which 
describe the importance (or relevance) of each layer to the out-
put prediction of a model. By recursively backpropagating layer-
wise relevance values, it is possible to map the contribution of 
each pixel in the input image to the output prediction.

The reliability of saliency maps has been investigated by Ade-
bayo et al (22), motivated by a lack of quantitative evaluation 
metrics for visualization-based interpretability methods. In this 
study, two types of tests (or sanity checks) were proposed to 
evaluate the reliability of visualization interpretability methods: 
a model parameter randomization test (eg, randomizing weights 
of a trained DL model) and a data randomization test (eg, re-
training a model with randomly permuted class labels). For both 
types of perturbation, it is expected that changes to the model 
and training data should yield different saliency maps, as the sa-
liency map should reflect how a given model interprets an input 

Figure 3: A, Local interpretable model-agnostic explanations (LIME) method approximates a complex model f (eg, a neural network) with a simplified model g (eg, linear 
model) around the input case I being interpreted. B, Perturbed instances  (Ip)1,...,n are produced, and C, predictions f(Ip)1,...,n = p1,...,n  are obtained. D, The similarity I(Ip)1,...,n 
between the input image I and each perturbed instance (Ip)1,...,n is measured, and these values are used as weights to fit a simpler (eg, linear) model g, in a weighted fashion. 
The size of red crosses and blue circles illustrates weights. E, An explanation, ϵ(I), is generated by minimizing the disagreement between f and g (ie, how well g approximates 
f) while keeping the complexity of model g, as measured by (g), low. Note: Perturbations can be of any type; in this example, image regions are blacked out. The similarity 
metric I as well as the model g can be selected by the user.

http://radiology-ai.rsna.org
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the image (Fig 3, B). The complex model is then used on the set 
of perturbed versions to generate output predictions (Fig 3, C). 
A simple model is then fitted on the basis of the set of perturbed 
input versions, weighted by their similarity to the input sample, 
and corresponding output predictions (Fig 3, D). The weights 
reflect the intuition that heavily perturbed instances are dissimi-
lar to the input sample and therefore should receive a low weight 
so that the local simple model is more truthful around the input 
under interpretation. Finally, LIME generates an explanation by 
finding a perturbation (image mask in Fig 3, D) that minimizes 
the disagreement between the complex and simple model (ie, 
how well the simple model approximates the complex one) while 
keeping the complexity of the perturbation low (for images, the 
size of the image mask used to perturb the input). Figure 3, E, 
shows the result of LIME highlighting, in which pixels are most 
important for the classification of the input image as a cardio-
megaly case.

Explaining through Counterexamples or Influence Functions
Another group of interpretability approaches belongs to 
the family of influence functions, which at their core aim at 
understanding which training data points have a high im-
pact on model predictions. This type of approach works by 
answering the question “What would happen if we did not 
have this training image, or if the values of this training image 
were changed slightly?” (23). The work of Koh and Liang (23) 
proposes a computationally efficient approach to assess which 
training images are most influential for a model by approxi-
mating leave-one-out retraining (ie, assessing change in model 

performance when leaving a sample out of the training set). 
These methods can also provide a framework to identify train-
ing images that are responsible for a potential domain shift (ie, 
training distribution mismatches the testing distribution) or to 
identify potentially mislabeled images during the training pro-
cess, hence enabling a quality-control process of the training 
set. Once deployed, an AI system can be used in conjunction 
with influence-function methods to show which samples from 
the training images are driving a specific model’s prediction. 
We remark that this area of research and application has not yet 
received much attention for medical images.

Explanations through Semantics
Semantics offer a unique way of enhancing interpretability. 
Rather than outputting numbers or producing saliency maps 
on image regions, these methods output text explanations de-
scribing algorithmic predictions (24–26). For example, for a 
breast MRI scan, instead of outputting a single probability (eg, 
85% probability of presence of breast cancer), this type of al-
gorithm would, for example, output “high texture irregularity, 
and hyperintense T2-weighted rim” (24).

This family of methods includes testing with concept activa-
tion vectors (TCAV) (26) and has been presented to test the sen-
sitivity of a neural network to a defined concept of interest. The 
main idea of TCAV is to quantify how responsive a DL model 
is to input patterns characterizing a concept (eg, Fig 4, A, “hon-
eycomb pattern”) associated with the prediction output of the 
DL model (eg, Fig 4, C, idiopathic pulmonary fibrosis). Given 
concept and nonconcept examples (Fig 4, A), the DL model is 

Figure 4: A, Testing with concept activation vectors (TCAVs) requires a set of samples characterizing the concept (eg, “honeycomb pattern,” a set 
of “nonconcept” examples, which are not related to the concept being studied), B, a testing dataset of the class k of interest (eg, idiopathic pulmonary 
fibrosis), and, C, a complex model f (eg, neural network) that one desires to interpret, and which has been trained to perform classification of these 
classes. D, A linear model is built from the concept and nonconcept samples using model f, by employing model f to generate classification labels for 
the concept and nonconcept samples. E, From the resulting linear model, separating concept from nonconcept examples (dotted line in D), its main 
perpendicular direction vc

l (red arrow in D) can be obtained to assess the sensitivity of model f to concept C at layer l by quantifying changes to the 
activations of model f in the vc

l direction.

http://radiology-ai.rsna.org
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employed to produce predictions for each example (see Fig 4, 
D) via forward passing them until reaching selected layer l with 
m neurons (Fig 4, C). With the produced set of examples and 
corresponding predictions, a linear model is built to separate 
both concept and nonconcept examples (see dotted line in Fig 4, 
D), which also defines a concept direction, vc

l (red arrow in Fig 
4, D). The sensitivity of class k (eg, k = idiopathic pulmonary 
fibrosis) to concept C (eg, C = honeycomb) of the DL model 
can be tested on new cases (Fig 4, B) and quantified by measur-
ing changes to activations (Fig 4, E, green color-coded gradient 
term) when moving in the direction of the concept (Fig 4, E, red 
color-coded term).

In TCAV, it is then important to create a database of concept 
and nonconcept examples that represent the studied concept 
well and are not related to it, respectively. In practice, though, it 
is advisable to select nonconcept examples that do not differ too 
much from the concept examples.

Uncertainty Estimates of Machine Learning Models
Assessing the uncertainty of machine learning results can be 
used to enhance model interpretability by understanding 
which specific images, or areas of an image, the model iden-
tifies as being difficult (14). Uncertainty estimation has been 
proposed to assess voxelwise confidence levels of a DL model 
trained to segment structures on an image and to use these 
estimates to drive user corrections (27) or eliminate unconfi-
dent areas from further quantification tasks (28,29). Uncer-
tainty estimation has also been used to assist in the referral of 
wrongly classified medical images for disease detection (30). 

Although uncertainty estimates can arguably be seen as being 
more closely related to auditability and system verification than 
to interpretability purposes, uncertainty estimates can in fact 
act as a proxy to enhance trust in a system, as a radiologist can 
verify whether the generated confidence levels of a computer-
generated result match with their own assessment (ie, “Is the 
computer correctly pointing out areas of potential mistakes?”).

Because of the complexity of the decision process in radiol-
ogy, we expect that a time-effective combination of interpretabil-
ity modalities may be better suited for the analysis of AI systems. 
The different modalities that can be used for model interpretabil-
ity in radiology are shown in Figure 5, which uses as an example 
the case of automatically diagnosing chest radiographs.

In the following, we summarize the state of the art of in-
terpretability methods used in radiology and medical imaging 
applications.

Interpretability Methods in Radiology and Medical 
Imaging Applications
Gallego-Ortiz and Martel (24) propose a rule-extraction ap-
proach to enhance the interpretation of nodes of a classifica-
tion-tree model used to diagnose breast cancer using multipa-
rametric MRI. Extracted rules are then displayed on a graph in 
the form of text to the user (eg, “high morphologic irregularity 
on T1-weighted image”).

The work of Kim et al (26) introduces a white-box global 
interpretability approach for diabetic retinopathy (among 
other applications) from retina fundus images. The approach 
can be classified under the semantics category, as it analyzes 

Figure 5: Different modalities for model interpretation. For example, an artificial intelligence (AI) system that predicts the condition from a patient’s 
chest radiograph is shown. From top to bottom, interpretability information is added to the decision: (1) no interpretability information, (2) added output 
probabilities, (3) added visual saliency information describing areas of the image driving the prediction, (4) added matched real cases used during 
training of the AI solution influencing the prediction (ie, influential functions), and (5) added computer-generated semantic explanation.

http://radiology-ai.rsna.org
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the complex internal relationships of a model and high-level 
concepts, such as “microaneurysms” or “pan-retinal laser 
scars.” In Pereira et al (14), global and local interpretability 
is performed for brain tumor segmentation and penumbra 
estimation in stroke lesions using multiparametric MRI. The 
authors demonstrate the usefulness of interpretability ap-
proaches to verify learned patterns of an AI system against 
common domain knowledge, as well as to identify potential 
bias introduced by a preprocessing step. In Zech et al (31), 
the authors used saliency maps on chest radiographs to vali-
date the learned patterns of a DL system classifying patients 
as having pneumonia. Interestingly, through interpretability, 
the authors reported on the risks that a DL model can learn 
to recognize a specific clinical center or imaging system by 
capturing non–disease-related imaging features, such as metal 
tokens placed during scanning, that correlate with disease 
prevalence (eg, patients imaged with a bedside scanner had a 
higher prevalence of pneumonia). The work of Gale et al (25) 
used interpretability methods based on semantic text descrip-
tions to explain pelvic fractures from frontal radiographs and 
showed the benefits of combining visual saliency and textual 
information for interpretability purposes.

Interpretability Methods for Machine Learning 
Models Are Needed in Radiology
As described previously, interpretability methods can be used 
for many different purposes, depending on the criticality of 
the task and whether an AI solution is being evaluated or re-
quires system verification before deployment in clinical rou-
tine. In this section, we focus on describing the potential of 
interpretability methods for auditability, system verification, 
enhancing trust, and adoptability, as well as ethical and regu-
latory aspects.

Auditability, System Verification, Enhanced Trust, and User 
Adoption
Interpretability methods potentially can be used to audit an AI 
imaging solution. Auditing is an assessment of an AI solution’s 
conformance to applicable regulations, standards, and proce-
dures, conducted independently from the solution’s develop-
ers. Auditing could be done by submitting the AI solution to 
thorough benchmarking and interpretability schemes, which 
aim to better understand how a system has learned the patterns 
of the data that drive its predictions. In this sense, the inter-
pretability approaches explained above could be seen as one 
part of the set of tools available to an auditor.

Quality assurance of an AI solution also can benefit from in-
terpretability approaches to identify a system’s potential weak-
nesses. For example, an interpretability approach identifying 
that a given imaging sequence, within a multisequence imaging 
setup, is the most important for the prediction performance of 
an AI solution can yield valuable insights as to how sensitive 
that solution might be to protocol changes of that particular se-
quence (eg, Pereira et al [14] and Eaton-Rosen et al [32]).

During development of an AI solution, interpretability meth-
ods, such as the influence functions explained above, could be 

used on the training dataset to unveil any potential bias in the 
data that might affect the learning patterns of an AI solution. As 
an example, Zech et al (31) found that an AI system was learning 
to recognize a marker, which was introduced by the imaging de-
vice into the patient images, to boost its diagnostic performance 
through an interpretability method based on the visualization of 
attention areas.

In general, interpretability approaches could have the poten-
tial to bring valuable insights to quality control of training sets 
and quality assurance and auditing protocols of AI systems, es-
pecially when considering recent findings showing how easy it is 
to induce system errors of DL approaches, by making targeted, 
visually imperceptible pixel changes to an image (33). Similarly, 
as recent findings by Geirhos et al (34) suggest that modern 
CNNs are biased to textural information, interpretability meth-
ods based on activation concepts, such as TCAV, offer means 
to quantify such potential biases. These findings still need to be 
shown for medical images.

As these technologies become mainstream in radiology prac-
tice, interpretability approaches can be used to enhance trust by 
creating evidence that demonstrates the robustness and underly-
ing functioning. Together, it is apparent that by enhancing the 
interpretability of a system, trust from an expert user will also 
be enhanced, and thus the interpretability will promote effective 
adoption in practice (15).

Regulatory and Ethical Aspects
The need for regulations of AI technologies in radiology is 
well recognized, and recently more attention has been given 
to establishing standards and structured protocols to ensure 
a safe and streamlined integration of these technologies (35). 
The U.S. Food and Drug Administration is making important 
steps toward a new regulatory framework to improve the stan-
dardization and a streamlined integration of AI technologies 
in health care (36). In Europe, with the launch of the new 
General Data Protection Regulations, new challenges exist for 
the development of automated decision-making systems that 
require a “right to explanation” (37). In this sense, interpret-
ability approaches are a fundamental asset to ensure regulatory 
conformance, and in doing so, it is vital to foster developments 
in a transdisciplinary approach. Further efforts are being con-
ducted by the International Telecommunication Office, which 
promoted a workshop called Artificial Intelligence for Health, 
held in Switzerland in 2018, as well as the first International 
Organization for Standardization meeting, with their First In-
ternational Standard committee for the entire AI ecosystem.

The ethical aspects of AI in radiology have recently been 
documented through the multisociety statement supported by 
the American College of Radiology, “Ethics of AI in Radiol-
ogy: Summary of the Joint European and North American 
Multisociety Statement” (38), in which interpretability of AI 
systems has been highlighted as an important component for 
the radiology community. Notably, the multisociety statement 
signals the need to create guidelines to explain, test, and assess 
AI models. Several questions have been raised in this multiso-
ciety statement, including how much of an AI solution’s inner 
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workings radiologists need to assess before applying the AI in 
patient care and how transparent AI vendors should be regard-
ing the internal functioning of their products. Furthermore, 
it is debatable how much transparency an AI system should 
have while not compromising it against malicious attacks or 
intellectual-property breaches. In this sense, research and de-
velopments from the areas of security and cryptography, in 
which “security through obscurity” is generally discouraged, 
could leverage insights to improve these guidelines. Beyond 
transparency of the AI system itself, enhanced transparency 
of the evaluation procedures of AI technologies in biomedi-
cal imaging has also been highlighted by proposing guidelines 
and best-practice recommendations (39). In this sense, inter-
pretability methods could be used by software quality-manage-
ment teams not only to benchmark and analyze the accuracy 
of AI solutions but also to unveil their internal mechanisms. 
In relation to new regulatory frameworks being discussed, by 
the U.S. Food and Drug Administration and other bodies, to 
facilitate the evaluation and approval of AI systems that learn 
over time through continuous retraining cycles (active learn-
ing), we believe that interpretability methods can be used to 
ensure that observed system improvements do not stem from 
bias or confounders’ effects in the new data used for retraining 
of the AI system. We remark that this is particularly important 
when DL systems are confronted with updates of the imaging 
technology, changes to the imaging protocol, and other aspects 
that can change the training data over time.

As AI systems evolve, we expect their autonomy and in-
terconnections with other AI systems to increase, leading 
to several questions related to how much autonomy they 
are actually permitted or which actions need to be taken 
when an AI solution disagrees with a human operator. Simi-
larly, as the ubiquity of AI systems increases, interpretability 
methods can help in alleviating the increase in automation 
bias, in which human operators fail to notice or disregard AI 
failures or erroneously accept a machine’s decision despite 
contrary evidence.

Areas of Clinical Practice That Would Benefit from 
AI Interpretability Methods
In general, we remark that the goal of interpretability is not to 
understand every part of an AI system but to have enough in-
formation for the task at hand. As pointed out by Doshi-Velez 
and Kim (10), interpretability, in general, is not needed when 
there are no significant consequences for unacceptable results 
or when the problem at hand is well understood. In radiology, 
one can argue that both situations exist: a wrong diagnosis can 
have severe consequences for a patient, and clinical diagnosis 
is, in many clinical scenarios, not a trivial task and is prone to 
interpretation errors.

As the research area of interpretability grows, many dif-
ferent interpretability approaches are being proposed. How-
ever, we remark that many of them have not yet been ex-
plored for radiology.

In the following sections, we make potential links between 
current interpretability methods and some of the common tasks 
in radiologic practice.

Image Segmentation
Current visualization approaches based on uncertainty estima-
tion can be used to leverage the trustworthiness of a segmen-
tation algorithm. However, visualizing an explanation as to 
why a voxel receives a given class label is more difficult because 
many factors might influence its prediction, including, but not 
limited to, voxel position, neighboring and long-range inten-
sity, and texture patterns. Textual explanations, on the other 
hand, can better leverage explanations for voxel classification 
tasks, through human-friendly concepts summarizing the im-
aging information driving voxel classifications.

Lesion and Organ Detection
Similar to image segmentation, visualization and textual ex-
planations could potentially be used to understand how an AI 
system locates a specific target structure.

Image Registration
Visualization interpretability methods are suitable to inter-
pret the results of an AI-based image-registration technology, 
as visualization methods can highlight image regions driving 
image-registration results. For nonrigid registration, in which 
the output of an AI-based registration model has many degrees 
of freedom, visualization techniques combined with user inter-
actions could be used to enable an operator to specify a voxel 
or region on an image and visualize dynamically which areas 
of the image drive the voxelwise matching process. This area of 
research and application has not yet been explored.

Computer-assisted Diagnosis and/or Staging
For these tasks, visualization, textual explanations, and in-
fluence functions could potentially be used to enhance the 
interpretability of AI decisions. Particularly, we note that in-
fluence functions could be an effective approach in explaining 
a diagnosis by showing similar cases with the same diagno-
sis from an existing training database, as well as by showing 
counterexamples (“Why did the AI system not diagnose it as 
type X instead?”).

Prognosis
For these tasks, visualization, textual explanations, and influ-
ence functions are well suited to enhance the interpretability of 
AI-based predictions. Prognosis is arguably among the hardest 
tasks for an AI model, as many factors occurring in between 
imaging time and time to prediction can affect the final patient 
status. Interpretability methods can be of particular help to le-
verage understanding of potential non–disease-related imaging 
information (eg, a center-specific marker on an image [40]) 
that correlates with a given prognostic status.

Radiation Therapy Planning
An AI-based system for radiation therapy planning would in-
volve image segmentation of tumors and healthy structures 
that need to be spared, followed by a voxelwise predictor of 
the radiation dose. Hence, producing explanations to voxelwise 
radiation-dose estimations is considered difficult with current 
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state-of-the-art interpretability methods, as there are many fac-
tors to consider, such as the absolute and relative location of 
a voxel in relation to neighboring structures, clinical margins, 
the patient’s clinical information and records, the therapy regi-
men, and so forth. Conversely, visualization techniques could 
be used here to verify that radiation-dose predictions do con-
sider neighboring organs that must be spared from radiation.

Computer-assisted Monitoring of Disease Progression
Visualization and textual explanations could potentially be 
used to enhance interpretability in these tasks, by, for example, 
visualizing temporal changes that explain an AI-based system 
classifying a patient as having a “response to therapy” or “pro-
gressive disease.”

Triaging
Triaging refers to the task of automatically classifying imaging 
cases by their level of severity of a given condition, and im-
ages are then subject to further processing and/or radiologic 
inspection. Visualization, textual, and influence-function in-
terpretability methods could potentially be useful to audit the 
automated triaging process and ensure that radiologic clinical 
correlates are driving the triaging process and that spurious im-
aging features (eg, patient motion, incomplete field of view, 
metal artifacts, etc) are not.

Image Reconstruction
AI-based image reconstruction approaches are being proposed 
that incorporate fast and image quality–enhancing mecha-
nisms, operating directly from k-space (41) or in combination 
with new techniques for MR fingerprinting (42). Ensuring 
quality and reliability of these data-driven reconstruction ap-
proaches is highly demanding, as it boils down to ensuring 
high generalization capability. Interpretability of AI-based 
reconstruction would be highly demanding because of the 
complex nature of the underlying inverse problem. However, 
basic interpretability approaches, based on occlusion tests of 
the temporal signal (fingerprints), have been recently reported 
in one study (42), enabling verification of the expected parts of 
the fingerprint signal contributing to reconstructed MR maps.

Discussion
Interpretability of machine learning is not a new topic of re-
search; however, with the advent of an increasing number of 
DL technologies, the need for interpretability methods has 
gained more attention in recent years. Arguably, this stems 
from the high complexity of DL technologies, with typically 
millions of parameters being optimized during the training 
process, enabling DL models to scrutinize training datasets 
and automatically extract data patterns correlating to a target 
system’s output (eg, imaging patterns correlating with disease 
classification, prognosis, etc). Additionally, with such large pa-
rameter pools being optimized during training, DL models are 
enabled to potentially identify and use spurious data correlates, 
which leads to observable system performance improvements 
but lower levels of system reliability. This effect is further exac-

erbated when considering the large data pools needed to train 
DL models and, hence, the increased efforts needed to perform 
quality control of training datasets. In this sense, as the perfor-
mance of AI-based systems currently relies on large, curated 
training datasets, we emphasize the potential of interpretability 
approaches not only to leverage explanations of such AI-based 
models but also to provide means for more scalable quality 
control of the data used for their training (eg, Koh and Liang 
[23]). Similarly, toward a more scalable performance improve-
ment of AI-based systems, visualization schemes that combine 
uncertainty estimates of computer predictions could be used to 
target computer results that require human feedback (eg, Jungo 
et al [29] and Mahapatra et al [43]). Yet, we remark that more 
research efforts are needed to ensure that uncertainty estimates 
calculated from modern DL approaches are reliable and can 
effectively be used in the clinical routine (44,45).

The field of the interpretability of machine learning is being 
investigated for medical imaging applications. The set of cur-
rently available interpretability approaches is growing, although 
we notice that a majority of methods focus on providing saliency 
maps for classification tasks. In radiology practice, we hence re-
mark on the importance of investigating and developing inter-
pretability methods that cover a large variety of tasks. Further-
more, as AI systems begin to combine different types of patient 
information (eg, imaging, molecular pathways, clinical scores, 
etc [46]), we believe that interpretability methods that are able to 
handle such heterogeneity of information hold great potential.

In performing interpretability analysis, all of the methods 
described above typically require a radiology expert to validate 
whether the explanations make sense or align with common 
domain knowledge (ie, “Would a human use the same features 
to perform the task?”). In this regard, assessing levels of inter-
pretability is highly dependent on user experience, and, hence, 
some subjectivity and user bias might be present in the design 
and evaluation of interpretability approaches. As pointed out by 
Poursabzi-Sangdeh et al (47) and Doshi-Velez and Kim (10), 
assessing good or bad interpretability is ultimately defined by 
human decision-making, not algorithms, and there are many 
factors influencing the assessment, including, for example, the 
complexity of a model, its level of transparency, and its number 
of features; even a user interface can affect the evaluation of in-
terpretability methods.

Future research will be required to design standard and repro-
ducible ways of assessing and comparing interpretability-enhanc-
ing methods. In this sense, assessing their reliability via simple yet 
effective tests (22), understanding their common patterns and 
unique strengths (19), and seeking to unify them into a theo-
retically sound framework (48) are important research avenues 
to ensure that interpretability methods can be trusted when ana-
lyzing AI technologies. Ultimately, we want safety and reliability 
from the AI systems we use in radiology. Therefore, if we employ 
interpretability methods, we need to ensure that those interpret-
ability methods can be trusted in the first place. Toward this 
goal, it is important to involve researchers, practitioners, radiol-
ogy end-users, machine learning engineers, and human-machine 
interfacing communities. In relation to the work of Doshi-Velez 
and Kim (10), laying down groundwork to define and evaluate 
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interpretability, we remark on the importance of focusing on task-
oriented interpretability methods in radiology that account for 
time constraints (ie, “How much time is there for interpretabil-
ity purposes?”), required performance (ie, “What is the balance 
between model performance and its interpretability level?”), and 
scope of the interpretability (global vs local).

Conclusion
Interpretability of AI systems is a quickly growing field that has 
been highlighted by the radiology community as an important 
area of development, with much potential for the development 
of safe and intelligible AI technologies. However, the diversity 
of tasks in the radiology field requires task-specific interpret-
ability solutions and tailored, interdisciplinary, clinically ori-
ented validations of tasks critical to the patient’s safety, time 
constraints, and scope.
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