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Abstract
Mouse models are frequently used to study diabetes-
associated ulcers, however, whether these models 
accurately simulate impaired wound healing has not been 
thoroughly investigated. This systematic review aimed to 
determine whether wound healing is impaired in mouse 
models of diabetes and assess the quality of the past 
research. A systematic literature search was performed 
of publicly available databases to identify original articles 
examining wound healing in mouse models of diabetes. 
A meta-analysis was performed to examine the effect 
of diabetes on wound healing rate using random effect 
models. A meta-regression was performed to examine the 
effect of diabetes duration on wound healing impairment. 
The quality of the included studies was also assessed 
using two newly developed tools. 77 studies using eight 
different models of diabetes within 678 non-diabetic 
and 720 diabetic mice were included. Meta-analysis 
showed that wound healing was impaired in all eight 
models. Meta-regression suggested that longer duration 
of diabetes prior to wound induction was correlated with 
greater degree of wound healing impairment. Pairwise 
comparisons suggested that non-obese diabetic mice 
exhibited more severe wound healing impairment 
compared with db/db mice, streptozotocin-induced 
diabetic mice or high-fat fed mice at an intermediate stage 
of wound healing (p<0.01). Quality assessment suggested 
that the prior research frequently lacked incorporation 
of key clinically relevant characteristics. This systematic 
review suggested that impaired wound healing can be 
simulated in many different mouse models of diabetes but 
these require further refinement to become more clinically 
relevant.

Introduction
Diabetes-related foot disease (DFD) is a 
leading cause of impaired health-related 
quality of life, amputation, hospitalization 
and healthcare costs.1–6 The most common 
presentation of DFD is a foot ulcer which is 
estimated to develop in 10–20 million people 
worldwide annually.1 The lifetime incidence 
of foot ulceration in people with diabetes has 
been estimated as up to 30%.1 4 The mortality 
of patients with diabetes-related foot ulcers 
has been estimated to be 50% over 5 years and 
more than double that of people with diabetes 
but no foot ulcer.1 7 8 The development of 

improved understanding of diabetes-related 
ulcer pathogenesis and the discovery of novel 
treatments are therefore global priorities.

Animal models of human disease are 
commonly used to identify new treatments. 
There are many methods of inducing 
diabetes that have been used to study athero-
sclerosis, nephropathy and neuropathy in 
mice.9–11 There has, however, been limited 
focus on modeling DFD in mice. There is 
no current consensus on the most appro-
priate mouse model of diabetes-associated 
ulceration. A key requirement of a model 
of diabetes-associated ulceration is impaired 
wound healing. This has been attributed to 
several pathological processes stimulated by 
chronic hyperglycemia, including atheroscle-
rosis and microvascular disease that lead to 
leg ischemia and peripheral neuropathy.12 13 
It is not currently clear which of the different 
methods of inducing diabetes in mice are 
associated with wound healing impairment. 
In order to inform the appropriate choice of 
animal model, this review aimed to systemat-
ically examine the healing rates of wounds in 
mouse models of diabetes. The review also 
examined the quality and clinical relevance 
of this past research.

Methods
Search strategy, inclusion and exclusion criteria
This review was performed according to the 
2015 Preferred Reporting Items for System-
atic Review and Meta-Analysis Protocols 
statement (online supplementary table 1).14 
The protocol was registered in the PROS-
PERO database (Registration Number: 
CRD42018116224). Searches of the litera-
ture were conducted between 16 August 2018 
and 24 January 2019 by one author (PH) 
on three separate occasions. The databases 
Medline, PubMed, Scopus, ScienceDirect 
and Web of Science were searched to iden-
tify preclinical studies examining the effects 
of diabetes on wound healing in mice. The 
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full search strategy consisted of the terms (‘diabetic 
wound’ OR ‘diabetic foot ulcer’) AND (mouse OR 
mice OR murine) AND (nondiabetic OR non-diabetic 
OR normoglycemi* OR normoglycaemi*) using both 
Medical Subject Headings and keyword searches. The 
resultant articles were filtered in two stages, automat-
ically using the database filters and manually by one 
author (PH) to only include original journal articles 
written in English. For inclusion, studies had to examine 
wound healing in mouse models of diabetes compared 
with age-matched controls and report wound area as a 
ratio or percentage of the initial wound area monitored 
over time for both groups.

Data extraction and quality assessment of included studies
Full-text publications of included studies were inde-
pendently assessed by two investigators (PH and JP). Data 
extracted included sex, age and strain of mice, model 
of diabetes, diagnostic criteria for diabetes, whether 
diabetes was confirmed prior to wound generation, the 
size and location of the initial wound, method and period 
of monitoring, and wound closure percentage defined 
as detailed below. ImageJ V.1.48 (National Institutes of 
Health, USA) was used to extrapolate data from figures 
if required. Extracted data were discussed in a consensus 
meeting.

The quality of the included studies was assessed using 
two tools specifically developed for this systematic 
review (online supplementary tables 2 and 3). One tool 
assessed the study design and reporting quality of the 
studies and was based on a prior tool,15 and the Animal 
Research: Reporting of In Vivo Experiments guide-
lines (online supplementary table 2). The second tool 
assessed the design of the mouse model experiment 
in relation to recognized characteristic features of 
human diabetes-associated ulcers (online supplemen-
tary table 3). Each checklist item was weighted equally 
and graded 0, 0.5 or 1 for no, unclear or yes, respec-
tively. Each study was scored as a percentage of the total 
possible score for each tool.

Data analysis
The primary outcome of this systematic review and 
meta-analysis was percentage (%) wound closure which 
was calculated from extracted data using the following 
formula:

% Wound Closure
‍
=
(

1 − Wound Area
Initial Wound Area

)
× 100%

‍
To gauge the effect of diabetes on wound closure over 

time, extracted data were sorted for analysis to early (2–5 
days), intermediate (6–10 days) and late stages (11–20 
days) of wound healing. In the event that a single article 
contained multiple independent animal studies, wound 
closure data were extracted from each of these studies 
and treated as independent data. If an article appeared to 
have multiple animal studies using the same mice in their 
experimental groups, sample sizes were evenly divided 
among them for meta-analysis to minimize duplication of 
data. For example, if primary outcome data were available 

for two different sets of diabetic mice but the authors 
used the same mice as controls for both, the sample size 
of the control group was evenly divided between the 
two diabetic groups for analysis. Corresponding authors 
of studies were contacted for key missing data. When 
necessary, SEMs were converted to SDs using GraphPad 
Prism V.7 (San Diego, California, USA). Meta-analyses 
were performed to assess the effect of diabetes on wound 
closure using Review Manager V.5.3.5 (Copenhagen: The 
Nordic Cochrane Centre, The Cochrane Collaboration, 
2014), while meta-regression analyses were performed 
using Open Meta-Analyst.16 Since heterogeneity between 
studies was expected, random effects models were used. 
Data were reported as standardized mean difference 
(SMD) with 95% CIs. Subgroup analyses were performed 
to examine whether the extent of wound healing impair-
ment was different between the models of diabetes 
included. These pairwise comparisons were corrected 
for multiple testing using Bonferroni’s correction. Leave-
one-out sensitivity analyses were also performed. The 
I2 index was used to assess the degree of heterogeneity 
between studies, with I2>50% accepted to denote statis-
tical heterogeneity. Funnel plots of the effect size versus 
the SEM of the log-transformed effect were constructed 
to assess potential publication bias. A p value <0.05 was 
considered to be statistically significant.

Results
Study selection
After a systematic search, a total of 77 studies were 
included in this systematic review and meta-analysis 
(online supplementary figure 1).17–93

Characteristics of the included studies
The characteristics of the 77 included studies are 
shown in online supplementary table 4. There were a 
total of eight different mouse models of diabetes used 
(with three studies using multiple models).62 68 89 These 
included streptozotocin (STZ) injection (n=41; 20 single 
dose; 21 multiple doses), leptin receptor defective db/
db mice (n=27), alloxan injection (n=4; 3 single dose; 1 
multiple doses), high-fat fed mice (n=4), leptin-deficient 
ob/ob mice (n=2) and non-obese diabetic (NOD) 
mice (n=2). The majority of studies reported including 
male mice only (49/77). Eleven investigations included 
female mice only, two included mice of both sexes and 
the remaining studies did not report the sex of the mice 
included (15/77).

Only three studies examined wounds created in the 
hindlimb.37 51 61 The other studies investigated wounds 
created on the torso of mice (74 in total; 71 on the back, 
3 on the flank). The initial wound size differed greatly 
between studies (online supplementary table 4). Ten 
studies used splints to prevent the closure of wounds via 
contraction and promote wound healing through re-ep-
ithelialization since this has been suggested to be more 
typical of humans.94 95
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Quality of design and reporting of the included studies
The mean study design quality assessment score was 
55.1% (range 19.2%–80.8%) (online supplementary 
table 5). Most studies (n=73) provided an ethics state-
ment.23 Only nine studies reported that examination of 
wound closure was performed by an assessor blinded to 
group allocation. Only two studies indicated that inves-
tigators were blinded to the experimental groups of 
mice.17 72 Only three studies reported that power calcu-
lations were performed to determine appropriate sample 
sizes,32 37 47 while an additional two justified their sample 
sizes based on previous experiments.63 72

Forty-one studies did not report full information 
about the strain of mice used. Twelve studies did not 
indicate the start date of their studies,20 40–44 48 54 55 57 80 84 
with an additional 27 only reporting the age of mice as 
ranges.17–19 21 23 24 26 28 29 36 39 49–53 60 62 73 78 79 81 87–90 93 Eigh-
teen studies which investigated STZ-induced diabetes did 
not indicate whether non-diabetic mice were injected 
with vehicle.25 27 30 38 51 54 55 58 60–62 68 71 73 74 78 79 83 In studies 
which used genetic models of diabetes, 14 used homo-
zygote mice of the background strain or non-diabetic 
littermates, as controls mice,19–21 23 24 29 45 46 50 52 70 81 82 89 
while two studies did not indicate the use of littermate 
controls.40 56 Two studies described the wound closure 
measurements in the methods but represented their data 
in another way.70 85

Relevance of the reported mouse models to human diabetes-
associated ulceration
The mean clinical relevance quality assessment score 
was 44.9% (range 26.9%–65.4%) (online supplemen-
tary table 6). Most studies (n=46) reported a clear diag-
nostic criterion for diabetes. This was mainly based on 
blood glucose concentrations. One study reported the 
confirmation of diabetes by the presence of glycos-
uria.20 Despite the Diabetic Complications Consortium 
recommendations for the appropriate confirmation 
of diabetes in animal models, only 15 of the 46 studies 
reported blood glucose measurements were performed 
in fasted mice18 25 33 35 38 65–69 72 76 77 81 91 and only three 
reported monitoring additional diabetes-associated 
metabolic parameters, with glycosuria being the 
common parameter measured.25 58 61 Furthermore, only 
16 studies extensively reported blood glucose levels of 
included mice.33 35 38 42 49 59 60 63–65 69 74 77 81 87 91 Only nine 
studies reported the time required for complete wound 
healing.18 38 40 52 62 63 80 88 91 Four studies reported measures 
of wound blood supply,49 69 71 87 with an additional study 
only reporting perfusion in a subset of mice.29 No investi-
gation reported signs of neuropathy.

The effect of diabetes on wound closure
Meta-analyses included data extracted to assess the effect 
of diabetes on wound closure at early (n=1346), interme-
diate (n=1398) and late (n=870) stages of wound healing. 
Diabetes led to impairment of wound closure at all stages 
(SMD 1.25 (95% CI 1.01 to 1.48, p<0.001), 2.28 (95% 

CI 1.94 to 2.62, p<0.001) and 3.12 (95% CI 2.66 to 3.59, 
p<0.001) at early, intermediate and late stages, respec-
tively (figures  1–3 and online supplementary tables 
7–9)). There was substantial statistical heterogeneity 
between studies (I2=70%–80%, figures  1–3 and online 
supplementary tables 7–9).

Subgroup analyses suggested that wound closure was 
significantly impaired when compared with non-diabetic 
mice at all stages of wound healing in all models of 
diabetes (figures  1–3 and online supplementary tables 
7-9) except in the high-fat fed mice and ob/ob mice at 
the early stage of wound healing (SMD –0.17 (95% CI 
−0.89 to 1.23), and SMD 3.55 (95% CI −0.07 to 7.18), 
respectively) (figure  1 and online supplementary table 
7). Pairwise comparisons suggested significant differ-
ences in the degree of wound healing impairment in the 
different diabetes models (online supplementary table 
10). db/db mice had greater wound healing impair-
ment than found in the multiple-dose STZ-induced and 
high-fat fed models at intermediate and late stages of 
wound healing (online supplementary table 10). The 
single-dose STZ-induced diabetes model had more severe 
wound healing impairment than the multiple-dose STZ-
induced diabetes model at late stages of wound healing 
(online supplementary table 10).

Meta-regression suggested that a longer duration of 
diabetes prior to wound generation was associated with 
greater impairment of wound healing (online supple-
mentary figure 2c, p=0.021 at late stages after removal 
of statistical outliers). Leave-one-out sensitivity analyses 
suggested that all studies contributed towards the main 
findings in the meta-analysis (online supplementary 
figure 3). Funnel plots suggested potential publication 
bias (online supplementary figure 4).

Discussion
This systematic review suggests that mouse models of 
diabetes consistently have impaired wound healing. 
The wound healing impairment was clearer as the time 
after wound induction increased. The severity of wound 
healing impairment varied between the different mouse 
models. The meta-regression suggested a tendency 
towards greater wound healing impairment with longer 
duration of hyperglycemia. There was substantial statis-
tical heterogeneity and limited reporting of important 
information in the included studies. Furthermore, very 
few studies modeled some of the common characteris-
tics of human diabetes-associated ulcers, such as location 
in the periphery of the limb and concurrent ischemia 
and neuropathy (online supplementary table 11). These 
findings highlight the need for more clinically relevant 
models of diabetes-associated ulceration.

Eight different methods of modeling diabetes were 
used in the studies included in this systematic review 
(summarized in table 1, sorted from most to least severe 
wound healing impairment). Meta-analysis of data 
reported early after wound induction suggested that the 
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Figure 1  Forest plots showing the effect of diabetes on the early stages of wound closure in different mouse models of 
diabetes. Forest plots were generated from Review Manager V.5.3 to represent early (2–5 days) stages of wound closure. 
Comparisons were made using standard mean differences and random effects models.



5BMJ Open Diab Res Care 2020;8:e000982. doi:10.1136/bmjdrc-2019-000982

Pathophysiology/Complications

Figure 2  Forest plots showing the effect of diabetes on the intermediate stages of wound closure in different mouse models 
of diabetes. Forest plots were generated from Review Manager V.5.3 to represent intermediate (6–10 days) stages of wound 
closure. Comparisons were made using standard mean differences and random effects models.
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Figure 3  Forest plots showing the effect of diabetes on the late stages of wound closure in different mouse models of 
diabetes. Forest plots were generated from Review Manager V.5.3 to represent late (11–20 days) stages of wound closure. 
Comparisons were made using standard mean differences and random effects models.
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Table 1  Mouse models of diabetes-associated ulceration ordered in relation to the severity of wound healing impairment

No Early stage (2–5 days)
Intermediate stage (6–10 
days) Late stage (11–20 days)

1 Multiple-dose alloxan
SMD 5.35 (95% CI 2.50 to 8.20)
n=6 Con, 6 Dia

‍ ‍‍ ‍

NOD
SMD 6.09 (95% CI 4.47 to 7.72)
n=22 Con, 18 Dia

NOD
SMD 14.59 (95% CI 4.46 to 
24.71)
n=4 Con, 4 Dia

2 ob/ob
SMD 3.55 (95% CI −0.07 to 
7.18)
n=8 Con, 8 Dia

Multiple-dose alloxan
SMD 5.89 (95% CI 2.80 to 8.98)
n=6 Con, 6 Dia

Multiple-dose alloxan
SMD 5.84 (95% CI 2.77 to 8.91)
n=6 Con, 6 Dia

3 Single-dose STZ
SMD 1.53 (95% CI 0.96 to 2.10)
n=205 Con, 205 Dia

ob/ob
SMD 4.57 (95% CI 2.1 to 7.04)
n=8 Con, 8 Dia

db/db
SMD 3.87 (95% CI 3.11 to 4.63)
n=186 Con, 215 Dia

‍ ‍

4 NOD
SMD 1.47 (95% CI 0.68 to 2.27)
n=18 Con, 14 Dia

db/db
SMD 2.9 (95% CI 2.29 to 3.52)
n=212 Con, 240 Dia

‍ ‍

‍ ‍

Single-dose STZ
SMD 3.58 (95% CI 2.57 to 4.59)
n=114 Con, 114 Dia

5 Single-dose alloxan
SMD 1.20 (95% CI 0.42 to 1.99)
n=17 Con, 17 Dia

Single-dose alloxan
SMD 2.32 (95% CI 0.63 to 4.01)
n=17 Con, 17 Dia

Single-dose alloxan
SMD 2.05 (95% CI 0.38 to 3.72)
n=17 Con, 17 Dia

6 db/db
SMD 1.18 (95% CI 0.76 to 1.6)
n=206 Con, 232 Dia

Single-dose STZ
SMD 2.09 (95% CI 1.35 to 2.84)
n=196 Con, 198 Dia

Multiple-dose STZ
SMD 1.53 (95% CI 1.06 to 1.99)
n=69 Con, 76 Dia

7 Multiple-dose STZ
SMD 1.16 (95% CI 0.84 to 1.47)
n=178 Con, 184 Dia

Multiple-dose STZ
SMD 1.69 (95% CI 1.27 to 2.11)
n=183 Con, 195 Dia

High-fat fed
SMD 1.34 (95% CI 0.65 to 2.03)
n=19 Con, 23 Dia

8 High-fat fed
SMD 0.17 (95% CI −0.89 to 
1.23)
n=19 Con, 23 Dia

High-fat fed
SMD 1.16 (95% CI 0.38 to 1.95)
n=34 Con, 38 Dia

ob/ob
No data

*P<0.01, significant differences as determined by pairwise comparison using Bonferroni’s correction (online supplementary table 10).
Con, non-diabetic control; Dia, diabetic; NOD, non-obese diabetic; SMD, standardized mean difference; STZ, streptozotocin.

multiple-dose alloxan-induced diabetes model had the 
most severe wound healing impairment. Meta-analyses 
of data reported at intermediate and late stages after 
wound induction suggested that NOD mice had the 
most severe impairment of wound healing. These find-
ings, however, should be interpreted cautiously given the 
small and uneven number of studies which reported the 
use of these models. Indeed, only a total of three studies 
reported the use of the multiple-dose alloxan-induced 
diabetes and NOD models. The infrequent use of these 
models is likely due to a number of factors. First, both 
models simulate type 1 rather than type 2 diabetes, 
which is the less common form of diabetes in people.96 
Second, these models have disadvantages compared with 
the more commonly used mouse models of diabetes. 
For example, alloxan is generally considered less favor-
able as a diabetogenic agent to STZ due to greater organ 
toxicity and lower effectiveness,97 while NOD mice have 
variable onset of diabetes.98 Nonetheless, these models 
do appear to simulate diabetes-associated wound healing 
impairment. High-fat feeding is an approach used to 
simulate type 2 diabetes. This review suggested that this 
model had the least severe wound healing impairment 
of all the models examined, possibly due to its milder 
metabolic derangement. Meta-analyses of data obtained 
late after wound induction also suggested that impair-
ment of wound healing was more severe in the single-
dose STZ-induced diabetes model compared with the 
multiple-dose STZ-induced diabetes model. It should be 

noted though that there were substantial methodological 
differences between the included studies. These compar-
isons between models should therefore be interpreted 
very cautiously.

It was surprising to find limited reporting of relevant 
metabolic parameters and data to confirm the diag-
nosis of diabetes within the included studies. Suscepti-
bility towards diabetes-associated complications in mice 
is dependent on a number of different factors, such as 
age, strain and sex.99–102 Furthermore, studies focusing 
on other diabetic complications, such as atherosclerosis 
and neuropathy, typically require an extended duration 
of diabetes, as well as genetic manipulation, to simulate 
these complications.9–11 103 104 In the meta-regression, 
there was a trend towards greater wound healing impair-
ment with longer duration of hyperglycemia before 
wound induction (online supplementary figure 2). Many 
of the studies with a relatively long duration of diabetes 
(>6 weeks) used genetic models which may have influ-
enced the findings of the meta-regression. Nonetheless, 
investigators should take into consideration the severity 
and duration of diabetes required to simulate the clinical 
presentation.

While limbs are the main site of diabetes-associated 
ulcers in patients, all but three studies included in this 
systematic review examined wounds generated on the 
torso of mice. The greater area on the torso allows 
multiple wounds to be studied but it is unlikely such ulcers 
simulate the clinical situation. Peripheral artery disease 
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Table 2  Proposed reporting standards for mouse models of diabetes-associated ulceration

Elevated and sustained glycemia Diabetes should be validated by more than one method, as per recommendations 
by DiaComp, and, ideally, performed multiple times.
Suggested criteria:

►► Fasting blood glucose >8.33 mmol/L (highly recommended) or otherwise 
random blood glucose >15 mmol/L.

►► Validation via intraperitoneal glucose tolerance test, or euglycemic clamp on 
awake and conscious animals.

Presence of ischemia ►► May be examined using laser Doppler or similar techniques.
►► May be artificially induced via ligation/obstruction/excision of local major artery.

Presence of neuropathy ►► May be examined by electrophysiology, behavioral tests and/or histology.

Location of wound on periphery Ideally on the foot/paw.

Possible infection could be considered May be artificially induced.

DiaComp, Diabetic Complications Consortium.

and neuropathy are key causes of ulcers in people. Only 
four of the included studies examined blood flow within 
the mice.49 69 71 87 None of the included studies artificially 
induced artery disease or neuropathy within the mice. 
Artificial generation of peripheral ischemia or neurop-
athy is likely required to simulate the clinical presen-
tation since mice are very resistant to development of 
diabetes-associated microvascular complications.105 Use 
of genetically modified mice may also be used to simulate 
other clinically relevant risk factors, such as dyslipidemia 
which accelerates diabetes-associated atherosclerosis and 
neuropathy.106 107 Table 2 presents suggested criteria for 
future diabetes-associated ulcer studies in rodents aimed 
to improve the clinical relevance of the research.

Limitations and strengths
To the best of our knowledge, this is the first system-
atic review and meta-analysis examining wound healing 
impairment in different mouse models of diabetes. The 
current study used a range of analysis methods and quality 
assessment methods in order to rigorously assess past 
research. The included studies had many quality weak-
nesses such as small sample sizes. There was also absence 
of key study design and reporting features, like blinding 
of outcome assessors and inclusion of sample size calcula-
tions. Many of the included studies did not report param-
eters relevant to diabetes or determined the severity of 
diabetes. Therefore, it was not possible to systematically 
assess the correlation between glucose control and wound 
healing impairment. There was also statistical and meth-
odological heterogeneity between studies. Due to the 
heterogeneous and intermittent reporting of outcomes, 
it was not possible to systematically examine the molec-
ular mechanisms involved in wound healing impair-
ment. Nonetheless, the findings from this study provide 
important insight into the strengths and weaknesses of 
current mice models of diabetes-associated ulcers.

Conclusion
In conclusion, this systematic review suggests that, regard-
less of diabetes induction method, hyperglycemia impairs 

wound healing in mice. Incorporation of clinically rele-
vant aspects, such as limb ischemia and prolonged 
diabetes duration, may improve the translation of find-
ings from the mouse models.
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