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Reducing the aerosol forcing uncertainty using 
observational constraints on warm rain processes
Johannes Mülmenstädt1,2*, Christine Nam1†, Marc Salzmann1, Jan Kretzschmar1, 
Tristan S. L’Ecuyer3, Ulrike Lohmann4, Po-Lun Ma2, Gunnar Myhre5, David Neubauer4, 
Philip Stier6, Kentaroh Suzuki7, Minghuai Wang8, Johannes Quaas1

Global climate models (GCMs) disagree with other lines of evidence on the rapid adjustments of cloud cover and 
liquid water path to anthropogenic aerosols. Attempts to use observations to constrain the parameterizations of 
cloud processes in GCMs have failed to reduce the disagreement. We propose using observations sensitive to the 
relevant cloud processes rather than only to the atmospheric state and focusing on process realism in the absence 
of aerosol perturbations in addition to the process susceptibility to aerosols. We show that process-sensitive ob-
servations of precipitation can reduce the uncertainty on GCM estimates of rapid cloud adjustments to aerosols. 
The feasibility of an observational constraint depends on understanding the precipitation intensity spectrum in 
both observations and models and also on improving methods to compare the two.

INTRODUCTION
Anthropogenic aerosols affect the energy balance of the climate sys-
tem by absorbing or scattering solar radiation and by changing cloud 
properties through their role as cloud condensation nuclei or ice-
nucleating particles (1). The effect of aerosol-cloud interactions (ACIs), 
expressed as an aerosol-induced perturbation of the net radiative 
flux R of energy into the climate system, is termed effective radiative 
forcing of the climate by ACI (ERFaci). ERFaci from liquid water 
clouds dominates the total ERFaci and is commonly decomposed into 
an instantaneous radiative forcing FNd due to an increase in the 
number of cloud droplets Nd (2) and a rapid adjustment of other 
cloud properties—most importantly, the liquid water path ℒ and 
the cloud fraction fc—in response to the change in Nd, translated 
into radiative flux perturbations Fℒ and Ffc (3, 4)

	​​
ER ​F​ aci​​  = ​ F​ ​N​ d​​​​ + ​F​ ℒ​​ + ​F​ ​f​ c​​​​ =

​  
​​(​​ ​  ∂ R ─ ∂ ln ​N​ d​​ ​ + ​ ∂ R ─ ∂ ℒ ​ ​  dℒ ─ dln ​N​ d​​ ​ + ​ ∂ R ─ ∂ ​f​ c​​

 ​ ​ 
d ​f​ c​​ ─ dln ​N​ d​​ ​​)​​Δln ​N​ d​​​

​​	 (1)

where ln Nd is the fractional anthropogenic perturbation to Nd. 
The instantaneous forcing cools the climate, as an increased num-
ber of proportionally smaller droplets make clouds more reflective 
to incoming solar radiation, constituting a negative forcing (5). Rapid 
cloud adjustments can increase ℒ or fc when the smaller cloud droplet 
size suppresses precipitation formation in polluted conditions (6, 7), 
leading to a further cooling, or decrease ℒ or fc when the smaller 
droplets lead to faster cloud evaporation in polluted conditions (8–11), 
offsetting the cooling. Aerosol-climate atmospheric general circula-
tion models (GCMs) will continue to play an important role in climate 
projections for the foreseeable future despite their limited ability to 

represent cloud processes accurately because of the computational 
expense associated with running global models at higher resolution. 
GCMs disagree with other lines of evidence on the magnitude and 
even sign of ℒ and fc changes (12, 13); this disagreement is a major 
reason that Fℒ and Ffc continue to be major contributors to the ERFaci 
uncertainty (14).

One reason that GCM estimates of Fℒ and Ffc disagree with process-
scale modeling and observations is an asymmetry in the treatment 
of positive (offsetting the cooling) rapid adjustments, which are at 
best implicitly represented in GCMs, and negative (enhancing the 
cooling) rapid adjustments, which are explicitly represented in pa-
rameterizations of the precipitation processes (text S1). Explicit rep-
resentation does not guarantee physical correctness, however, and a 
number of long-standing problems continue to blight parameterized 
precipitation processes: a poor representation of cloud-scale vari-
ability and of the vertical structure of clouds, arbitrary partitioning of 
precipitation into “stratiform” and (intermittent) “convective,” and 
the use of poorly constrained process “enhancement” factors that are 
frequently used to tune the radiative budget of the model (15–20). 
This results in unrealistic precipitation statistics in the modeled cli-
mate, with compensating errors (21) in precipitation frequency and 
intensity. Thus, reducing the discrepancy between GCM estimates 
and other lines of evidence will likely require both addressing the 
implicitly represented processes and improving the physical realism 
of the explicitly represented processes.

The physical realism of a model can be improved by constrain-
ing its parameterizations to reproduce observations (22). In practice, 
two obstacles have impeded progress in observational constraints. The 
first obstacle is that a large range of possible parameterizations of the 
underlying processes can reproduce the state of the atmosphere—
characterized by state variables such as fc, ℒ, and radiative fluxes—
but each parameterization has a different sensitivity to anthropogenic 
perturbations to the climate system. This problem, termed “equifinality” 
(23–25), limits the utility of commonly available observational datasets 
as constraints, since the observations are of state variables. The sec-
ond obstacle is that attempts to use observations to constrain the 
susceptibility of cloud processes to aerosol (26, 27) instead of state 
variables have proven difficult (28, 29). We argue that the approaches 
historically taken need to be modified to overcome the obstacles to 
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progress on observational constraints. The way to address the equi-
finality problem is to use observations capable of probing individual 
processes rather than the overall state. The way to address the sus-
ceptibility problem is to recognize that the base process behavior, 
i.e., the aspects of the processes independent of aerosol perturba-
tions, deserves as much attention as the susceptibility to aerosols; 
precipitation suppression by aerosol can only occur in clouds that 
would otherwise have precipitated, so the overestimate of precipita-
tion probability in models leads to an overestimate of precipitation 
suppression.

RESULTS
Precipitation processes in liquid-only clouds (“warm rain”) are the 
dominant mechanism for rain formation in large parts of the tropics, 
but their importance falls off markedly in the extratropics, particu-
larly over land (30, 31). In many GCMs, the probability of warm rain 
is overestimated (16). This is also the case in the ECHAM-HAMMOZ 
model used in this study, shown in Fig. 1 using the fraction of rain 
occurrences that are due solely to warm rain processes, fwarm, as a 
metric (see Methods): Compared with satellite observations, the 
model strongly overestimates fwarm outside the tropics. Two possible 
modifications to the warm rain parameterization—reducing the en-
hancement factor and imposing an increasingly large effective radius 
threshold (Methods, fig. S1, and table S1)—can bring fwarm into better 
agreement with observations. The model bias shown in Fig. 2 is re-
duced over land and over extratropical ocean, albeit at the expense 
of a slight overcompensation in the subtropical subsidence regions, 
especially in the Northern Hemisphere (figs. S2 and S3). Warm rain 
cannot initiate without the self-collection (or autoconversion) of 
small cloud droplets by collision and coalescence into larger drizzle 
or rain drops, which can then collect further cloud droplets as they 
sediment through the cloud (32). Hence, the presence of warm rain 
is a clear indication that the autoconversion process was active in a 
cloud. The ideal observation with which to constrain a model would 

be a process rate, since this observation would be directly compara-
ble to the process rates calculated by the process parameterizations 
in the model. A binary indication of process activity is equivalent to 
a measurement of the process rate with one bit precision, i.e., max-
imally coarse, but still allows for a far more specific evaluation of the 
model than state variables, which carry the memory of multiple pro-
cesses’ contributions over many time steps. In this sense, fwarm is an 
observable capable of probing atmospheric processes related to ERFaci; 
this is in contrast to state variables, which reflect the state of the at-
mosphere but not the processes that led to that state.

At this point, it is tempting to tune the model to the satellite warm 
rain fraction and then consider the rapid adjustments simulated by 
that model configuration to be the “observationally constrained” rapid 
adjustments (subject to caveats; text S2). However, we find that the 
two tuning strategies, although they both reduce the warm precipita-
tion bias, have opposite effects on the normalized adjustment Fℒ/FNd 
(Methods and text S3). Figure 3 shows that increasing the threshold 
effective radius results in a stronger normalized adjustment, whereas 
decreasing the scale factor results in a weaker normalized adjustment.

The source of this dichotomy becomes apparent if we consider 
precipitation intensity. Figure 2 shows how the warm precipitation 
bias reduction differs between intensity categories for the two tuning 
strategies. The effective radius threshold tuning mostly affects drizzle, 
since clouds with small effective radius correspond to low rain for-
mation rates. By contrast, the enhancement factor tuning affects intense 
precipitation more strongly than drizzle, because the enhancement 
factor has a proportionally larger effect on high rain formation rates 
than on low ones. The reduced scale factor configuration weakens 
the normalized adjustment in accordance with our hypothesis that 
precipitation suppression can only occur in precipitating clouds. 
Geographically, the weakening is greatest in the midlatitudes (fig. S4 
and text S4), where the disagreement in fwarm between satellite and the 
reference model is greatest, improving agreement with observation-
al estimates (12, 33). Meanwhile, the reduced drizzle configuration 
leads to stronger adjustments, consistent with earlier studies (19). 

Fig. 1. Warm rain and warm drizzle fraction from the satellite climatology and the reference model configuration. The model strongly overestimates the warm 
precipitation fractions over land and extratropical oceans but slightly underestimates warm drizzle over the northeastern Pacific. Dark lines indicate the 10 and 80% warm 
precipitation fraction contours in the satellite climatology.
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Inhibiting drizzle at one effective radius threshold causes the model 
clouds to build up condensate until they reach the higher effective 
radius threshold, because precipitation is such a strong sink process 
for cloud condensate in the model. At the higher effective radius 
threshold, the cloud liquid water content is more sensitive to changes 
in Nd—and thus, the liquid water path adjustment is stronger—because 
cloud liquid water content is linked to Nd via the mean droplet radius 
to the third power (text S4 and eqs. S4.1 to S4.3).

Parameterized precipitation initiation depends on liquid water 
content and Nd (see Methods). The dependence of the process rate 
on Nd results in process susceptibility to aerosol. Note that the range of 

adjustment simulated by these model configurations is large (90 % < 
Fℒ/FNd < 125%, corresponding to −0.65 W m−2 < Fℒ < − 0.47 W m−2), 
even though we have only changed parameters affecting the base pro-
cess behavior, not the Nd-dependent factor that explicitly encodes the 
susceptibility to aerosol (text S5). Similarly, a large range of normal-
ized adjustment results from varying the parameter controlling the 
dependence of rain initiation on cloud liquid water content (fig. S5); 
this is also a modification of the base process behavior. On the other 
hand, varying the parameter controlling the rain initiation susceptibility 
to aerosol-induced Nd change (fig. S6) results in a comparatively 
small change in the normalized adjustment. This underscores that 

Fig. 2. Change in model bias in warm precipitation fraction relative to the reference configuration. The reduced scale factor strongly decreases the warm rain frac-
tion but leaves warm drizzle largely unaffected, whereas the re threshold decreases warm drizzle but leaves warm rain largely unaffected.

Fig. 3. The relationship between the (observable) bias in warm rain fraction and the (emergent) rapid adjustment under scale factor and effective radius thresh-
old tuning strategies. The relationship between warm rain fraction (fwarm) and normalized rapid adjustment (Fℒ/FNd) is multivalued, which presents an apparent obstacle 
to an observational constraint. Distinguishing between rain (solid line), which responds strongly to the Qaut scale factor tuning but weakly to the re threshold tuning, and 
drizzle (dashed line), with the opposite responses, breaks the degeneracy and removes the obstacle to formulating an observational constraint.
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the aerosol-independent base process behavior is an important con-
tributor to the global ERFaci estimate that cannot be neglected in 
favor of the susceptibility to aerosol. The importance of base pro-
cess behavior is well recognized in the cloud feedback community 
(34–38) but much less so in the ACI community (39).

DISCUSSION
Our analysis reveals that the warm rain problem in models is not 
one but two problems: a warm rain problem and a warm drizzle 
problem. In the short term, this raises new challenges both in mod-
eling and in observations. If it were clear that a model predominantly 
has a warm drizzle bias or a warm rain bias, then the sign of the Fℒ 
bias would also be clear. A drizzle bias (the dashed line in Fig. 3) 
would best be alleviated by reducing the propensity of clouds with 
relatively low liquid water content—and, hence, relatively small cloud 
droplets—to precipitate; our analysis predicts that correcting this 
bias would lead to a stronger Fℒ. A rain bias (the solid line in Fig. 3), 
on the other hand, would best be alleviated by reducing the propen-
sity also of warm clouds with higher liquid water content to rain; 
our analysis predicts that correcting this bias would lead to a weaker 
Fℒ. However, diagnosing which intensity category exhibits the greater 
bias is not a straightforward determination due to errors and un-
certainties in models, observations, and model-observation com-
parisons, which could easily overwhelm the small difference between 
the slightly higher warm rain bias and the slightly lower warm drizzle 
bias in our model (Fig. 3 and fig. S7). First, in observations, the chal-
lenges in classifying precipitation intensity arise because of radar 
sensitivity to drizzle and because large contributions to Fℒ occur not 
only over ocean but also over land (40–42), where the heterogeneous 
surface properties substantially complicate intensity retrievals. Sec-
ond, as specified earlier, longstanding structural problems cause 
the precipitation intensity to be biased low in models. Third, to be 
able to compare the modeled GCM-scale and observed satellite 
pixel-scale precipitation intensities, a scale- and definition-aware 
comparison method, ideally incorporating knowledge of the subgrid-
scale variability (43), needs to be applied (44). Much work thus 
remains on the base precipitation process behavior, but there are 
known solutions for many of the problems that need to be ad-
dressed. The payoff in better process representation can therefore 
be realized before higher resolution models, such as global cloud-​
resolving models (CRMs), replace GCMs as the workhorse of 
climate projection. This work will also benefit other endeavors 
that rely on realistic precipitation intensity, such as hydrology, and 
it can proceed in parallel with improvements in the modeling of 
aerosol susceptibility.

In the longer term, these results are highly encouraging. They 
show that it may be possible to overcome the equifinality problem, 
which has dogged observational constraints on parameterizations 
in GCMs and is likely to bedevil parameterizations in the global CRM 
era as well. The hallmark of equifinality is a degeneracy in parameters, 
leading to the same present-day state but different sensitivities to 
anthropogenic perturbations. In this study, we have explored the 
degeneracy between two such parameters in the warm rain param-
eterization and found that the degeneracy can be broken by applying 
successively more refined observed precipitation statistics, first by 
discriminating between cold- and warm-cloud precipitation pro-
cesses and then between rain and drizzle. The use of these variables 
represents a progression from observational constraints based on 

state variables—subject to the equifinality problem—to observational 
constraints based on variables probing individual processes—which, 
our results indicate, may be able to transcend equifinality. Present 
and future long-term, global active remote-sensing datasets of clouds 
and precipitation (45, 46) provide a gold mine of process-probing 
variables that may sufficiently constrain process parameterizations to 
allow physically realistic estimates of ERFaci. More advanced radar 
capabilities, such as those under consideration for the Aerosol-Cloud 
Convection Precipitation mission (47), will be especially useful in 
formulating constraints if they retrieve rain drop size distributions, 
vertical air motions, and precipitation rates, while exhibiting suffi-
cient sensitivity to distinguish between cloud, drizzle, and rain with 
sufficient vertical resolution to probe more deeply into the boundary 
layer than current sensors.

METHODS
Model results were obtained with the ECHAM-HAMMOZ model, 
version echam6.1-ham2.2-moz0.9 (48–52), a state-of-the-art global 
aerosol-climate model. The large-scale stratiform cloud scheme in 
this model consists of prognostic equations for cloud ice and water 
mixing ratio and particle number concentration (53–55). Because 
the convective scheme (56) uses a simple microphysics parameter-
ization without explicit aerosol dependence, we restrict our analysis 
to large-scale clouds and precipitation (which includes condensate 
detrained from the parameterized convection).

Precipitation is treated diagnostically, i.e., precipitation is assumed 
to sediment out of the atmospheric column within one model time 
step. The rate at which the collision-coalescence “autoconversion” 
process converts cloud water into drizzle or rain water is parameter-
ized on the basis of the in-cloud droplet number concentration Nd 
and in-cloud liquid water mixing ratio ql as

	​​ Q​ aut​​  = ​ 
∂ ​q​ l​​ ─ ∂ t ​ ​​∣​​​ aut

​​  =  1350 ​s​​ −1​ × γ ​q​l​ 
α​ ​​(​​ ​  ​N​ d​​ ─ 

1 ​cm​​ −3​
 ​​)​​​​ 

−β
​​	 (2)

(57). The combination of parameters  = 2.47,  = 1.79, and  = 1 
corresponds to the original Khairoutdinov and Kogan (57) param-
eterization for large eddy simulations. The ECHAM-HAMMOZ 
parameterization uses unchanged  and  parameters and  = 4 to 
account for an enhancement of the autoconversion rate due to sub-
grid-scale variability (43, 58–61). Apart from this enhancement fac-
tor, no information on the subgrid-scale variability in Nd or ql is 
available to the parameterization. Equation 2 parameterizes adjust-
ments to the anthropogenic increase in Nd as a decrease in removal 
of cloud condensate via the autoconversion process when Nd increases 
due to anthropogenic emissions. This leads to an increased plane-
tary albedo through higher average ql and, thus, ℒ; indirectly, through 
the relative humidity–dependent cloud cover parameterization (62), 
fc increases as well. In this model, the ℒ adjustment (Fℒ = − 0.5 W m−2) 
is the greater of the two adjustments compared with the fc adjustment 
(Ffc = − 0.3 W m−2) (41), in line with other state-of-the-art models 
(40, 42). The radiative forcing FNd = − 0.5 W m−2 is of similar mag-
nitude to Fℒ.

The observational dataset to which the model precipitation statis-
tics are compared is the CloudSat-Calipso warm/cold rain classifica-
tion of Mülmenstädt et al. (30). A further classification by intensity 
(“rain” versus “drizzle”) has been performed using the 2C-PRECIP-
COLUMN surface precipitation flags (63, 64). The “rain certain” flag 
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is taken as rain, and the “possible” and “probable” flags are taken as 
drizzle. This identification is based on the reasonable correspondence 
between radar reflectivity, on which the precipitation flags are based, 
and rain rate (65).

To enable comparison between the model behavior and satellite 
retrievals, the Cloud Feedback Model Intercomparison Project 
(CFMIP) Observational Simulator Package (COSP) (66) has been 
implemented into ECHAM (updated to version 1.4.1 for the present 
study) (67). COSP splits each grid box into n subcolumns and uses 
the Quickbeam (68) radar simulator to compute a radar reflectivity 
in each subcolumn (n = 100 in this analysis). The microphysical as-
sumptions (size distributions of each hydrometeor type) are given by 
Nam and Quaas (67). In principle, the subcolumn mechanism allows 
COSP to be coupled to information on the subgrid variability of hy-
drometeors. In practice, only limited use of this capability is made so 
far by GCMs in general; improving this capability, especially when 
sophisticated knowledge of the subgrid variability of hydrometeors 
is available to the host model (69), has the potential to advance the 
state of the art notably. In ECHAM-HAMMOZ, only the vertical 
overlap assumption of fractional cloudiness is passed to COSP, with 
all hydrometeor species uniformly distributed throughout the cloudy 
part of the grid box.

Model columns that produce liquid precipitation at the planetary 
surface are classified as drizzling if their maximum radar reflectivity ​​
Z​e​ 

*​​ exceeds −15 dBZe, and raining if their maximum radar reflectivity 
exceeds 0 dBZe. (A raining column therefore also counts as a drizzling 
column.) Model columns are classified as “cold” precipitation if the 
highest cloud layer in which the reflectivity threshold is reached con-
tains ice, and “warm” precipitation otherwise, where a cloud layer is 
defined as one or more vertically contiguous model levels with nonzero 
cloud condensate mixing ratio. In this model, there is a reasonably 
close correspondence between reflectivity thresholds and surface 
precipitation flux (fig. S9).

The scale- and definition-aware evaluation of the modeled pre-
cipitation (44) thus accomplished can then inform choices of the 
parameters in the autoconversion formulation. Two possible pa-
rameters are the enhancement factor  from Eq. 2 and a critical value 
rc of the cloud droplet effective radius re, below which autoconver-
sion is precluded; this parameter, introduced in the Kessler (32) scheme, 
traces its lineage through parameterizations (70, 71) in wide use today. 
We implement these parameters by modifying the Khairoutdinov 
and Kogan (57) scheme of Eq. 2 as follows

	​​ Q​ aut​​  =  1350 ​s​​ −1​ × ​q​l​ 
​ ​​(​​ ​  ​N​ d​​ ─ 

1 ​cm​​ −3​
 ​​)​​​​ 

−
​ (​r​ e​​ − ​r​ c​​)​	 (3)

where  is the Heaviside step function. In this model, re is diagnosed 
from the volumetric-mean cloud droplet radius via a constant pro-
portionality factor, i.e., it is a function only of ql and Nd, not of drizzle 
or rain water condensate. We refer to modifications of  as “Qaut scal-
ing factor tuning,” and modifications of rc as “re threshold tuning.”

Because of the power-law form of the Khairoutdinov and Kogan 
(57) parameterization, the two tuning strategies are somewhat sim-
ilar. Starting with Eq. 2 and substituting using the relationship be-
tween ql, re, and Nd

	​​ q​ l​​ ∝ ​ r​e​ 
3​ ​N​ d​​​	 (4)

the autoconversion rate can be rewritten as a function of re and ei-
ther of ql or Nd

	​​ ​Q​ aut​​ ∝ ​ {​​​
​r​e​ 

3​ ​N​d​ − ​
​ 

​r​e​ 
3​ ​q​l​ 

−​
 ​​​	 (5)

Under the limiting assumptions that re is uncorrelated with either ql 
or Nd, we expect the autoconversion rate to scale with ​​r​e​ 

5.5∼7.5​​. The 
large exponent of re effectively sets an re threshold, and varying the 
scale factor  shifts the threshold to progressively higher re for pro-
gressively smaller scale factors. In the same way that  > 1 accounts for 
subgrid variability of ql in GCMs, schemes using re thresholds use rc 
values smaller than those typically found in single clouds (19).

To establish relationships between the autoconversion process 
and the ERFaci simulated by the model, we perform pairs of simula-
tions with present-day and preindustrial aerosol and aerosol pre-
cursor emissions but an otherwise identical climate by using a fixed 
sea surface temperature and relaxing the large-scale flow to ERA-Interim 
reanalysis (72) for the years 2000–2004 (“nudging”) (73, 74). The 
strengths of the FNd forcing and the Fℒ and Ffc adjustments are diag-
nosed separately using the method of partial radiative perturbations, 
as described in Mülmenstädt et al. (41). In model runs with modified 
autoconversion, no other modifications to restore the top-of-atmosphere 
(TOA) radiative balance are made. The nudging prevents the model 
state from diverging from the reference climate despite the TOA 
radiative imbalance, and modifying only one parameterized process 
simplifies attribution of the model response to that process. However, 
the base-state cloud amount (both fc and ℒ) is sensitive to the auto-
conversion parameterization, which is a strong sink process for liquid 
cloud in the model. To be able to compare ERFaci across model con-
figurations with different base-state cloud properties, we consider 
the normalized adjustment Fℒ/FNd instead of Fℒ (see text S3).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/22/eaaz6433/DC1
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