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Kefir peptides alleviate high-

fat diet-induced atherosclerosis
by attenuating macrophage
accumulation and oxidative stress
In ApoE knockout mice

Min-Che Tung¥%310, Ying-Wei Lan'?, Hsin-Han Li'"*, Hsiao-Ling Chen* Sheng-YiChen?,
Yu-Hsuan Chen?, Chi-Chien Lin®, Min-Yu Tu®7:® & Chuan-Mu Chen®°*

In the past decade, the high morbidity and mortality of atherosclerotic disease have been prevalent
worldwide. High-fat food consumption has been suggested to be an overarching factor for
atherosclerosis incidence. This study aims to investigate the effects of kefir peptides on high-fat

diet (HFD)-induced atherosclerosis in apolipoprotein E knockout (ApoE ~~) mice. 7-week old male
ApoE~~ and normal C57BL/6 mice were randomly divided into five groups (n = 8). Atherosclerotic
lesion development in ApoE ~~ mice was established after fed the HFD for 12 weeks compared to
standard chow diet (SCD)-fed C57BL/6 and ApoE ~/~ control groups. Kefir peptides oral administration
significantly improved atherosclerotic lesion development by protecting against endothelial
dysfunction, decreasing oxidative stress, reducing aortic lipid deposition, attenuating macrophage
accumulation, and suppressing the inflammatory immune response compared with the HFD/ApoE ~/~
mock group. Moreover, the high dose of kefir peptides substantially inhibited aortic fibrosis and
restored the fibrosis in the aorta root close to that observed in the C57BL/6 normal control group. Our
findings show, for the first time, anti-atherosclerotic progression via kefir peptides consumption in HFD-
fed ApoE '~ mice. The profitable effects of kefir peptides provide new perspectives for its use as an anti-
atherosclerotic agent in the preventive medicine.

The World Health Organization (WHO) suggests that cardiovascular diseases (CVDs) are the primary cause
of mortality, and considerably more individuals die annually from CVDs than from any other cause globally.
Atherosclerosis is known as the major cause of CVDs. The pivotal initiators involved in atherosclerosis develop-
ment are enhanced levels of low-density lipoprotein (LDL) cholesterol in the circulation, vascular reactive oxy-
gen species (ROS) generation, and inflammation’. It has been suggested that inflammation plays a fundamental
role in CVDs and atherosclerotic lesion progression? In early atherosclerotic lesions, the accumulation of foam
cells leads to fatty streak formation. Immune cells and vascular smooth muscle cells (VSMCs) accumulate in
the subendothelial layer of the artery wall**. Various inflammatory cells, including neutrophils, macrophages,
and lymphocytes, are involved in atherosclerosis progression; however, macrophages were reported as the first
inflammatory cell associated with atherosclerosis and predominantly present within atherosclerotic vessels®~”.
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With time, fatty streaks grow and change into semimature atherosclerotic plaques; macrophages are subsequently
recruited into the area by abnormal endothelium to develop atherosclerotic plaques, which is accompanied by
endothelial expression of adhesion molecules, particularly vascular cell adhesion molecule-1 (VCAM-1) and
intercellular adhesion molecule-1 (ICAM-1)>°,

Macrophages constitute the majority of atherosclerosis progressions by evolving the plaque instability
and subsequent crack of an atherosclerotic plaque, thus resulting in thrombus formation and remodeling"®°.
Furthermore, the generation of ROS in response to LDL oxidation has been shown to be regulated by mac-
rophages'®!!. The uptake of cholesterol crystals, which are present in atherosclerotic plaques, by macrophages
may induce lysosomal destabilization, protease release and ROS production into the cytosol to activate nucleotide
binding domain leucine-rich repeat-containing receptor (NLR)-pyrin domain containing 3 (NLRP3) inflam-
masome, which lead to the operation and secretion of the cytokine IL-13'2. Moreover, evidence indicates that
macrophages have a strong effect on thrombosis formation. Atherosclerotic endothelium damage results in the
reduction of endothelial NO synthase (eNOS) combined with an impaired release of NO and increases the gener-
ation of ROS in the arterial wall®. As previously discussed, oxidized-LDL (ox-LDL) and ROS are the prominent
initiators involved in atherosclerosis development.

Aspirin and statin are the most widely used drugs for atherosclerosis prevention and therapy. The pharmaco-
logical mechanism of aspirin is to prevent the formation of cyclooxygenase (COX)-dependent vasoconstrictors
from thrombosis. Although aspirin shows antithrombotic potency, it also leads to adverse side effects, including
gastrointestinal or renal toxicity, hypertension, and extracranial and intracranial hemorrhages'*'*. In addition,
the European Atherosclerosis Society consensus in 2015 regarding a serious side effect of statins indicated that
statin-associated muscle symptoms (SAMS) with significantly increased serum creatine kinase (CK) may cause
a high risk of future CVD!®!7. Therefore, there is a need to identify advanced therapeutic approaches to inhibit
atherosclerosis.

Kefir originates in the Caucasian mountains; it has been used for centuries and is traditionally produced by
the symbiotic fermentation of milk by various species of Lactobacillales and yeasts contained within an exopol-
ysaccharide, protein and biomatrix complex referred to as a kefir grain'®'®. Kefir products have been shown to
exhibit broad health benefits not only in basic research but also clinical treatments, including hyperlipidemia
prevention, gastrointestinal disease attenuation, allergy and asthma suppression, Helicobacter pylori therapeutic
improvement, anti-tumor progression applications, and enhancements in bone mineral density of osteoporotic
patients®*-%". These findings indicated the biological activities of kefir in anti-bacterial, antioxidant, anti-tumor
and immunomodulating effects. Moreover, the kefir-derived exopolysaccharide kefiran has been demonstrated
to reduce systemic cholesterol and blood pressure in spontaneously hypertensive stroke-prone (SHRSP) rats?®%.
Furthermore, ovalbumin-induced lung inflammation was inhibited by kefiran treatment in a murine model of
asthma®. The reduced number of macrophages in Peyer’s patches and subsequent mobilization of macrophages
relocated to the lamina propria indicate that the oral intake of kefiran may change the balance of macrophages
in a mouse model®. Our previous study also demonstrated that oral administration of kefir peptides prevents
high-fructose corn syrup-induced nonalcoholic fatty liver disease in a murine model via the modulation of
inflammation and the JAK2 signaling pathway. These data support the hypothesis that kefir peptides may pro-
mote lipid metabolism and anti-inflammatory effects.

The ApoE-deficient gene knockout (ApoE~~) mouse is the most widely used because of its property of spon-
taneously developing atherosclerotic lesions by feeding on a regular chow diet****. An high-fat diet (HFD) was
used to accelerate the progression of atherosclerosis. Kefir peptides showed a positive effect on the control of lipid
metabolism in HFD-induced obese rats. Therefore, we hypothesize that atherosclerotic lipid deposits may be
suppressed in kefir peptides gavage treatment and that kefir peptides may prevent the onset and/or development
of atherosclerosis. The objective of this study was to determine the role of kefir peptides in anti-atherosclerosis
through oral administration in an HFD-induced ApoE '~ mouse model.

Results

Kefir peptides improve body weight change and systemic lipid profiles in HFD-induced ath-
erosclerosis in ApoE ~/~ mouse model. The similar initial body weights of the ApoE~~ mice were ran-
domly divided into all experimental groups (Supplementary Table 1). Food consumption was not significantly
different between HFD/Mock and HFD/KPs groups (Supplementary Table 2). After the 12-week treatment, the
HFD/ApoE~~ mock group displayed a 25% increment in body weight when compared with the SCD/ApoE~~
control group (P < 0.05). Interestingly, kefir peptides (KPs) intake groups exhibited a dose-dependent reduction
of body weight, 9.8% lower in low-dose (100 mg/kg) kefir peptides group (KPs-L) and 14.6% lower in high-dose
(400 mg/kg) kefir peptides group (KPs-H) group, when compared with the HFD/ApoE~~ mock group (Fig. 1A).
Serum total cholesterol (TC) showed a 3-fold increment in SCD/ApoE~~ control group when compared with
SCD/B6 control groups, while HFD/ApoE~~ mock group showed 32% higher TC level than SCD/ApoE~~ con-
trol groups (Fig. 1B). Although serum TC showed no significant change in both the HFD/KPs-L and HFD/KPs-H
groups when compared with the HFD/ApoE~~ mock group (Fig. 1B), the concentration of serum high-density
lipoprotein (HDL) and low-density lipoprotein (LDL) showed a significantly improve in both dosages of KPs
treatment groups (Fig. 1C,D). Serum HDL showed a 40% reduction in SCD/ApoE~~ control group when com-
pared with SCD/B6 control groups, and further lower serum HDL level was detected in HFD/ApoE~~ mock
group (P < 0.05). Administration of KPs exhibited a dose-dependent upregulation of serum HDL, 40% higher
in KPs-L group and 92% higher in KPs-H group, when compared with the HFD/ApoE~~ mock group (Fig. 1C).
In addition, serum LDL showed no significant difference between SCD/ApoE~~ and SCD/B6 control groups,
while HFD/ApoE~'~ mock group showed a 2.2-fold higher serum LDL level than SCD/ApoE~~ control groups.
Administration of KPs showed a 60% reduction of serum LDL level in both of the KPs-L and KPs-H groups when
compared with the HFD/ApoE~~ mock group (P < 0.05; Fig. 1D). Administration of high-dose KPs had a better
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Figure 1. Effects of kefir peptides on body weight change and systemic lipid profiles in HFD-induced
atherosclerotic ApoE~~ mice. (A) Weight of mice at 20 weeks of age. Concentrations of (B) blood total
cholesterol (TC), (C) high-density lipoprotein (HDL), and (D) low-density lipoprotein (LDL) in different
treated mice groups were detected. Data are displayed as the mean £ SEM (n = 8). The statistical analysis was
performed according to Duncan’s multiple-range method. The labels at the top of columns without the same
letters indicate significant differences between groups (P < 0.05).

inhibitory effect on body weight increment and better effects on modulation the serum HDL and LDL level when
compared with the HFD/ApoE ~~ mock group (Fig. 1).

Kefir peptides inhibit atherosclerotic formation in HFD-induced atherosclerotic ApoE~/—
mice. Atherosclerotic plaques are composed of a lipid-rich core covered with a thin fibrous cap, contain-
ing sparse smooth muscle cells and extensive macrophages accumulation®. To visualize lipid deposition in the
atherosclerotic plaques, aortas were stained and observed with Oil red O staining. As shown in Fig. 2A,B, both
HFD/ApoE~'~ KPs groups exhibited significantly less lipid deposition in aortic roots but no effect on thoracic
portion of aortas compared with HFD/ApoE~~ mock group. The atherosclerotic lesion size was examined by the
percentage of area of atherosclerotic plaque compared to the whole cross-sectional aortic sinus area stained with
H&E (Fig. 2C). The atherosclerotic lesions showed a 2.6-fold increment in HFD/ApoE~~ mock group compared
with the SCD/ApoE~~ control group. Administration of KPs showed a significant less lesion area in a dosage
manner, 56% lower in KPs-L group and 75% lower in KPs-H group, when compared with the HFD/ApoE~'~
mock group (Fig. 2C).

Moreover, Oil red-O staining showed that small amounts of red-stained lipid deposition could be detected in
the aortic root in the SCD/ApoE~~ control group, while a 5.2-fold increment could be detected in HFD/ApoE~~
mock group compared with SCD/ApoE~~ control group. Administration of KPs inhibited lipid deposition in
the aortic roots in a dose-dependent effect, 35% lower in KPs-L group and 52% lower in KPs-H group, when
compared with the HFD/ApoE~'~ mock group (P < 0.05; Fig. 2D). Aortic walls in the HFD/ApoE~'~ mock group
exhibited a 1.3-fold increment of collagen and smooth muscle fibers production and deposition (Fig. 2E) and the
a 1.2-fold increment on plaque fibrotic caps thicknesses (Fig. 2F) compared with SCD/ApoE~~ control group.
As anticipated, the deposition of collagen content and the fibrous caps of plaques in the KPs administration
groups were thinner and contained less collagen in a dose-dependent manner, 40% thinner/31% lower in KPs-L
group and 61% thinner/59% lower in KPs-H group, respectively, when compared with the HFD/ApoE~~ mock
group (Fig. 2E,F). Histopathological results indicated that administration of high-dose KPs had a better effect on
reduction of lesion area, lipid deposition, and plaque fibrotic caps thicknesses in the atherosclerotic plaques in
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Figure 2. Kefir peptides inhibit atherosclerosis formation in HFD-induced atherosclerotic ApoE~~ mice.
The accumulations of lipid in the whole aortas of ApoE~'~ mice were observed by (A) bright view and (B) Oil
red-O staining. (C) Representative images of H&E-stained atherosclerotic lesions and quantification of plaque
size demonstrated as the percentage of lesion area within aortic root area. (D) Representative images of Oil
red O-stained aortic root sections and quantification of lipid deposition within lesion area. (E) Representative
images of Masson’s Trichrome-stained aortic root sections focused on collagen content and (F) plaque fibrotic
caps, with quantification of collagen deposition and fibrotic cap thickness, respectively. Scale bar: 200 pm. The
statistical analysis was performed according to Duncan’s multiple-range method. The labels at the top of dot
plots without the same letters indicate significant differences between groups (P < 0.05).

aortic roots, which showed no discernible difference in the atherogenic levels to the SCD/ApoE~'~ control group
(Fig. 2).

Kefir peptides protect against endothelial dysfunction in HFD-induced atherosclerotic ApoE ~/~
mice. Studies demonstrated that endothelin-1 (ET-1) and adhesion molecules (VCAM-1 and ICAM-1)
derived from arterial cells is involved in the atherosclerotic development®. These markers significant overex-
pressed in the aortic tissue in HFD/ApoE ™~ mock group compared with SCD/ApoE~~ control group (P < 0.05;
Fig. 3A,B). Oral administration of KPs significantly inhibited the aortic ET-1 and ICAM-1expression levels
compared with the HFD/ApoE~~ mock group (P < 0.05), but no significant change in VCAM-1 level among
the HFD/ApoE~~ mock and HFD/ApoE~~ KPs groups (Fig. 3A,B). Serum cardiac markers of creatine kinase
(CK), lactate dehydrogenase (LDH) and alkaline phosphatase (ALKP) are additional markers for myocardial
injury detection®*. These serum markers showed a significant increment (2.9-fold increment in CK level, 1-fold
increment in LDH level and 68% increment in ALKP level) in the HFD/ApoE~~ mock group compared with
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Figure 3. Kefir peptides protect against endothelial dysfunction in HFD-induced atherosclerotic ApoE~~
mice. (A) Western blot analysis was performed to detect endothelial markers, ET-1, VCAM-1, and ICAM-1,
protein expressions in the aortic tissue of mice. (B) The histogram shows the quantitative densitometry data of
the Western blot analysis determined by Image] system. Total a-tubulin was used as an internal quantitative
control. (C) Serum markers for myocardial injury, creatine kinase (CK), lactate dehydrogenase (LDH), and
alkaline phosphatase (ALKP), were determined. Data are displayed as the mean &+ SEM (n=8). The statistical
analysis was performed according to Duncan’s multiple-range method. The labels at the top of columns without
the same letters indicate significant differences between groups (P < 0.05).

the SCD/ApoE '~ control group (P < 0.05; Fig. 3C). However, these serum markers dose-dependently decreased
in KPs administration groups (CK level: 48% lower in KPs-L and 56% lower in KPs-H; LDH level: 34% lower
in KPs-L and 67% lower in KPs-H; ALKP level: 33% lower in KPs-L and 47% lower in KPs-H) compared with
HFD/ApoE~~ mock group (Fig. 3C). Moreover, molecular markers for atherosclerotic development, ET-1 and
ICAM-1, and serum makers for myocardial injury showed a promising improvement of high-dose KPs group
when compared with the HFD/ApoE~~ mock group (Fig. 3).

Kefir peptides decrease oxidative stress in HFD-induced atherosclerotic ApoE~~ mice. 'The
HFD/ApoE~~ mock group showed a 27% reduction of reduction of NO production resulted in a 6.6-fold incre-
ment of ROS activity, as assessed by the increase of DCF fluorescence; whilst, their downstream ox-LDL level also
showed a 3.8-fold increment when compared with the SCD/ApoE~'~ control group (Fig. 4A-C). Administration
of KPs showed a dose-dependent improvement in elevating NO production, decreasing ROS activity and ox-LDL
level when compared with HFD/ApoE~~ mock group (NO level: 28% higher in KPs-L and 75% higher in KPs-H;
ROS level: 31% lower in KPs-L and 66% lower in KPs-H; ox-LDL level: 13% lower in KPs-L and 39% lower in
KPs-H) (Fig. 4A-C). Administration of high-dose KPs had better inhibitory effects on ROS activities and serum
oxLDL level when compared with the HFD/ApoE~~ mock group (Fig. 4).

Kefir peptides reduce plaque macrophage accumulation and modulate inflammatory response
in HFD-induced atherosclerotic ApoE '~ mice. We further examined whether KPs inhibited plaque
formation through modulating inflammatory response and attenuating macrophage infiltration and accumula-
tion. In the present study, an intracellular macrophage marker, MOMA-2, was used to verify macrophage accu-
mulation in atherosclerotic plaques. The HFD/ApoE~~ mock group showed a 12-fold increment in the content
of macrophage accumulation in the lipid-rich site of atherosclerotic plaque, thereby contributing to increased
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Figure 4. Kefir peptides decrease oxidative stress in HFD-induced atherosclerotic ApoE~ mice. (A) DCF assay
to evaluate ROS levels in aortic tissues. Concentrations of (B) nitric oxide (NO) and (C) ox-LDL in serum were
detected. Data are displayed as the mean + SEM (n = 8). The statistical analysis was performed according to
Duncan’s multiple-range method. The labels at the top of columns without the same letters indicate significant
differences between groups (P < 0.05).

plaque vulnerability when compared with the SCD/ApoE~~ control group. Administration of KPs showed a
dose-dependent reduction (76% lower in KPs-L and 86% lower in KPs-H) in the macrophage accumulation com-
pared to HFD/ApoE~~ mock group (P < 0.05; Fig. 5A,B).

Several inflammatory cytokines, such as interleukin-13 (IL-183) and tumor necrosis factor-a (TNF-a),
involved in the pro-inflammatory signaling in the atherosclerosis progression®. In this study, both IL-13 and
TNF-a levels in serum and aortic tissue were detected. In serum, the IL-13 and TNF-a levels were increased by
3.6-fold and 2.6-fold, respectively, in the HFD/ApoE ™~ mock group compared to the SCD/ApoE~~ control group
(Fig. 5C,D). Furthermore, the IL-13 and TNF-a levels in aortic tissue were analyzed via western blot analysis
(Fig. 5E). The aortic protein expression levels of IL-13 and TNF-« were increased by 4-fold and 1.5-fold, respec-
tively, in the HFD/ApoE~~ mock group compared to the SCD/ApoE~~ control group (Fig. 5F). Administration
of KPs showed a dose-dependent reduction of IL-13 and TNF-« levels in serum and aortic tissue compared to
HFD/ApoE~~ mock group (Fig. 5C-F). In addition, monocyte chemoattractant protein-1 (MCP-1), which can
recruit monocyte/macrophage to the site of vascular inflammation, was significantly decreased in the both dos-
ages of KPs administration groups when compared with the HFD/ApoE~~ mock group (Fig. 5E,F). The amazing
results indicated that the high-dose of kefir peptides (HFD/ApoE '~ KPs-H) had a greater effect on inhibiting
macrophage accumulation and modulating inflammatory response in the aorta, which showed no discernible
difference in the levels of inflammation to the SCD/ApoE~~ control group (Fig. 5).

Kefir peptides suppress endothelial cell activation and THP-1 monocytes adhesion and migra-
tion under ox-LDL-conditioned cell cultures. Overexpression and accumulation of ox-LDL in the arte-
rial wall and subsequent monocyte trafficking across the vessel wall to differentiate into macrophages are critical
steps during the atherosclerotic plaque development*®*!. To mimic these steps, phorbol 12-myristate 13-acetate
(PMA)-induced THP-1 macrophages were used and then treated with ox-LDL for 48 h and conditioned medium
(CM) was collected (Fig. 6A). These ox-LDL CM were used to study the potential inhibitory effects of KPs on the
early atherosclerotic processes. As anticipated, ox-LDL CM evoke endothelial activation as shown by upregula-
tion of adhesion molecules mRNA and protein levels in HUVECs (Fig. 6). Accordingly, addition of KPs to the
ox-LDL CM showed a significant inhibitory effect on upregulation of endothelial adhesion molecules VCAM-1
and ICAM-1 mRNA expressions (29% and 40% lower, respectively) as well as protein levels (flow cytometry:
40% and 25% lower; western blot: 29% and 27% lower, respectively) in HUVEC:s after 6h incubation (Fig. 6B-F).
Results showed that KPs had a potential inhibitory effect on oxLDL-stimulated endothelial activation.

We next investigated the inhibitory effects of KPs on the adhesion and following migration ability of THP-1
monocytes (Fig. 7A). Interestingly, THP-1 monocyte strongly adheres to a confluent monolayer of ox-LDL CM
pre-incubated HUVECs under static conditions. However, addition of KPs to the ox-LDL CM pre-incubated
HUVECs showed an 83% inhibitory efficacy on THP-1 monocytes adhesion (Fig. 7A,B). Furthermore, we inves-
tigated THP-1 monocytes migration ability using the transwell system (Fig. 8). Results showed that ox-LDL CM
attract lots of THP-1 monocytes to the lower sites of insert and lower chamber, while a significant inhibitory effect
was detected (71% and 27% reduction of monocyte in lower site of insert and lower chamber, respectively) under
KPs treatment (Fig. 8). Taken together, KPs addition strongly inhibit the monocyte adhesion to endothelial and
subsequent migration into the subendothelial region (Figs. 7 and 8).

Discussion

Despite the benefits of aspirin and statin, which are well-established in CVD prevention and therapy, the possi-
bility of aftereffects must be considered'*®. In this study, we first demonstrated anti-atherosclerotic progression
by kefir peptides consumption in ApoE knockout mice. A substantial increase in aortic lipid deposition, oxidative
stress, plaque macrophage accumulation, systemic inflammatory response and aortic fibrosis were induced by
HFD-induced atherosclerosis. The beneficial of HFD-induced atherosclerotic mouse model than spontaneously
developing atherosclerotic lesions by SCD-fed ApoE~~ mouse model is that HFD can accelerate the progression
of atherosclerosis and also elevate AST and ALT levels (Supplementary Fig. 1A,B) to increase the risk of devel-
oping CVD. Treatment with kefir peptides completely indicated an anti-atherogenic effect in a dose-dependent

SCIENTIFIC REPORTS |

(2020) 10:8802 | https://doi.org/10.1038/s41598-020-65782-8


https://doi.org/10.1038/s41598-020-65782-8

www.nature.com/scientificreports/

A SCD HFD B
ApoE* ApoE* ApoE* ApoE
B6 control control Mock KPs-L KPs-H

=)
1

w
1
1S
S
[=x

(% of lesion area)

MOMA-2/DAPI

a

=
T

B6  ApoE”" ApoE”" ApoE”" ApoE”
control control Mock KPs-L KPs-H

o SCD HFD
)
Q
~
S
= 60- g ¢
g )
S~
g{z & be
~ _
o 40 §
i =} ab
' Z
= - = ab
g g
=] =
b e
) 9
n n
0- i " /e w3 B6 ApUE'/' Apo];"/' Apo]i'/' ApoE'/'
co?lfrol f([)) :tl;ol AI(/,I(;]c:k AK[;(;{L /l?l))nsl-H control control Mock KPs-L KPs-H
SCD HFD 8CD HED
E SCD HFD F
B6 control APOE”  ApoE” ApoE” ApoE” 2
control  Mock  KPs-L  KPs-H 2| =
o=
MCP-1| —_———e-—— - - -""3
L=
29
=
a-tubulin | ——-----..‘ ch g
27
IL-1B| -_.._.-—--——-—.‘

MCP-1 IL-1B TNF-o

TNF-Q| e — e e - — -‘

[ HFD/ApoE'/' Mock
= HFD/ApoE”” KPs-L
B HFD/Apol” KPs-H

=3 SCD/B6 control
..q E= SCD/ApoE™” control

o-tubulin |

Figure 5. Kefir peptides attenuate monocyte/macrophage infiltration and inflammatory cytokine expressions
in HFD-induced atherosclerotic ApoE~~ mice. (A) Representative images showing the lesion content of
MOMA-2" macrophage (upper panel) or lipid deposition (lower panel) in each group. Sections of aortic
roots were stained with MOMA-2 antibody and Oil red O to visualize macrophage distribution within lesion
area. The rectangles in the (A) upper and lower panels indicate the same area we chose, which are magnified
in the middle panel. Macrophages were stained with MOMA-2 (green); Nuclear was stained with DAPI
(blue). Scale bar: 200 pm. (B) The histogram shows the quantification data of macrophage infiltration within
lesion area. Proinflammatory cytokine levels of IL-13 and TNF-« in serum (C and D) and in aortic tissues
(E) were determined by ELISA and Western blot analysis, respectively. Aortic MCP-1 protein expression

was also evaluated by Western blot analysis (E). (F) The histogram shows the quantitative densitometry data
of the Western blot analysis determined by Image] system. Data are displayed as the mean &= SEM (n=38).
The statistical analysis was performed according to Duncan’s multiple-range method. The labels at the top of
columns without the same letters indicate significant differences between groups (P < 0.05).

manner. Our investigation suggested fruitful effects of kefir peptides to support novel therapy and prevention
approaches for anti-atherosclerotic effects. The proposed mechanism of kefir peptides in atherosclerosis treat-
ment are shown in Fig. 9.

Considering human atherosclerosis development takes from months to years or even decades with individ-
ual variations, thus two ideal strains of mice, ApoE~~ and LDL receptor deficient (Ldlr~~) mice, to study the
atherosclerosis are established, which are susceptible to develop atherosclerotic lesion formation during high-fat
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Figure 6. Effects of kefir peptides on endothelial adhesion molecules. (A) Flow chart of the conditioned
medium (oxLDL CM) collection from ox-LDL-stimulated THP-1 macrophages. Conditioned medium from
unstimulated THP-1 macrophages were used as a control (Ctrl CM). (B, C) Expression of adhesion molecules,
VCAM-1 and ICAM-1, in HUVEC:s after 6 h incubation in oxLDL CM or Ctrl CM with or without kefir
peptides (KPs, 100 ug/ml) were determined by flow cytometry. The histograms on the (B and C) right show
the quantification data of three independent HUVECs samples of VCAM-1 or ICAM-1-antibody staining,
respectively. (D) Western blot analysis of VCAM-1 and ICAM-1 protein expressions. The histogram on the
lower panel shows the quantitative densitometry data of the Western blot analysis determined by Image].
Quantitative mRNA expressions of VCAM-1 (E) and ICAM-1 (F) were performed by real-time RT-PCR
analysis. Values were normalized to the 3-actin gene and are expressed relative to the control (Ctrl) group.
The statistical analysis was performed according to Duncan’s multiple-range method. The labels at the top of
columns without the same letters indicate significant differences between groups (P < 0.05).

or high-cholesterol diet and several features of the disease mimic to humans*2. Although both strains develop
features of type 2 diabetes and promote atherosclerosis development, Ldlr”~ mice are more prone to develop
diabetic phenotype including increased body weight, subcutaneous fat accumulation, high blood glucose, and
developed an insulin resistance compared to the ApoE~~ mice and the control wild-type mice during HFD chal-
lenge*®. On a standard chow diet, ApoE~~ mice showed higher total cholesterol level in plasma compared with
Ldilr~'~ and the control wild-type mice, similar result detected in Fig. 1B, and eventually develop atherosclerotic
lesions a few months after birth*. Due to the imbalance of the cholesterol deposition in the macrophage and tis-
sue which trigger side effects related to inflammation and extracellular matrix degradation, such as Alzheimer’s,
steatohepatitis, and respiratory diseases*. Therefore, the choice of the diet is very important. A high-cholesterol
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Figure 7. Effects of kefir peptides on adhesion of THP-1 monocytes to endothelial cells. (A) Flow chart of

the experimental setting. (B) Representative fluorescent images showing CM-Dil-labeled THP-1 monocytes
on HUVECs monolayer after 4 h incubation in oxXLDL CM or Ctrl CM with or without kefir peptides (KPs,

100 pg/ml) followed by addition of red fluorescent CM-Dil labeled THP-1 monocytes. Pictures before (upper
panel) and after (lower panel) DPBS wash are taken. (C) The histogram shows the quantification data of

three independent adherent cells per high power field (HPF) after washing determined by Image]. Ctrl CM:
conditioned medium from unstimulated THP-1 macrophages as a control. Scale bar: 200 um. The statistical
analysis was performed according to Duncan’s multiple-range method. The labels at the top of columns without
the same letters indicate significant differences between groups (P < 0.05).

diet but not high-fat diet in given to ApoE~~ mice with high risk factors for neurodegeneration®, Alzheimer dis-
ease’”*, retinal abnormalities*’, and chronic obstructive pulmonary disease (COPD)*. Taken together, we chose
the high-fat diet to induce atherosclerosis in ApoE~~ mouse model in this study.

Our previous in vivo animal study demonstrated that kefir peptides prevent hyperlipidemia in HFD-induced
obese rats through the inhibition of the lipogenesis pathway through reduced fatty acid synthase (FAS) enzyme,
increased p-ACC protein, and stimulation of the lipid oxidation pathway via augmented expression of p-AMPK,
PPAR-q, and CPT1%. Moreover, we found that kefir peptides improved non-alcoholic fatty liver diseases through
manipulation of the JAK2/STAT3 and JAK2/AMPK signaling pathways in a high fructose-induced fatty liver ani-
mal model®. These current studies indicated that kefir peptides play an important role in lipid metabolism mod-
ulation. The precise detection of lipid deposition is critical for monitoring atherosclerotic progression. Although
circulating cholesterol accumulation in HFD-induced atherosclerosis was not suppressed by kefir peptide treat-
ment, the aortic lipid deposition was dramatically abolished by kefir peptide administration, which suggested
that the anti-atherogenic effect by kefir peptides did not occur through the regulation of cholesterol metabolism.
Another view of this result suggested that HFD-induced atherosclerosis in ApoE~~ mice may develop serious
atherosclerosis, and the hyperlipidemia was not extremely altered by kefir peptides (Fig. 1B).

ET-1, a potent vascular function indicator, is involved in vasoconstriction, free radical formation and proin-
flammatory response and results in the development of vascular dysfunction and cardiovascular disease’'.
Furthermore, ox-LDL, induced by ET-1 in human endothelial cells, stimulates ROS generation through NADPH
oxidase as previously reported®**. Our results demonstrated that ET-1, ox-LDL, and ROS were significantly
decreased by kefir peptide treatment in HFD-induced atherosclerosis mice, which suggested that kefir pep-
tides may have an effect on endothelial function protection (Figs. 3 and 4). Not surprisingly, in a previous study,
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Figure 8. Effects of kefir peptides on migration of THP-1 monocytes. (A) Flow chart of the experimental
setting. (B) Representative fluorescent images showing CM-Dil-labeled THP-1 monocytes which migrated
across the transwell insert membrane to the lower site after 2h incubation in oxLDL CM or Ctrl CM with or
without kefir peptides (KPs, 100 pig/ml). (C) The histogram shows the quantification data of three independent
migrated cells on the lower site of transwell insert per high power field determined by Image]. Scale bar: 200
pm. (D) The histogram shows the number of three independent migrated cells pass through the transwell insert
which suspend in the lower chamber were counted using hemocytometer. The statistical analysis was performed
according to Duncan’s multiple-range method. The labels at the top of columns without the same letters indicate
significant differences between groups (P < 0.05).
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Figure 9. Schematic action of kefir peptides on suppression of HFD-induced atherosclerotic progression. The
potential action of kefir peptides on anti-atherosclerosis progression through protection against endothelium
dysfunction, inhibition of monocyte adhesion/migration, inflammatory response, ox-LDL generation, and
oxidative stress, followed by attenuation of aortic lipid deposition, macrophage accumulation in plaques and
heart fibrosis.
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Friques and his colleagues® also found that kefir ameliorates the endothelial function in spontaneously hyperten-
sive rats (SHR) by restoring the ROS/NO imbalance. Our results showed that no significantly change on the blood
pressure (BP), including systolic, diastolic, and mean blood pressure after 12 weeks HFD and KPs administration
between each group (Supplementary Fig. 1C-E).

Atherosclerosis is a chronic inflammatory disorder of aortic disease. Expressions of both ICAM-1 and
VCAM-1 are produced on endothelial cells of atherosclerotic plaque development by several mediators, includ-
ing ROS and ox-LDL*. More importantly, ICAM-1 and VCAM-1, expressed by abnormal endothelium in devel-
oping atherosclerotic plaques, are required for the circulating monocyte recruitment to atherosclerotic lesions™.
Moreover, VCAM-1 has been shown to play a dominant role in the initiation of atherosclerosis®. However, evi-
dence has demonstrated that ICAM-1 deficiency substantially protects against atherosclerosis lesion formation
in ApoE~~ mice®®*, indicating a controversial issue, which is the dominate mediator between ICAM-1 and
VCAM-1 in modulating atherosclerosis progression. Our results indicated there was no significant difference in
VCAM-1 was observed among the HFD/ApoE~~ mock, HFD/ApoE~~ KPs-L, and HFD/ApoE~~ KPs-H groups;
however, the expression of ICAM-1 protein was substantially suppressed in both the HFD/ApoE~~ KPs-L and
HFD/ApoE~~ KPs-H groups compared to the HFD/ApoE~~ mock group (Fig. 3). Consistently, ICAM-1 inhibi-
tion markedly attenuates macrophage homing to atherosclerotic plaques in ApoE-deficient mice®, which suggests
ICAM-1 may play a leading role in atherosclerosis procession.

Atherosclerotic lesion development is an inflammatory process accompanied by the recruitment and acti-
vation of macrophages, which trigger downstream cascade activation and enhance inflammatory cytokine
secretion. Abundant evidence indicates that macrophage-mediated inflammation comprises a central role in ath-
erosclerotic development and may trigger acute thrombotic vascular disease, stroke, myocardial infarction, and
sudden cardiac death®¢2, Our study identified macrophages in the blood stream and homing to atherosclerotic
lesions through MCP-1 chemoattractant, which is secreted by aortic endothelial cells. Suppressing the accumula-
tion of lesion macrophages by kefir peptide consumption effectively decreased the inflammatory cytokine IL-13
and TNF-a production (Fig. 5). The anti-inflammatory properties of kefir products have been demonstrated in a
mouse model and humans®. Our results further suggest that kefir peptides may be absorbed into the blood and
influence atherosclerotic development through its immune modulation ability.

Conclusion

In summary, our results indicated that atherosclerotic lesion development in HFD-induced atherosclerotic
ApoE~~ mice was improved by oral administration of kefir peptides. We identified reduced aortic lipid depo-
sition, oxidative stress, macrophage accumulation in plaques, systemic IL-13 and TNF-« levels, and aortic root
fibrosis and enhanced endothelial function following kefir peptide intake compared with the SCD/ApoE~'~
control group. Furthermore, the in vitro cell studies also demonstrated that kefir peptides suppress endothelial
cell activation and THP-1 monocytes adhesion and migration under ox-LDL-conditioned cell cultures. These
results suggested that kefir peptides play a role in anti-atherosclerosis potentially by modulating the immune
cell responses, reducing ROS and ox-LDL productions, and regulating cytokine related pathways. The profitable
impacts of kefir peptides provide new perspectives for its use as an anti-atherosclerotic agent in the preventive
medicine.

Methods

Experimental animals. C57BL/6 and ApoE~~ mice purchased from the Jackson Laboratory (Bar Harbor,
ME, USA) were maintained on a 12-h light-dark cycle at 22 & 2°C. This study was conducted according to institu-
tional guidelines and was approved by the Institutional Animal Care and Utilization Committee of the National
Chung Hsing University (IACUC No. 104-076), Taiwan. All animal procedures were conformed to the guidelines
from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.
The experimental animals were acclimated to the environment and diet for 2 weeks. At the age of 7 weeks, the
male mice were fed a standard chow diet (SCD) (28.5% protein, 13.4% fat, and 58.1% carbohydrates; Cat. No.
5001, LabDiet Co., St. Louis, MO, USA) or an atherogenic high-fat diet (HFD) (18.1% protein, 61.6% fat, and
20.3% carbohydrates; Cat. No. 58Y1, LabDiet Co.) for 12 weeks. The male mice were randomly divided into five
treatment groups (n =38): (1) C57BL/6 mice on a standard chow diet (SCD/B6 control); (2) ApoE~'~ mice on a
standard chow diet (SCD/ApoE~~ control); (3) ApoE~'~ mice on an HFD + PBS treatment as a mock control
(HFD/ApoE~~ mock); (4) ApoE~~ mice on an HFD + 100 mg/kg low-dose kefir peptides powder (HFD/ApoE '~
KPs-L); and (5) ApoE~~ mice on an HFD + 400 mg/kg high-dose kefir peptides powder (HFD/ApoE~~ KPs-H).
Kefir peptides were dissolved in phosphate-buffered saline (PBS; pH 7.4) and orally administered daily for 12
weeks. The mice were sacrificed by intra-peritoneal injection of pentobarbital (60 mg/kg) at 19 weeks of age,
after 12 weeks of kefir peptides administration. The heart, aorta, blood, and tissues were collected for further
examination.

Kefir peptides preparation. Kefir starter grains (Phermpep Co., Taichung, Taiwan) were inoculated (5%,
wt/vol) and propagated in sterilized milk at 20°C for 20 h to activate them. The grains were retrieved through
a sieve, reinoculated (10%, wt/vol) into sterilized fresh milk and incubated following the previously described
methods®>*. The peptide content in the kefir peptides powder (Phermpep Co., Taichung, Taiwan), calculated
as the triglycine equivalent in gram per 100 g sample, was 23.1 g/100g. The compositions and quality controls
of kefir peptides powder for the peptides separation and reproducibility are shown in the Supplementary Fig. 2.

Determination of biochemical markers. Blood samples were obtained from the retro-orbital sinus
using a serum separation tube (SST). Serum was collected following centrifugation of the blood at 10,000 x
rpm for 10 min. The levels of total cholesterol (TC), creatine kinase (CK), alkaline phosphatase (ALKP), lactic
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dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured
using a VetTest™ automatic colorimetrically analyzer (Idexx Laboratories Inc., Westbrook, ME, USA)*. The
levels of oxidized low-density lipoprotein (ox-LDL), nitric oxide (NO), reactive oxygen/nitrogen species (ROS/
RNS), and inflammatory cytokines, including TNF-o and IL-103, were determined by ELISA kits (Abcam Inc.,
Cambridge, MA, USA) according to the manufacturer’s protocol.

Western blot analysis. The thoracic aortas and cell lines were homogenized in 300 pl of an RIPA buffer
(Sigma-Aldrich, St. Louis, MO, USA) for protein extraction. The protein (50 1g) was then separated via 10%
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and electrotransferred onto polyvinylidene difluoride
(PVDF) membranes. The membranes were incubated in a blocking solution (5% bovine serum albumin) at
room temperature for 2 h, followed by incubation with a primary antibody (MCP-1, ICAM-1, VCAM-1, ET-1,
TNF-q, IL-1B3, a-tubulin or 3-actin; Abcam Inc.) overnight at 4 °C. After washing, the membranes were incubated
with anti-rabbit or anti-mouse horseradish peroxidase (HRP) conjugated secondary antibody. The membranes
were developed using an enhanced chemiluminescence (ECL) western blot detection system (GE Healthcare
Biosciences, Pittsburgh, PA, USA) as previously described*°.

Histological and immunofluorescent (IF) staining. The C57BL/6 and ApoE~~ mice were scarified,
the thoracic cavity was opened and perfused with PBS via the left ventricle, and then aortic artery was collected.
Aortic sinus tissues were fixed in 4% paraformaldehyde overnight, embedded in paraffin, and cut into sections
for hematoxylin and eosin (H&E) staining. Atherosclerotic plaques sizes were examined and quantified from
four independent sets of H&E-stained section. Oil red O staining was performed to identify the lipid deposi-
tion as previously described*. Briefly, frozen aortic sinus tissue sections (10-12 pm) and en face aortic samples
were stained with Oil red O (Sigma-Aldrich) for 10 min at 37°C, washed and counterstained with hematoxy-
lin for 1 min to determine lipid accumulation. Representative photomicrographs were captured using Olympus
IX71 microscope with an AxioCam MRc camera. The quantification of Oil red O-positive staining area was
performed in the middle of 4 sections (slides 3-6) out of 9 serial sections of aortic root (Supplementary Fig. 3)
using NIH Image software (Image] 1.35 d; NIH, Bethesda, MD, USA)®. IF staining was performed with primary
antibody of rabbit anti-MOMA-2 (1:50; Abcam Inc.) and Alexa Fluor® 488 conjugated donkey anti-rabbit IgG
(Abcam Inc.) according to the manufacturer’s protocol. The slides were mounted with DAPI-Fluoromount-GTM
(SouthernBiotech, Birmingham, AL, USA) and analyzed by fluorescence microscopy®.

Masson’s trichrome staining was performed to identify the collagen fibers contents in the aortic sinus tissue
sections as previously described® A 1l analyses were followed the protocol and performed by a pathologist who
was blinded to the experimental procedure.

Cell lines. Human monocytic cell line (THP-1) was purchase from Bioresource Collection and Research
Center (Hsinchu, Taiwan). Cell lines were maintained in RPMI-1640 media supplemented with 10%
heat-inactivated FBS (Life Technologies Co., Camarillo, CA, USA), 1% penicillin/streptomycin and 50 uM
B-mercaptoethanol (Sigma-Aldrich) and were incubated at 370C in a 5% CO, incubator. Human umbilical vein
endothelial cell line (HUVECs) was purchased from Lonza Walkersville, Inc. (Walkersville, MD, USA). Cell lines
were maintained in the endothelial cell basal medium (EBM-2, Lonza) supplemented with an endothelial cell
growth SingleQuot kit (EGM-2, Lonza) and were incubated at 37 °C in a 5% CO, incubator.

Preparation of conditioned medium. As shown in Fig. 6A, THP-1 cells were differentiated to adher-
ent macrophages by overnight culture in culture medium supplemented with 100 ng/ml phorbol 12-myristate
13-acetate (PMA, Sigma-Aldrich), and then with 35pg/mL ox-LDL (Life Technologies Co.) for 48 h. After stim-
ulation, supernatant was collected and removed cell debris by centrifugation and passed through 0.2 pm filters.
The conditioned medium is referred as an ox-LDL CM and the collected medium from unstimulated THP-1
macrophages is referred as a control CM.

Adhesion assay. As shown in Fig. 7A, 3x 10* HUVECs were seeded on 48 well plate in EBM-2/ EGM-2
medium, to complete confluence. Cells were incubated with ox-LDL CM with or without KPs (100 ug/ml) for 4 h.
After stimulation, HUVECs were washed twice with DPSB and 5% 10° CM-Dil-labeled THP-1 monocytes were
added to each well of a 48 well plate and incubated at 37 °C in a 5% CO, incubator for 30 min. Then, each well was
washed three times with DPBS and high-power field (HPF) digital images were captured using Olympus IX71
microscope with an AxioCam MRc camera. Adhered cells per HPF was counted and calculated using Image]
software (National Institute of Health, USA).

Migration assay. Asshown in Fig. 8A, 1x10° CM-Dil labeled THP-1 monocytes were added to transwell
inserts (Millipore, Danvers, MA, USA) with 8 pm pores and incubated in complete medium with or without KPs
(100 pg/ml). Assemble transwell inserts in the chamber of 24-wells culture plate with ox-LDL CM or control CM
and incubated at 37 °C in a 5% CO, incubator for 2 h. Cells on the top of the transwell insert were removed using a
cotton swab and only migrated cells on the lower site membrane of transwell insert or suspend in the lower cham-
ber were analyzed. The transwell insert membrane were carefully cut and mounted with FluoreGuard Mounting
Medium (Biosystems, Barcelona, Spain) on a glass slide. The high-power field (HPF) digital images were taken
using Zeiss AxioScope Al microscope with an AxioCam MRc camera. Cells per HPF was counted and calculated
using Image] software. To determine the migrated cell numbers in lower chamber using the haemacytometer.

Flow cytometry analysis. Flow cytometry was used to examine the ICAM-1 and VCAM-1 expressions on
the endothelial cells surface according to manufacturer’s instructions (Abcam Inc.). Briefly, detached cells were
fixed with 10% formalin for 20 min, and then incubated 1h at room temperature with the following antibodies
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at appropriate dilutions in 2% Tween-20 with 2% BSA in PBS: ICAM-1 (1 pg/test) and VCAM-1 (1:40 dilutions).
The cells were then incubated with an appropriate Alexa Fluor® 488 and Alexa Fluor® 633 dye-conjugated sec-
ondary antibody (1:500 dilutions) at room temperature for 30 min. After rinsing the cells twice, fluorescence was
detected and analyzed using BD Accuri™ C6 Plus flow cytometry (BD Biosciences, Franklin Lakes, NJ, USA).

RNA isolation and quantitative real-time RT-PCR. Total RNA was prepared from cell lines using
the Presto™ DNA RNA Protein Extraction Kit (Geneaid Biotech Ltd., Taipei, Taiwan). RNAs were reverse
transcribed into cDNAs using an MMLV Reverse Transcription kit (Protech, Sparks, NV, USA). Quantitative
real-time RT-PCR was performed using qPCRBIO SyGreen Mix and the Rotor-Gene 6000 cycler (Qiagen Inc.,
Germantown, MD, USA). Relative gene expression was determined by the AACt method, where Ct is the thresh-
old cycle. The relative mRNA expression levels were normalized to the mRNA level of the reference (3-actin gene.
Primer sequences are listed as follows: VCAM-1 forward: 5-GCAAGTCTACATATCACCCAAG-3' and VCAM-1
reverse: 5-TCACAGAGCCACCTTCTT-3’; ICAM-1 forward: 5-CCGGAAGGTGTATGAACTG-3’ and
ICAM-1 reverse: 5-TCCATGGTGATCTCTCCTC-3/, 3-actin forward: 5'-GCGAGAAGATGACCCAGATC-3'
and (-actin reverse: 5’-CCAGTGGTACGGCCAGAGG-3'.

Statistical analysis. All data are expressed as the mean & SEM. The statistical analysis was performed
according to Duncan’s multiple-range method to detect differences in the parameters among the control and
treatment groups using Prism software (Prism 8.0, GraphPad Software, Inc., San Diego, CA, USA) and SPSS
(Statistical Product and Service Solutions; IBM., New York, NY, USA). The labels at the top of columns or dot
plots without the same letters indicate the significant difference between each group. The threshold for statistical
significance was P < 0.05.

Ethics approval and consent to participate. All animal experiments were performed according to the
guidelines and were approved by the Institutional Animal Care and Utilization Committee of National Chung
Hsing University, Taiwan (IJACUC No. 104-076).

Data availability
All data and materials are included in the article and its supplementary information files.
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