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OPEN

Digital health metrics promise to advance the understanding of impaired body functions, for example in neurological disorders.
However, their clinical integration is challenged by an insufficient validation of the many existing and often abstract metrics. Here,
we propose a data-driven framework to select and validate a clinically relevant core set of digital health metrics extracted from a
technology-aided assessment. As an exemplary use-case, the framework is applied to the Virtual Peg Insertion Test (VPIT), a
technology-aided assessment of upper limb sensorimotor impairments. The framework builds on a use-case-specific
pathophysiological motivation of metrics, models demographic confounds, and evaluates the most important clinimetric properties
(discriminant validity, structural validity, reliability, measurement error, learning effects). Applied to 77 metrics of the VPIT collected
from 120 neurologically intact and 89 affected individuals, the framework allowed selecting 10 clinically relevant core metrics.
These assessed the severity of multiple sensorimotor impairments in a valid, reliable, and informative manner. These metrics
provided added clinical value by detecting impairments in neurological subjects that did not show any deficits according to
conventional scales, and by covering sensorimotor impairments of the arm and hand with a single assessment. The proposed
framework provides a transparent, step-by-step selection procedure based on clinically relevant evidence. This creates an
interesting alternative to established selection algorithms that optimize mathematical loss functions and are not always intuitive to
retrace. This could help addressing the insufficient clinical integration of digital health metrics. For the VPIT, it allowed establishing
validated core metrics, paving the way for their integration into neurorehabilitation trials.
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INTRODUCTION

Assessments of impaired body functions, as observed in many
diseases and disorders, are a fundamental part of the modern
healthcare system’. Specifically, these assessments are essential to
shed light on the often unknown mechanisms underlying the
impairments and their temporal evolution, to individualize
therapeutic interventions, and to provide documentation for
insurances justifying further therapy. An exemplary application
scenario of assessments are neurological disorders, including
stroke, multiple sclerosis (MS), and hereditary ataxic conditions,
where impairments in the sensorimotor system are commonly

Digital health metrics, herein defined as discrete one-
dimensional metrics that are extracted from health-related sensor
data, promise to overcome these shortcomings by proposing
objective and traceable descriptions of human behavior without
ceiling effects and with high resolution'> ", This offers the
potential to more sensitively characterize impairments and
significantly reduce sample sizes required in resource-
demanding clinical trials'®. In the context of assessing sensor-
imotor impairments, a variety of digital health metrics relying on
kinematic or kinetic data have been successfully applied to
characterize abnormal movement patterns'>'9%°,

However, the integration of digital health metrics into clinical

present, for example, when coordinating arm and hand during
goal-directed activities>™. In research studies, such deficits are
often assessed by healthcare practitioners, who subjectively
evaluate persons with impairments during multiple standardized
tasks (referred to as conventional scales)®™®. While most of these
scales are validated and their interpretation fairly well understood
and documented, they often have a limited ability to detect fine
impairments because of limited knowledge about behavioral
variability, low resolution, and ceiling effects®'°. This can lead to
bias when attempting to model and better understand long-
itudinal changes in impairment severity'"'2,

routine and research is still inhibited by an insufficient evaluation
of the vast amount of existing measures and the need for core sets
of validated and clinically relevant measures for the targeted
impairments'>2'"%, Indeed, recent reviews reported the use of
over 150 sensor-based metrics for quantifying upper limb
sensorimotor impairments and highlighted a clear lack of
evidence regarding their pathophysiological motivation and
clinimetric properties'®**, Especially the ability of a metric to
detect impairments (discriminant validity) as well as the depen-
dency to other metrics and the underlying information content
(structural validity) are often not evaluated. Similarly, test-retest
reliability, measurement error arising from intra-subject variability,
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and learning effects are only rarely considered, but their
evaluation is fundamental to reliably and sensitively quantify
impairments in an insightful manner®®. Further, the influence of
participant demographics, such as age, sex, and handedness, on
the metrics is often not accurately modeled, but needs to be taken
into account to remove possible confounds and provide an
unbiased assessment. Most importantly, the high variability of
clinimetric properties across behavioral tasks and sensor-based
metrics motivates the need for a methodology to select metrics
for a specific assessment task, starting from a large set of potential
metrics that should be narrowed down to a clinically relevant core
set'>?125 Existing approaches to select core sets of metrics
commonly rely on the consensus from a group of selected experts,
which can lead to bias and is often not task-dependent®'*’—°,
Moreover, existing data-driven selection procedures (e.g.,
regression-based methods such as LASSO), are rarely tailored to
the specific requirements of digital health metrics, where often no
accurate ground truth about the targeted impairments is
available®'™33, Lastly, available data-driven algorithms tend to
resemble ’black-box’ approaches, thereby not providing a
transparent evaluation of intuitive and clinically established
criteria, such as clinimetric properties, which is essential to
enhance the clinical integration of assessments®®.,

Hence, the objective of this work was to propose and apply a
transparent data-driven framework to select and validate digital
health metrics, aimed at providing clinically relevant evidence that
facilitates their integration into research trials. The approach (Fig.
1a) relies on (i) a use-case-specific pathophysiological motivation
for digital health metrics to represent clinically relevant impair-
ments, considers (ii) the modeling of confounds arising through
participant demographics, and implements (iii) data processing
steps to quantitatively evaluate metrics based on the most
important clinimetric properties (discriminant validity, structural
validity, test-retest reliability, measurement error, and learning
effects). Herein, we present this framework in the context of a use-
case with the Virtual Peg Insertion Test (VPIT, Fig. 1b), an
instrumented assessment of upper limb sensorimotor impair-
ments consisting of a goal-directed manipulation task in a virtual
environment®*3°, We hypothesized that the presented metho-
dology would be able to reduce a large set of metrics to a core set
with optimal clinimetric properties that allows longitudinally
assessing the severity of the targeted impairments in a robust
and insightful manner.

Targeting this objective is important, as the proposed data-
driven framework can easily be applied to metrics gathered with
other digital health technologies. This will help addressing the
lacking evaluation, standardization, and interpretability of digital
health metrics, a necessary step to improve their still limited
clinical relevance'>?%?3, Further, the presented use-case estab-
lishes a validated core set of metrics for the VPIT, paving the way
for its integration into clinical trials in neurorehabilitation.

RESULTS

Overview of the framework for the selection and validation of
digital health metrics

In the following, a summary of the proposed framework is
provided (Fig. 1), whereas methodological and implementation
details can be found in the Methods. The MATLAB source code for
metric selection framework is publicly available at: https://github.
com/ChristophKanzler/MetricSelectionFramework.

The framework starts with pathophysiological hypotheses about
the connection of the digital health metrics to the impairments
that are targeted with a specific technology-aided assessment.
Subsequently, the first metric selection step requires that the
influence of participant demographics such as age, sex, and tested
body side can be accurately compensated through multi-
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dimensional mixed effect models, as defined by the models’
absolute estimation error (quality criteria C1 and C2, Egs. (5) and
(6)). As part of the second metric selection step, metrics have to
sensitively discriminate between intact and affected subjects as
defined by an receiver-operating characteristic (ROC) analysis,
thereby providing strong evidence of their ability to identify
specific impairments. Additionally, the metrics need to have at
least acceptable test-retest reliability as defined by the intra-class
correlation coefficient (ICC > 0.7), which allows to longitudinally
discriminate across subjects when monitoring recovery. Further,
metrics with highest measurement error, as defined by the
smallest real difference (SRD% < 30.3) are removed. This ensures
that intervention-induced changes can be sensitively captured.
Also, metrics with strong learning effects, as defined by the
systematic change between test and retest (n>—6.35) are
discarded to allow a discrimination between task-related learning
and intervention-induced changes. As a third step, redundant
information are removed via a partial correlation analysis (o, < 0.5)
to foster clinical interpretability and provide a concise set of highly
informative metrics. Lastly, two additional validation steps ensure
that the metrics are able to capture clinically defined disability
levels and enable a speculative discussion of the initially defined
pathophysiological hypothesis based on an exploratory factor
analysis.

Application of the framework to the VPIT

In the following, the exemplary use-case of the metric selection
framework with the VPIT is presented, whereas an extensive
comparative analysis between the proposed framework and three
established machine learning-based metric selection algorithms
can be found in the supplementary material (Supplementary
Fig. 1, Supplementary Tables 1-3).

In more detail, 77 kinematic and kinetic metrics (Tables 2 and 3,
see “Methods” section for details) that can be extracted from the
VPIT were physiologically motivated by connecting the expected
abnormal movement patterns during a goal-directed task to their
underlying sensorimotor impairments, using both neuroscience-
oriented and clinically-oriented concepts. Subsequently, the
framework was applied to VPIT data (Table 1) that were collected
in 120 neurologically intact subjects (i.e., normative reference) and
89 neurologically affected subjects (53 with stroke, 28 with MS,
and 8 with autosomal recessive spastic ataxia of Charlevoix-
Saguenay (ARSACS)). In total, data from 43,350 individual move-
ments were recorded. The neurologically intact subjects were of
age 51.1 [34.6, 65.6] years (median [25th, 75th percentile]; 60 male;
107 right hand dominant; 12 with stereo vision deficits) and 60 of
them performed a test-retest session (age 48.8 [40.2, 60.2]; 34
male; 48 right hand dominant; time between sessions 5.0 [4.0, 6.5]
days). The neurologically affected subjects were 56.2 [42.1, 65.3]
years old, 52 were male, 75 were right hand dominant, and for
35 stroke subjects, the right body side was most affected. Most
individuals had moderate to mild levels of upper limb disability,
which was characterized with conventional scales that are
commonly used for each population. The Fugl-Meyer assessment
for the upper extremity (FMA-UE) was 57 [49, 65] for post-stroke
subjects, the action research arm test (ARAT) was 52.0 [46.5, 56.0]
for subjects with MS, and the nine hole peg test (NHPT) was 43.5
[33.1, 58.7] s in subjects with ARSACS. Detailed demographic and
clinical information can be found in Supplementary Table 4.

Selection of metrics: step 1

The influence of potential confounds arising from subject
demographics and the model quality for each sensor-based
metric including p-values can be found in Supplementary Table 5
(example in Fig. 2). For all metrics, 69.7%, 44.7%, 27.6%, 6.6%, and
7.9% were significantly (p <0.05) influenced by age, sex, tested
side, hand dominance, and stereo vision deficits, respectively.
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Fig.1 Overview of the metric selection framework and the Virtual Peg Insertion Test (VPIT). a The frameworks allows to select a core set of
validated digital health metrics through a transparent step-by-step selection procedure. Model quality criteria C1 and C2; ROC receiver
operating characteristics, AUC area under curve, ICC intra-class correlation, SRD% smallest real difference; n strength of learning effects. b The
framework was applied to data recorded with the VPIT, a sensor-based upper limb sensorimotor assessment requiring the coordination of arm

and hand movements as well as grip forces.

The required quality of the models, according to the C1 and C2
criteria, were not fulfilled by 13 (16.9%) of all metrics, including a
simulated Gaussian noise metric aimed at testing the robustness
of the framework.

Selection of metrics: step 2

Thirteen (16.9%) out of 77 metrics fulfilled the criteria of the
validity, reliability, measurement error, and learning analysis
(Fig. 2, Tables 2 and 3). The median AUC, ICC, SRD%, and n values
of the 12 metrics that passed steps 1 and 2 were 0.77 [0.74, 0.85],
and 0.80 [0.75, 0.82], 24.6 [21.5, 26.2], and —5.72 [-6.09, —3.27],
respectively. The simulated Gaussian noise metric did not pass
this evaluation step (AUC=0.37, ICC=—0.07, SRD% = 117.04,
n=0.25).

Selection of metrics: step 3

The constructed partial correlation matrices can be found in Fig. 3.
Among the remaining metrics, grip force rate number of peaks
hole approach was removed as it correlated (o, = 0.5) with grip
force rate spectral arc length approach hole and the latter metric
is less influenced through confounds as it is independent of
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movement distance. Additionally, spectral arc length hole
approach was discarded as it correlated with grip force rate
spectral arc length hole approach and the latter metric is more
directly related to hand function, which was not yet well covered
by the other metrics. The remaining 10 metrics yielded absolute
partial inter-correlations of 0.14 [0.06 0.24] (zero very high, zero
high, zero moderate, six low, and 39 very low inter-correlations).

Further validation of metrics: step 1

The Kaiser-Meyer-Olkin value was 0.82, which indicated that the
application of the factor analysis was suitable®®*'. According to
the parallel analysis, the most likely number of underlying latent
factors k was five (Supplementary Fig. 3). The factor loadings can
be found in Table 4. The metrics path length ratio transport/return
and jerk peg approach had strong loadings on factor 1. The
metrics log jerk transport, log jerk return, and spectral arc length
return loaded strongly on factor 2. The metrics grip force rate
number of peaks transport and grip force rate spectral arc length
transport had strong loadings on factor 3, whereas velocity max.
return and grip force rate spectral arc length hole approach
loaded strongly on factors 4 and 5, respectively.

npj Digital Medicine (2020) 80



np)

C.M. Kanzler et al.

Table 1. Demographics and clinical characteristics of the study population.

Characteristics Unit Neurologically intact Stroke Multiple sclerosis ARSACS

N 120 53 28 8

Age years 51.1 [34.6, 65.6] 59.0 [52.0, 69.0] 54.5 [39.0, 63.0] 37.0 [30.0 48.5]
Gender m/f 60/60 37/16 12/16 4/4

FMA-UE 0-66 - 57 [49, 65] -

ARAT 0-57 - - 52.0 [46.5, 56.0] -

NHPT S - - 43.5 [33.1, 58.7]

Values reported as median [25th, 75th percentile].

NHPT nine hole peg test.

ARSACS autosomal recessive spastic ataxia of Charlevoix-Saguenay, FMA-UE Fugl-Meyer assessment for the upper extremity, ARAT action research arm test,

Further validation of metrics: step 2

The behavior of all metrics across subject subpopulations with
increasing disability level can be found in Figs. 4-6. All metrics
indicated statistically significant differences between the neuro-
logically intact and at least one of the neurologically affected
subpopulations for each disorder, with the exception of jerk peg
approach in MS subjects (omnibus p=0.001, three between-
groups degrees of freedom (DoF), H=17.3, post-hoc p > 0.05).
Additionally, significant differences between subpopulations were
found for log jerk transport in stroke subjects (omnibus p < 0.001,
three between-groups DoF, H=25.3, post-hoc p =0.024). Con-
sistent trends (i.e, monotonically increasing medians across
subpopulations) were found for all metrics except for spectral
arc length return, force rate spectral arc length approach hole, and
force rate num. peaks approach hole.

DISCUSSION

In this work, we aimed to propose and apply a transparent data-
driven framework to select and validate digital health metrics,
with the objective to provide clinically relevant evidence that
facilitates their still lacking clinical integration. The framework
considers (i) the targeted impairments, (ii) the influence of
participant demographics, and (iii) important clinimetric proper-
ties. As an example use-case, we implemented this framework
with 77 kinematic and kinetic metrics extracted from the VPIT, a
previously proposed sensor-based assessment of arm and hand
sensorimotor impairments. For this purpose, the VPIT was
administered to 120 neurologically intact and 89 neurologically
affected subjects, vyielding data from 43350 individual
movements.

This objective methodology to identify a core set of validated
metrics based on pathophysiological hypotheses and quantitative
selection criteria can complement currently applied paradigms for
selecting digital health metrics®'?"~3"#2, While consensus-based
recommendations from groups of experts are indispensable for
constructing high-level hypothesis (e.g., which body functions to
assess in a given context), the selection of specific sensor-based
metrics should solely be implemented based on objective and
data-driven evaluation criteria to avoid selection bias. Also,
guidelines to pool data within systematic reviews, often intended
for the selection of conventional assessments, need to be
considered carefully in the context of digital health metrics.
Compared to conventional assessments that often provide a
single, intuitively understandable, task-specific metric (e.g., FMA-
UE score), a plethora of abstract digital health metrics exists and
the same metric (e.g., log jerk) can be extracted from all
technologies sharing similar sensor data. However, for a mean-
ingful interpretation of sensor-based metrics, it is essential to
consider them in light of the assessment context, as data
processing steps (e.g., filter design), assessment platform type
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(e.g., end-effector or camera-based system), task type (e.g., goal-
directed or explorative movements), and target population (e.g,
neurological or musculoskeletal impairments) strongly influences
the anticipated hypotheses and clinimetric properties'. This
emphasizes the importance of a validation and selection of each
metric in its specific context (i.e., assessment platform, task, and
target population), which can hardly be achieved when relying on
consensus-based or review-based approaches. While data-driven,
context-specific metric selection algorithms leveraging on the
nowadays existing big data sets are well established in the
machine-learning domain (therein referred to as feature selection
algorithms), these typically attempt to reconstruct accurate
ground truth information about the targeted impairment (super-
vised learning) by combining multiple predictors in a mathema-
tical model®' 3%, However, the metrics selected by such models
might only carry insightful information in combination with other
metrics*®, thereby challenging the use of individual metrics as
clinical endpoints, as visible in Supplementary Tables 1-3. In
addition, a gold standard is unfortunately often not available in
certain healthcare domains, as for example knowledge about the
history of neurological injury does not directly represent a ground
truth for the severity of specific sensorimotor impairments. Hence,
novel algorithms are required that can achieve a robust selection
of metrics with inaccurate ground truth (weakly supervised
learning)*™. Further, while existing feature selection algorithms
typically yield optimal solutions in terms of a mathematical loss
function, they are often not providing a transparent evaluation
with evidence that can be easily interpreted by healthcare
practitioners and do not necessarily select metrics that fullfil all
clinimetric properties (Supplementary Tables 1-3). This, however,
is fundamental for paving the way for the clinical acceptance of
novel assessments®®. The proposed approach attempts to
address these challenges, by enabling a robust selection of
individual metrics with inaccurate ground truth (weakly super-
vised learning), by providing a transparent evaluation based on a
step-by-step procedure, and by creating a foundation of clinically
relevant evidence about the quality of the assessment. This
creates an interesting alternative for researchers in the field of
digital health to more established feature selection algorithms,
which are not optimized for the unique requirements of digital
health metrics. Ultimately, this might help to better transfer
research findings into clinical healthcare environments'>?%,

For accurate comparisons between neurologically intact and
affected subjects, it is essential to account for the difference in
potential confounds, such as demographical characteristics,
between the groups. The presented analysis adds an important
methodological contribution to previous work that used linear
models to compensate for confounds by additionally evaluating
the quality of these models**~2. This allowed to discard metrics
for which the confounds could not be accurately modeled (16.8%
of all metrics). Especially metrics that have mathematical support

Scripps Research Translational Institute
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Fig. 2 Data-driven selection and validation of metrics: example of task completion time. a The influence of age, sex, tested body side,
handedness, and stereo vision deficits on each digital health metrics was removed using data from neurologically intact subjects and mixed
effect models (model quality criteria C1 and C2). Models were fitted in a Box-Cox-transformed space and back-transformed for visualization.
Metrics with low model quality (C1 > 15% or C2 > 25%) were removed. b The ability of a metric to discriminate between neurologically intact
and affected subjects (discriminant validity) was evaluated using the area under the curve value (AUC). Metrics with AUC < 0.7 were removed.
¢ Test-retest reliability was evaluated using the intra-class correlation coefficient (ICC) indicating the ability of a metric to discriminate
between subjects across testing days. Metrics with ICC < 0.7 were removed. Additionally, metrics with strong learning effects (n > —6.35) were
removed. The long horizontal red line indicates the median, whereas the short ones represent the 25th and 75th percentile. d Measurement
error was defined using the smallest real difference (SRD%), indicating a range of values for that the assessment cannot discriminate between
measurement error and physiological changes. The distribution of the intra-subject variability was visualized, as it strongly influences the SRD.

Metrics with SRD% > 30.3 were removed.

with two finite boundaries (e.g., 0% and 100%) received low
model quality, which can result from skewness and heterosce-
dasticity that cannot be corrected using variance-stabilizing
transformations, such as the Box-Cox method. Such metrics
should therefore be considered carefully and other modeling
approaches, for example based on beta distributions, might be
required to accurately compensate for the effect of measurement
confounds”. Eighty-three percent of all metrics (Tables 2 and 3)
were discarded through the second selection step. It is funda-
mental to understand that these evaluation criteria (validity: AUC,
reliability: ICC, measurement error: SRD%, learning effects: n) are
complementary to each other, focusing on different components
of intra-subject and inter-subject variability, which are all essential
to sensitively monitor impairments. It is therefore not sufficient to
solely consider a subset of these criteria, as often done in
literature. Evaluating the validity of sensor-based metrics using a
reference population and ROC analysis is superior to the more
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commonly applied correlations with conventional scales (con-
current validity)**?. A reason for this is that digital health metrics
are often expected to provide complementary information to
conventional scales that improves upon their limitations, thereby
challenging the definition of accurate hypothesis about the
correlation between conventional and sensor-based scales. Never-
theless, comparisons between metrics and conventional scales
can help to better interpret sensor-based metrics or to test their
sensitivity to impairment severity, as attempted in the last
validation step. This analysis was not used as a criteria for metric
selection as, to expect trends across subgroups, each sensor-based
metric would require a carefully selected clinical counterpart that
captures a similar physiological construct. Also, stepwise regres-
sion approaches that model conventional scales in order to select
metrics have been extensively applied even though they have
been considered bad practice due to statistical shortcomings>°~2,
Lastly, a simulated metric without relevant information content

npj Digital Medicine (2020) 80
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Table 2. Results for the data-driven selection of kinematic metrics.
Movement characteristic Sensor-based metric Validity: AUC Reliability: ICC Error: SRD% Learning: n
Mov. smoothness TP Jerk TP 0.80 0.69 23.10 —4.41
Log jerk TP? 0.78 0.74 26.11 —4.82
SPARC TPP 0.84 0.83 23.78 —7.16
Num of velocity peaks TPP 0.82 0.79 21.30 —6.36
Distance to max. velocity TPP 0.44 0.74 33.64 242
Time to max. velocity TP? 0.45 0.78 28.70 3.93
Mov. smoothness RT Jerk RT 0.84 0.68 20.83 —4.70
Log jerk RT® 0.73 0.75 2533 —6.08
SPARC RT? 0.71 0.76 28.93 —1.57
Num. velocity peaks RT*? 0.76 0.70 23.27 —3.28
Distance to max. velocity RT 0.43 0.65 41.39 3.67
Time to max. velocity RT 0.48 0.73 33.99 243
Mov. efficiency TP Path length ratio TP? 0.89 0.76 24.24 —-2.17
Throughput TPP 0.92 0.81 24.07 —-12.18
Mov. efficiency RT Path length ratio RT® 0.83 0.79 17.30 —3.61
Throughput RT 0.90 0.78 2743 —13.21
Mov. curvature TP Trajectory error mean TP 0.55 0.86 17.14 —0.60
Trajectory error max. TP 0.57 0.86 15.84 —0.37
Initial mov. angle TP 6;° 0.67 0.90 13.56 —1.50
Initial mov. angle TP 6, ® 0.67 0.90 13.29 —1.52
Initial mov. angle TP 65 0.61 0.88 14.37 —2.06
Mov. curvature RT Trajectory error mean RT 0.56 0.84 20.00 1.24
Trajectory error max. RT 0.55 0.84 18.58 1.22
Initial mov. angle RT 6, 0.51 0.75 33.90 3.18
Initial mov. angle RT 6, 0.51 0.71 28.65 2.92
Initial mov. angle RT 65 0.60 0.79 23.99 1.53
Mov. speed TP Velocity mean TP 0.83 0.88 20.61 —9.99
Velocity max. TP 0.83 0.87 18.57 —9.14
Mov. speed RT Velocity mean RT 0.75 0.87 19.01 —7.60
Velocity max. RT? 0.76 0.86 19.41 —6.27
Endpoint error peg approach Position error peg approach 0.86 0.64 29.54 —4.66
Jerk peg approach?® 0.74 0.72 27.65 —2.94
Log jerk peg approach 0.69 0.75 30.20 —8.36
SPARC peg approach 0.78 0.64 46.55 —-10.29
Endpoint error hole approach Position error hole approach 0.94 0.76 31.29 —5.36
Jerk hole approach 0.57 0.68 30.63 —4.84
Log jerk hole approach 0.66 0.83 23.25 —6.53
SPARC hole approach? 0.86 0.81 24.81 —5.72
Haptic collisions TP Haptic collisions mean TP 0.61 0.85 24.55 —3.99
Haptic collisions max. TP 0.63 0.84 20.54 —1.08
Haptic collisions RT Haptic collisions mean RT 0.61 0.72 25.32 —0.07
Haptic collisions max. RT® 0.46 0.79 27.02 4.37
Number of movements Number of mov. onsets 0.22 0.22 61.34 —0.82
Number of mov. ends 0.09 0.29 57.01 0.00
Object drops Number of dropped pegs 0.65 0.50 41.11 —-3.20

The area under the curve (AUC, optimum at 1), intraclass correlation coefficient (ICC, optimum at 1), the smallest real difference (SRD%, optimum at 0), and n
value (optimum at 0, worst at —o0) were used to describe discriminative validity, test-retest reliability, measurement error, and learning effects, respectively.
mov movement, TP transport, RT return, SPARC spectral arc length, num number.
“Metric fulfilled all evaluation criteria (AUC > 0.7, ICC > 0.7, SRD% = —6.35).

PInsufficient model quality according to selection step 1.
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Table 3. Results for the data-driven selection of kinetic metrics.
Movement characteristic Sensor-based metric Validity: AUC Reliability: ICC Error: SRD% Learning: n
GF scaling TP GF mean TP 0.40 0.84 14.46 0.39
GF max. TP 0.40 0.86 15.19 0.07
GF rate mean TP 0.25 0.87 12.14 2.07
GF rate max. TP 0.25 0.79 20.53 3.93
GF scaling RT GF mean RT 0.49 0.76 27.62 0.17
GF max. RT 0.45 0.66 37.61 2.80
GF rate mean RT 0.07 0.82 27.79 5.87
GF rate max. RT 0.29 0.48 34.05 7.19
GF scaling peg approach GF mean peg approach 0.45 0.83 18.09 1.10
GF max. peg approach 0.39 0.84 19.40 —-0.72
GF rate mean peg approach 0.18 0.88 14.76 3.54
GF rate max. peg approach 0.32 0.84 19.52 0.74
GF scaling hole approach GF mean hole approach 0.36 0.81 15.34 0.76
GF max. hole approach 0.37 0.82 16.43 0.50
GF rate mean hole approach 0.15 0.82 14.18 2.73
GF rate max. hole approach 0.28 0.77 21.41 1.82
GF coord. TP GF rate num. peaks TP? 0.74 0.81 20.59 —6.11
GF rate SPARC TP? 0.74 0.82 22.48 —5.71
GF coord. RT GF rate num. peaks RT 0.60 0.83 20.17 —4.16
GF rate SPARC RT 0.64 0.78 23.81 —6.35
GF coord. peg approach GF rate num. peaks peg approach 0.90 0.78 25.60 —12.25
GF rate SPARC peg approach 0.90 0.83 22.99 -8.19
GF coord. hole approach GF rate num. peaks hole approach?® 0.91 0.81 24.29 —6.14
GF rate SPARC hole approach® 0.84 0.82 26.38 —5.94
GF coord. buildup GF rate num. peaks buildup® 0.15 0.44 57.70 0.77
GF rate SPARC buildup® 0.56 0.79 28.62 —3.22
GF buildup duration 0.70 0.82 21.36 —6.97
GF coord. release GF rate num. peaks release® 0.44 0.48 56.80 1.78
GF rate SPARC release 0.91 0.86 18.63 —6.78
GF release duration 0.67 0.81 21.63 —2.78
Overall disability Task completion time 0.91 0.78 26.16 -11.34
Simulated Gaussian noise® 0.37 —0.07 117.04 0.25
The area under the curve (AUC, optimum at 1), intraclass correlation coefficient (ICC, optimum at 1), the smallest real difference (SRD%, optimum at 0), and n
value (optimum at 0, worst at —o) were used to describe discriminative validity, test-retest reliability, measurement error, and learning effects, respectively.
The task completion time and the simulated Gaussian noise metrics were evaluated in addition to the kinetic metrics.
GF grip force, TP transport, RT return, SPARC spectral arc length, num number.
?Metric fulfilled all evaluation criteria (AUC > 0.7, ICC > 0.7, SRD% = —6.35).
Pinsufficient model quality according to selection step 1.

(simulated Gaussian noise) was rejected in the first and second
selection steps, thereby providing evidence that the framework
allows to discard certain physiologically irrelevant metrics.
Applying the proposed framework, 10 almost independent
metrics (Table 4) were identified as a validated core set for the
VPIT and were able to reliably assess the severity of multiple
sensorimotor impairments in arm and hand for subjects with mild
to moderate disability levels (i.e, the target population of the
VPIT). These metrics were related to the movement characteristics
smoothness, efficiency, speed, endpoint error, and grip force
coordination during specific phases of the task (gross movements
transport and return; fine movements peg approach, and hole
approach). While these characteristics are generally expected to
inform on abnormal feedforward control, impaired somatosensory
feedback, increased muscle tone, abnormal flexor synergies,
dysmetria, and weakness, the clustering of the metrics into five
factors allows to further speculate about their interpretation (Table
4). The first factor was dominated by movement efficiency metrics
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(path length ratio transport and return), and the jerk peg approach
as a descriptor for the endpoint error of a movement, thereby
informing on the speed-accuracy tradeoff that is a typical
characteristic of goal-directed movements>**°, The second factor
contained metrics focusing on movement quality (smoothness)
during transport and return, which is expected to describe
impaired feedforward control of arm movements. Hence, it is
unlikely that the first factor also informs on feedforward control.
We therefore expect the movement efficiency metrics (first factor)
to be rather related to flexor synergy patterns, weakness,
proprioceptive deficits, and dysmetria. Among these impairments,
weakness and proprioceptive deficits are most commonly
observed in neurological disorders**°. The third factor focused
on grip force coordination during transport (grip force rate num.
peaks transport and grip force rate spectral arc length transport),
which is expected to be related to abnormal feedforward control
and impaired somatosensory feedback. The dissociation between
factor one and three is interesting, as it suggests different control
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Fig. 3 Partial correlation analysis. The objective was to remove redundant information. Therefore, partial Spearman correlations were
calculated between all combination of metrics while controlling for the potential influence of all other metrics. Pairs of metrics were
considered for removal if the correlation was equal or above 0.5 The process was done in an iterative manner and the first a and the last

b iterations are presented.

schemes underlying the regulation of arm movements and grip
forces. A tight predictive coupling between the modulation of grip
forces and rapid arm movements has been reported in
neurologically intact subjects®”. The factor analysis suggests that
this predictive coupling might possibly be disrupted in neurolo-
gically affected subjects, potentially due to altered sensory
feedback (e.g., proprioception) leading to inaccurate predictive
internal models or abnormal neural transmission (e.g., corticosp-
inal tract integrity)®®*°. Reduced corticospinal tract integrity can
also lead to weakness and could affect movement speed, as
described by factor four (velocity max. return)*®. This factor might
further be influenced by an altered inhibition of the supraspinal
pathways, often resulting from upper motor neuron lesions,
Ieading to increased muscle tone and thereby altered movement
speed®. Lastly, the fifth factor covered grip force coordination
during hole approach, thereby diverging from the coordination of
grip forces during gross movements (transport) as described by
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factor 3 and focusing more on grip force coordination during
precise position adjustments. This suggests that the two phases
are differently controlled, potentially because the hole approach is
more dominated by sensory and cognitive feedback loops guiding
the precise insertion of the peg, whereas gross movements
(transport) are more dominated through feedforward mechan-
isms>°. Also, the physiological control origin of the two movement
phases might differ, as gross movements are expected to be
orchestrated by the reticulospinal tract, whereas precise control is
more linked to the corticospinal tract®'. Even though the task
completion time did not pass the selection procedure due to
strong learning effects, one might still consider to report the
metric when using the VPIT in a cross-sectional manner as its
intuitive interpretation allows to give an insightful first indication
about the overall level of impairment that might potentially be
interesting for both clinical personnel and the tested patient.

Scripps Research Translational Institute



C.M. Kanzler et al.

np)j

Table 4. Structural validity: exploratory factor analysis.
Expected interpretation Sensor-based metric F1 F2 F3 F4 F5
Movement smoothness transport Log jerk transport 0.09 0.73° 0.21 —-0.19 —0.05
Movement smoothness return Log jerk return —0.08 0.86° —0.11 0.02 0.02
SPARC return 0.10 0.59° —0.10 0.23 —-0.03
Movement efficiency transport Path length ratio transport 0.83° 0.08 —-0.17 0.06 0.11
Movement efficiency return Path length ratio return 0.79° —0.06 0.08 —0.14 0.04
Movement speed transport Velocity max. return —0.02 0.01 0.16 0.90° 0.01
Endpoint error peg approach Jerk peg approach 0.72° —0.04 0.12 0.07 —0.14
GF coord. transport GF num. peaks transport 0.00 —0.06 0.93? 0.11 —0.03
GF rate SPARC transport —0.08 0.19 0.62° 0.00 0.11
GF coord. hole approach GF rate SPARC hole approach 0.11 —0.02 0.02 0.01 0.94%
Loadings of metrics on underlying latent factors extracted with exploratory factor analysis. The interpretation of each metric was physiologically motivated
initially. Larger absolute loadings indicate a stronger contribution to a factor.
F1-5 data-driven latent factors, GF grip force, coord coordination, num number, SPARC spectral arc length.
Indicates strong loadings (i.e., absolute loading of at least 0.5).

The added clinical value of the VPIT core metrics compared to
existing conventional assessments is visible in Figs. 4 and 5, as the
former allowed to detect sensorimotor impairments in certain
subjects that did not show any deficits according to the typically
used conventional scales. Such a sensitive identification of
sensorimotor impairments might allow to provide evidence for
the potential of additional neurorehabilitation. Further, the
identified core set of metrics can efficiently inform on multiple
impairments, both sensory and motor, in arm and hand with a
single task that can typically be performed within 15 min per
upper limb. This advances the state-of-the-art that mainly focused
on the evaluation of arm movements'®°>%3, or required more
complex or time-consuming measurement setups (e.g. optical
motion capture) to quantify arm and hand movements while also
neglecting grasping function®. Such a fine-grained evaluation
covering multiple sensorimotor impairments can help to stratify
subjects into homogeneous groups with low inter-subject
variability. This is important to reduce the required number of
subjects to demonstrate significant effects of novel therapies in
clinical trials'®. To further complement such clinic-bound assess-
ments, wearable sensors could help to passively monitor
individuals with higher time-resolution, thereby allowing to better
capture the impact of interventions on daily life participation®. In
such scenarios, it is likely that the selection of clinically relevant
core metrics from wearable sensor data would also benefit from
the proposed metric selection framework.

The developed methodology should be considered in light of
certain limitations. Most importantly, the framework was espe-
cially designed for metrics aimed at longitudinally monitoring
impairments and might need additional refinement when
transferring it to other healthcare applications, such as screening
of electronic health record data, with different clinical require-
ments. Hence, in the future, the applicability of the framework to
other data types and applications should be explored. Also, while
the framework seems optimal for digital health metrics aimed at
repeatedly assessing impairments, it might not be ideal in
scenarios where the defined clinimetric properties are not the
main clinically relevant criteria. In such cases, mathematically
optimal methods such as LASSO might prove more versatile.
Additionally, the definition of multiple cut-off values for the metric
selection process influences the final core set of metrics. Even
though most of the cut-offs were based on accepted definitions
from the research community (e.g, COSMIN guidelines), we
acknowledge that the optimality of these values needs to be
further validated from a clinical point of view. To evaluate
measurement error and learning effects, novel cut-offs were
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introduced based on the distribution of observed values for the
VPIT with the goal to exclude metrics that showed highest
measurement error and strongest learning effects. It is important
to note that this only considers the relative and not the absolute
level of measurement error. However, this can only be adequately
judged using data recorded pre-intervention and post-interven-
tion, allowing to compare the measurement error (SRD%) to
intervention-induced physiological changes (minimal important
clinical difference)®>. Hence, the rather high absolute level of
observed measurement errors for the VPIT (up to 57.7% of the
range of observed values) warrants further critical evaluation with
longitudinal data. Also, it is important to note that, even though
certain metrics did not pass the selection procedure, they might
still prove to be valid and reliable for other assessment tasks and
platforms, or more specific subject populations. In this context, it
should be stressed that test-retest reliability, measurement error,
and learning effects for the metrics were evaluated with
neurologically intact subjects and might require additional
investigation in neurological populations. Regarding the VPIT,
the effect of the virtual reality environment on the extracted
metrics should be thoroughly characterized in the future®®¢’.

In conclusion, we proposed a transparent, weakly supervised,
and data-driven framework for selecting and validating digital
health metrics based on the targeted impairments, the influence
of participant demographics, and clinimetric properties. This
framework can complement existing feature selection algorithms
that are mathematically optimal, but are less transparent and
require accurate ground truth. In a use-case with the VPIT, the
methodology enabled the selection and validation of a core set of
10 kinematic and kinetic metrics out of 77 initially proposed
metrics. The chosen metrics were able to accurately describe the
severity of multiple sensorimotor impairments in a cross-sectional
manner and have high potential to sensitively monitor neuroreh-
abilitation and to individualize interventions. Additionally, an in-
depth physiological motivation of these metrics and the
interpretation based on an exploratory factor analysis allowed to
better understand their relation to the targeted impairments.
Hence, this work makes an important contribution to implement
digital health metrics as complementary endpoints for clinical
trials and routine, next to the still more established conventional
scales and patient reported metrics®®. We urge researchers and
clinicians to capitalize on the promising properties of digital
health metrics and further contribute to their validation and
acceptance, which in the long-term will lead to a more thorough
understanding of disease mechanisms and enable novel
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Fig. 4 Sensitivity of metrics to disability severity in stroke subjects. Subjects were grouped according to the clinical disability level. The
vertical axis indicates task performance based on the distance to the reference population. The population median is visualized through the
black horizontal line, the interquartile range (IQR) through the boxes, and the min and max value within 1.5 IQR of the lower and upper
quartiles, respectively, through the whiskers. Data points above the 95th-percentile (triangles) of neurologically intact subjects are showing
abnormal behavior (black dots). Solid and dashed horizontal black lines above the box plots indicate results of the omnibus and post-hoc
statistical tests, respectively. *Indicates p < 0.05 and **p < 0.001. n refers to the number of subjects in that group and N to the number of data
points. Only subjects with available clinical scores were included. For the jerk peg approach, one outlier was not visualized to maintain a
meaningful representation. FMA-UE Fugl-Meyer upper extremity, SPARC spectral arc length.

applications, such as a personalized predictions of therapy
outcomes, with the potential to improve healthcare quality.

METHODS

To objectively reduce a large set of digital health metrics to a clinically
relevant subset, we implemented a three-step process (Fig. 1) considering
the most important statistical requirements to sensitively and robustly
monitor impairments in a longitudinal manner. These requirements were
inspired from the COSMIN guidelines for judging the quality of metrics
based on systematic reviews and related work on digital health
metrics'>2>424>%°  Further, two additional validation steps were imple-
mented to improve the understanding of the selected core metrics (Fig. 1).
While this selection and validation framework is independent of a specific
assessment platform (i.e., the initial set of metrics to be evaluated), the
manuscript defines the framework in the context of the VPIT with the goal
to provide specific instructions including a hands-on example, starting
from the initial motivation of metrics to the selection of a validated core
set. This work was previously published in pre-print form”°.

Virtual Peg Insertion Test

The VPIT is a digital health assessment combining a commercial haptic
end-effector (PHANTOM Omni/Touch, 3D Systems, CA, USA), a custom-
made handle with piezoresistive force sensors (CentoNewton40, Pewatron
AG, Switzerland), and a virtual reality (VR) environment, implemented in
C++ and OpenGL on a Microsoft (Redmond, WA, USA) Windows laptop
(Fig. 1). The assessment features a goal-directed pick-and-place task that
requires arm and hand movements while actively lifting the arm against
gravity, thereby combining elements of the NHPT and the Box and Block
Test’'’2. The VR environment displays a rectangular board with nine
cylindrical pegs and nine corresponding holes arranged as a 3 x 3 matrix
with similar dimensions as the NHPT (26.8 x 12.8 x 6.2 cm)’". The objective
is to transport the virtual pegs into the holes by controlling a cursor
through the haptic device, which has six degrees of freedom (three DoF
translational movement and three DoF angular orientation). The device
can provide haptic feedback about the virtual pegboard of up to 3.3 N on
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the three translational DoF, while the three rotational DoF are passive. A
peg can be picked up by aligning the position of a cursor with the peg
(alignment tolerance: 3.0 mm) and applying a grasping force above a 2N
threshold. The peg needs to be transported towards a hole while
maintaining a grasping force of at least 2 N, and can be inserted in the hole
by releasing the force below the threshold, once properly aligned with a
hole. The holes in the board of the VR environment are rendered through
reduced haptic impedance compared to other parts of the board. The pegs
cannot be picked up anymore upon insertion in a hole and are perceived
as transparent throughout the test (i.e., no collisions between pegs are
possible). The default color of the cursor is yellow and changes after
spatially aligning cursor and peg (orange), during the lifting of a peg
(green), or after applying a grasping force above the threshold while not
being spatially aligned with the peg (red). During the execution of the task,
6 DoF end-effector movements, grasping forces, and interaction forces
with the VR environment are recorded at 1 kHz.

Participants and procedures

The analysis presented in this work builds on data from different studies
that included assessments with the VPIT>>7377°, Age-matched reference
data was based on 120 neurologically intact subjects. Their handedness
was evaluated using the Edinburgh Handedness Inventory and potential
stereo vision deficits that might influence the perception of a virtual
environment were screened using the Lang stereo test’®. Sixty of these
subjects were further tested a second time one to three days apart to
evaluate test-retest reliability. Additionally, 53 post-stroke subjects, 28 MS
subjects, and 8 subjects with ARSACS were tested. Each subject was tested
with the VPIT on both body sides if possible. The administered
conventional assessments were dependent on the disease and the specific
study. Commonly applied assessments were the FMA-UE?, the NHPT’", and
the ARAT’’. Detailed exclusion criteria are listed in the supplementary
methods. All subjects gave written informed consent prior to participation
in the experiments. All experimental procedures were approved by the
following Ethics Committees: neurologically intact subjects subjects
EK2010-N-40 at ETH Zurich; stroke subjects EKNZ-2016-02075 at Ethik-
kommision Nordwest- und Zentralschweiz, KEK-ZH 2011-0268 at Kantonale
Ethikkommission Zurich; MS subjects: CME2013/314 at Hasselt University,
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Fig. 5 Sensitivity of metrics to disability severity in MS subjects. See Fig. 4 for a detailed description. ARAT action research arm test.

ML9521 (S55614) at KU Leuven, B322201318078 as Belgian reference
number; ARSACS subjects: 2012-012 at CIUSSS Chicoutimi.

To perform the VPIT, participants were seated in a chair with backrest
and without armrests in front of a laptop with the haptic device being
placed on the side of the tested limb. The initial position of the subjects
(i.e., hand resting on the handle) was defined by a shoulder abduction
angle of =45°, a shoulder flexion angle of =10°, and an elbow flexion angle
of =90°. Subjects received standardized instructions, were allowed to insert
all nine pegs once for familiarization with the task and virtual environment
(data not analyzed), and subsequently performed five repetitions (i.e.,
inserting all nine pegs five times) per body side. Participants were
instructed to perform the task as fast and accurately as possible, and
received live feedback about their task completion time via a timer.

Data preprocessing

Data preprocessing steps are required to optimize the quality of the sensor
data and dissect the complex recorded movement patterns into distinct
movement phases that can be related to specific sensorimotor impair-
ments. All data preprocessing steps are explained in detail in the
Supplementary material and only a brief overview is provided in the
following. First, temporal gaps lager than 50 samples in the sensor data
were linearly interpolated. Subsequently, a 1D distance trajectory d(t) was
estimated from the 3D cartesian position trajectories, and velocity (first
time-derivative) and jerk (third time-derivative) signals were derived from d
(t). All time-series were low-pass filtered initially and after each derivation
(Butterworth filter, fourth order, cut-off frequency 8 Hz).

Subsequently, specific phases of the test were segmented to allow
better pinpointing specific sensorimotor impairments (details in Supple-
mentary Methods and Supplementary Fig. 2). The detection of all
movement phases relied on a signal recorded by the test indicating the
specific peg that is currently lifted and a threshold-based procedure for
determining movement start and end. To isolate rapid ballistic move-
ments, the trajectories of each peg were segmented into the transport (i.e.,
ballistic movement while transporting the peg to a hole) and return (i.e.,
ballistic movement while returning the cursor to the next peg) phases. To
capture the overshoot when reaching for a target as well as the precise
position adjustments related to virtual object manipulations, the
trajectories were additionally segmented into the peg approach and hole
approach phases. The former was defined from the end of the return until
the next peg was picked up. The latter was defined from the end of the
transport until the current peg was inserted into a hole. Further, grasping
forces were additionally segmented into the force buildup (i.e., behavior
during the most rapid production of force) and force release phases (i.e.,
behavior during the most rapid release of force), by first identifying the
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position of the maximum and minimum value in grip force rate between
approaching and inserting each peg.

Pathophysiological motivation of digital health metrics

To facilitate the pathophysiological interpretation of sensor-based metrics
for each use-case, it is of importance to describe the mechanisms
underlying a specific disease, their effect on the assessed behavioral
construct, and how metrics are expected to capture these abnormalities.
Within the use-case of the VPIT, this pathophysiological motivation is
implemented using the computation, anatomy, and physiology model, as
well as the clinical syndromes ataxia and paresis that are commonly
present in neurological disorders®®7, Leveraging these concepts allows to
especially connect how inappropriately scaled motor commands and an
inability to voluntarily activate spinal motor neurons affect upper limb
movement behavior. As the VPIT strives to capture multiple heterogeneous
and clinically relevant sensorimotor deficits, a variety of different move-
ment characteristics were defined to describe commonly observed upper
limb sensorimotor impairments in neurological disorders. Subsequently, an
initial set of 77 metrics (Tables 2 and 3) for the VPIT were proposed with
the aim to describe these movement characteristics and the associated
sensorimotor impairments. These metrics were preselected based on the
available sensor data (i.e., end-effector kinematic, kinetics, and haptic
interactions), recent systematic literature reviews as well as evidence-
based recommendations'*?*”°, and the technical and clinical experience
of the authors.

Movement smoothness. Goal-directed movements are executed by
translating parameters such as target distance into neural commands of
certain amplitude, which are transferred to peripheral muscles performing
a movement®. The signals’ amplitudes might be chosen to minimize
movement endpoint variance, which leads to smooth behavior (i.e., bell-
shaped velocity trajectories)®®. These velocity trajectories can be modeled
using a superposition of submovements and minimize the magnitude of
the jerk trajectory®. In neurological subjects, more submovements with
increased temporal shift and higher jerk magnitudes have been
observed®'®?, potentially due to disrupted feedforward control mechan-
isms. The temporal shift between subcomponents and the jerk magnitude
was shown to reduce after receiving rehabilitation therapy®', thereby
highlighting their relevance to track recovery. We used the integrated jerk
(referred to as jerk) normalized with respect to movement duration and
length leading to a dimensionless metric to represent the intrinsic
minimization of jerk®'. The same metric was used with an additionally
applied transformation (log jerk)83. Additionally, the spectral arc length (i.e.,
metric describing spectral energy content) of the velocity trajectory should
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Fig. 6 Sensitivity of metrics to disability severity in ARSACS subjects. See Fig. 4 for a detailed description.

reflect the energy induced by jerky movements®*®*. Further, the number
of peaks in the velocity profile (number of velocity peaks; MATLAB function
findpeaks) was established as an indicator for the number of submove-
ments. Lastly, we calculated the time (time to max. velocity) and distance
(distance to max. velocity) covered at peak velocity normalized with
respect to the totally covered distance and time, respectively, to capture
deviation from the typically observed bell-shaped velocity profile®>. We
calculated these metrics separately for transport and return as the
transport requires precise grip force control, which could further affect
feedforward control mechanisms.

Movement efficiency. Ballistic movements in healthy subjects tend to
follow a trajectory similar to the shortest path between start and target®”.
Previous studies suggested that neurologically affected subjects instead
perform movements less close to the optimal trajectory compared to
healthy controls®® and that this behavior correlates with impairment
severity, as measured by the FMA-UE®. This suboptimal movement
efficiency results in general from abnormal sensorimotor control, for
example due to from erroneous state estimates for feedforward control,
abnormal muscle synergy patterns (e.g., during shoulder flexion and
abduction), weakness, and missing proprioceptive cues>®#5%8 We used the
path length ratio (i.e., shortest possible distance divided by the actually
covered distance) to represent inefficient movements®. Additionally, the
throughput (ratio of target distance and target width divided by
movement time) was used as an information theory-driven descriptor of
movement efficiency>*®°. The metrics were extracted from the start of the
transport phase until the current peg was released and from the start of
the return phase until the next peg was taken, as not only ballistic
movements but also the endpoint error is of interest when describing the
efficiency of movements.

Movement curvature. While movement efficiency describes the overall
deviation from the shortest path, it does not account for the direction of
the spatial deviation. This might, however, be relevant to better
discriminate abnormal feedfoward control from flexor synergy pattern or
weakness, as in the latter two cases the movements might be especially
performed closer to the body. We therefore selected five additional metrics
to analyze the spatial deviation from the optimal trajectory in the
horizontal plane®***’. The initial movement angle was defined as the
angular deviation between the actual and optimal trajectory®. As this
metric requires the definition of a specific timepoint in the trajectory to
measure the deviation, and as multiple approaches were used in
literature®>8=%° we explored three different ways to define the timepoint.
This included the time at which 20% of the shortest distance between peg

npj Digital Medicine (2020) 80

and hole was covered (initial movement angle 6;), the time at which 20%
of the actually covered distance between peg and hole was reached initial
movement angle 6,, and the time at which peak velocity was achieved
(initial movement angle 65). Additionally, the mean and maximal trajectory
error with respect to the ideal, straight trajectory were calculated. All
metrics were estimated separately for transport and return.

Movement speed. The speed of ballistic movements in healthy subjects is
mostly controlled by the tradeoff between speed and accuracy as
described by Fitt's law, which is indirectly imposed through the concept
of velocity-dependent neural noise®**°. In neurologically affected subjects,
increased speed can, for example, result from inappropriately scaled motor
commands and disrupted feedforward control’®. On the other hand,
reduced speed can also stem from weakness (i.e., reduced ability to active
spinal motor neurons leading to decreased strength) or spasticity (i.e.,
velocity-dependent increase in muscle tone), the latter resulting from
upper motor neuron lesions, abnormally modulated activity in the
supraspinal pathways, and thereby increased hyperexcitability of stretch
reflexes®®®°, We calculated the mean (velocity mean) and maximum
(velocity max.) values of the velocity trajectory to represent movement
speed during the transport and return phases.

Endpoint error. To fully characterize the speed-accuracy tradeoff, we
additionally analyzed the position error at the end of a movement. In
neurological disorders, increased endpoint error (i.e., dysmetria) was
commonly observed and can, for example, result from inappropriately
scaled motor commands and thereby disrupted feedforward control®’?,
but also from cognitive and proprioceptive deficits*. Dysmetria was found
especially in post-stroke subjects with lateral-posterior thalamic lesions®,
is a common manifestation of intention tremor in MS?, and is typically
observed in subjects with cerebellar ataxia®. In the VPIT, the horizontal
Euclidean distance between the cursor position and targeted peg or hole
(position error) was calculated for each sample of the peg approach and
hole approach phases, respectively, and summed up across all samples of
the phase. Further, the jerk, log jerk, and spectral arc length metrics were
calculated during both phases, as a jerk index was shown previously to
correlate with the severity of intention tremor in MS®®.

Haptic collisions. Haptic collisions describe the interaction forces between
a subject and the virtual pegboard rendered through the haptic device.
Haptic guidance can be used to ease inserting the virtual pegs into the
holes, which have reduced haptic impedance. Previous studies indicated
increased haptic collision forces in multiple neurological disorders and
especially stroke subjects with sensory deficits**”. We additionally
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expected that collision forces during transport and return (i.e, phases
during which haptic guidance is not required) could be increased due to
arm weakness. In particular, neurological subjects can have a limited
capability to lift their arm against gravity, leading to increased vertical
haptic collisions®®. The mean and max. vertical collision force (haptic
collisions mean and haptic collisions max.) was calculated during transport
and return to quantify haptic collision behavior.

Number of successful movements. Subjects without neurological deficits
can start and end goal-directed movements with ease. On the contrary,
persons with neurological disorders can have a reduced ability to initiate
and terminate ballistic movements with potentially heterogeneous
underlying impairments including abnormal feedforward control, sensory
feedback, spasticity, weakness, and fatigue'>*®%3. Therefore, the metric
number of movement onsets was defined based on the number of valid
pegs, using the defined segmentation algorithm, when identifying the
start of the transport and return phases. Analogously, number of
movement ends was based on the sum of correctly segmented ends for
the transport and return phases.

Object drops. Neurologically intact subjects can precisely coordinate arm
movements and finger forces to transport objects. This ability can be
reduced in neurological disorders and can potentially lead to the drop of
an object during its transport®. Underlying mechanisms include for
example distorted force control due to incorrectly scaled motor commands
or distorted sensory feedback as well as reduced spatio-temporal
coordination between arm and hand movements®®®. In the VPIT, the
number of virtual pegs that were dropped (dropped pegs) should
represent object drops and thereby grip force control as well as the
spatio-temporal coordination of arm and hand movements. The metric
was defined based on how often the grasping force dropped below a
2N th7resho|d (i.e., subjects still holding the handle) while lifting a virtual

peg *

Grip force scaling and coordination. The precise scaling and spatio-
temporal coordination of grasping forces is a key requirement for
successful object manipulation and leads, in neurologically intact subjects,
to single-peaked bell-shaped grip force rate profiles when starting to grasp
objects'®. Abnormal grip force scaling and decreased grip force
coordination have been reported in neurological subjects, resulting in
multi-peaked grip force rate profiles, and were attributed to, for example,
distorted feedforward control, abnormal somatosensory feedback and
processing, as well as the presence of the pathological flexor synergy'®~'%7.
Also, a reduction in applied grip force levels due to weakness can be
expected depending on the neurological profile of a subject®. Further, a
slowness of force buildup'® and force release'®® has been reported, even
though other studies showed that the ability to produce and maintain
submaximal grip forces was preserved®”'%, Additionally, there is evidence
suggesting that force buildup and force release have different neural
mechanisms and that force control can further be decomposed into force
scaling and motor coordination'?*%4,

To describe grip force scaling, we applied four metrics separately to the
transport, return, peg approach, and hole approach phases. We calculated
the mean (grip force mean) and maximum (grip force max.) value of the
grasping force signal during each phase. Additionally, we estimated the
mean absolute value (grip force rate mean) and absolute maximum (grip
force rate max.) of the grip force rate time-series. Similarly, we
characterized grip force coordination during the transport, return, peg
approach, hole approach, force buildup and force release phases, for which
we calculated the number of positive and negative extrema (grip force rate
number of peaks) and the spectral arc length (grip force rate spectral arc
length). For the force buildup and force release phases, which contain only
the segments of most rapid force generation and release, respectively, we
additionally calculated their duration (force buildup/release duration).

Overall disability. A single indicator expected to describe the subject-
specific overall disability level was defined based on the task completion
time (i.e., duration from first transport phase until insertion of last peg).

Data postprocessing

To reduce the influence of intra-subject variability, the grand median
across pegs and repetitions was computed for each metric. Subsequently,
the influence of possible confounds, which emerge from subject
demographics not related to neurological disorders, was modeled based
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on data from all neurologically intact subjects. This should allow to
compensate for these factors when analyzing data from neurologically
affected subjects. In more detail, the impact of age (in years), sex (male or
female), tested body side (left or right), and handedness (performing the
test with the dominant side: true or false) were used as fixed effects (i.e.,
one model slope parameter per independent variable) in a linear mixed
effect model generated for each sensor-based metric'°. Additionally, the
presence of stereo vision deficits (true or false) was used as a fixed effect,
as the perception of depth in the VR environments might influence task
performance'®'% A subject-specific random effect (i.e, one model
intercept parameter per subject) was added to account for intra-subject
correlations arising from including both tested body sides for each subject.
A Box-Cox transformation was applied on each metric to correct for
heteroscedasticity, as subjectively perceived through non-normally dis-
tributed model residuals in quantile-quantile plots''". Additionally, this
transformation allows to capture non-linear effects with the linear models.
The models were fitted using maximume-likelihood estimation (MATLAB
function fitlme) and defined as

yihect = By + B;y agej + B, sex; + ;5 tested body side;+
B; 4 handedness; + B; 5 stereo vision deficits; + W;; + e;,
where y;ﬁfj’.‘““ value of a metric i of neurologically intact subject j
B; model parameters
Wi, subject — specificintercept
¢; residualerror.

For any subject being analyzed, the effect of all confounds on the
sensor-based metric was removed based on the fitted models. This
generated the value y;; of a metric without confounds arising from subject
demographics:

Yij = Yij — Bix age; — B, sex; — B; 3 tested body side; 2
— B4 handedness; — 3, 5 stereo vision deficits;.

Furthermore, the corrected values y;; were then expressed relative to all
neurologically intact subjects (y!") with the goal to standardize the range
of all metrics, which simplifies their physiological interpretation and
enables the direct comparison of different metrics. Therefore, the
normalized value y;; was defined relative to the median and variability
d; of all neurologically intact subjects:

v H yintact

= ¥;; — median (yaet) 7 3)
d;

with the median absolute deviation (MAD) of all neurologically intact

subjects being used as a variability measure ''%:

d; = median (|[y/7" — median (y/")]|), (4)

The MAD was preferred over the standard deviation, as the former allows a
more robust analysis that is independent of the underlying distribution of
a metric''?. Lastly, the values y;; were divided by the maximal observed
value in the included neurological population, such that the subject
currently showing worst task-performance receives a score of 100%. In
order to discriminate normal from abnormal behavior based on the
normalized values, a cut-off was defined based on the 95th percentile (i.e.,
imposed false positive detection rate of 5%) of each metric y/"*" across all
neurologically intact subjects.

Data-driven selection and validation of digital health metrics

The sensor-based metrics were reduced to a subset with optimal
clinimetric properties based on three selection steps, followed by two
additional validation steps. To evaluate the ability of this selection process
to discriminate between physiologically relevant information and random
noise, the selection steps were additionally applied to a simulated random
metric (simulated Gaussian noise) containing no physiologically relevant
information. This metric was constructed by randomly drawing data from a
log-normal distribution (mean 46.0, standard deviation 32.2, mimicking
the distribution of the total time for the reference population) for each
subject and tested body side.

Metric selection and validation: step 1

With the goal to better understand the influence of subject demographics
on the sensor-based metric, two-sided simulated likelihood ratio tests
(1000 iterations) between the full model and a reduced model without the
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fixed effect of interest were used to generate p-values that were
interpreted based on a 5% significance level''®. This allowed to judge
whether a fixed effect influenced the sensor-based metric in a statistically
significant manner. We removed metrics that were significantly influenced
by stereo vision deficits, as we expected that the influence of stereo vision
deficits cannot always be compensated for, for example if their presence is
not screened in a clinical setting.

As the performance of the presented confound correction process
depends on the fit of the model to the data, we additionally removed
metrics with low model quality according to the criteria C1 and C2, which
describe the mean absolute estimation error (MAE) of the models and its
variability''*:

MAE;
j < 15%
! range(y;nmcr) —= 0 )
and
MAE; + 3 o;
Py < 25% ©)
range (yinac)

where MAE = 137 ||eitact|
number of data points from neurologically intact subjects
0, = std et )
std = standard deviation.

n =

Fulfilling both criteria leads to the selection of models with moderate
and good quality according to the definition of Roy et al."'®. Before the
calculation of C1 and C2, data points with the 5% highest residuals were
removed''®. The criteria C1 and C2 were preferred over the more
commonly used coefficient of determination R?, because the magnitude of
this metric is highly dependent on the distribution of the dependent
variable, which prohibits the definition of a model quality threshold that is
valid across metrics''*'">,

Metric selection and validation: step 2

ROC analysis was used to judge the potential of a metric to discriminate
between neurologically intact and affected subjects, which is a funda-
mental requirement to validate that the proposed metrics are sensitive to
sensorimotor impairments®>''®. In more detail, a threshold was applied for
each metric to classify subjects as being either neurologically intact or
impaired. The threshold was varied across the range of all observed values
for each metric and the true positive rate (number of subjects correctly
classified as neurologically affected divided by the total number of
neurologically affected subjects) and false positive rate (number of
subjects incorrectly classified as neurologically affected divided by the
total number of neurologically intact subjects) were calculated. The area
under the curve (AUC) when plotting true positive rates against false
positive rates was used as a quality criterion for each metric (Fig. 2).

For metrics to be responsive to intervention-induced physiological
changes and allow a meaningful tracking of longitudinal changes, it is
fundamental to have low intra-subject variability, high inter-subject
variability, and yield repeatable values across a test-retest sessions.
Therefore, the data set with 60 neurologically intact subjects performing
the VPIT protocol on two separate testing days was used to quantify
test-retest reliability. Specifically, the intra-class correlation coefficient (ICC)
was calculated to describe the ability of a metric to discriminate between
subjects across multiple testing days (i.e., inter-subject variability)''”"""®,
The agreement ICC based on a two-way analysis of variance (ICC Ak) was
applied while pooling data across both tested body sides. Further, the
smallest real difference (SRD) was used to define a range of values for that
the assessment cannot distinguish between measurement error and an
actual change in the underlying physiological construct (i.e., intra-subject
variability)''°. For each metric i, the SRD was defined as

SRD; = 1.96 - V2 - $iMact .\ /1 —ICC; @

where 5; = std across repetitions, subjects, and testing days.
To directly relate the SRD to the distribution of a metric, it was further
expressed relative to a metrics’ range:

o, (®)
range(y;nracr) °
Lastly, to distinguish task-related learning from physiological changes
when testing subjects before and after receiving an intervention, the
presence and strength of learning effects was calculated for each metric.

SRD%; = 100 -
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For this purpose, a paired t-test was performed between data collected at
test and retest to check for a statistically significant difference between the
days. Then, the strength (i.e, slope) of the learning effect was estimated by
calculating the mean difference between test and retest and normalizing it
with respect to the range of observed values:

ointact intact
mean(yiJ,retest - yij.test)

range (y;ntact)

Metrics passed this second selection step if the AUC did indicate
acceptable, excellent, or outstanding discriminant ability (AUC = 0.7) and
they had at least acceptable reliability (i.e., ICC values above 0.7)>>'"°. As
no cutoff has been defined for the interpretation of the SRD%'?°, we
removed the metrics that had the 20% worst SRD% values. Hence, metric
passed the evaluation (i.e, small measurement error relative to other
metrics) if the SRD% was below 30.3 (80th percentile). Similarly, no cutoff
for the interpretation of learning effects was available. Hence, metrics
passed the evaluation (i.e., no strong learning effects) if n was above —6.35
(20th percentile) of observed values.

n; =100 9)

Metric selection and validation: step 3

The correlations between the metrics were analyzed with the goal to
identify a set of metrics that contains little redundant information to
simplify clinical interpretability. Therefore, a correlation matrix was
constructed using partial Spearman correlations. This technique allows to
describe the relation between two metrics and to simultaneously model all
other metrics that could potentially influence the relationship between the
two metrics of interest'?"'?2, Hence, this approach can help to exclude
certain non-causal correlations. A pair of metrics with an absolute partial
correlation p, of at least 0.5 was considered for removal'%. From this pair
of metrics, the one that had inferior psychometric properties (AUC, ICC,
and SRD%) or was less accepted in literature was removed. To simplify the
interpretation of the correlation results, we applied the analysis only to
metrics that passed all previous selection steps. Additionally, this analysis
was applied in an iterative manner, as the removal of certain metrics,
which were previously modeled, can change the remaining inter-
correlations. The correlation coefficients were interpreted according to
Hinkle et al.: very high: p, > 0.9; high: 0.7 < p, < 0.9; moderate: 0.5 < p,, <
0.7; low: 0.3 < p, < 0.5; very low: p, < 0.3'%,

Further validation of metrics: step 1

To better identify the pathophysiological correlates of the metrics that
passed all previous evaluation steps, exploratory factor analysis was
applied'*'?°, This method tries to associate the variability observed in all
metrics with k unobserved latent variables via factor loadings, which can
be interpreted in light of the initial physiological motivation of the metrics.
Exploratory factor analysis was implemented using maximum-likelihood
common factor analysis followed by a promax rotation (MATLAB function
factoran). For the interpretation of the emerged latent space, we only
considered strong (absolute value > 0.5) factor loadings'?*. The number of
factors k was estimated in a data-driven manner using parallel analysis (R
function fa.parallel)'?”. This approach simulates a lower bound that needs
to be fulfilled by the eigenvalue associated to each factor and has been
shown to be advantageous compared to other more commonly used
criteria, such as the Kaiser condition (i.e, eigenvalues >1 are
retained)'>>'%%, Also, the Kaiser-Meyer-Olkin value (KMO) was calculated
to evaluate whether the data was mathematically suitable for the factor
analysis.

Further validation of metrics: step 2

An additional clinically relevant validation step evaluated the ability of the
metrics to capture the severity of upper limb disability. For this purpose,
each population was grouped according to their disability level as defined
by commonly used clinical scores. Subsequently, the behavior of the
metrics across the subpopulations and the reference population were
statistically analyzed. Stroke subjects were grouped according to the FMA-
UE score (ceiling: FMA-UE=66; mild impairment: 54 < FMA-UE < 66;
moderate impairment: 35 < FMA-UE < 54)'%%, MS subjects were split into
three groups based on their ARAT score (full capacity: 55 < ARAT <57;
notable capacity: 43 <ARAT<55; limited capacity: 22 <ARAT <43)'%.
ARSACS subjects were divided into three different age-groups (young:
26 < age <36; mid-age: 37 < age < 47; older-age: 48 < age < 58) due to the
neurodegenerative nature of the disease®. A Kruskal-Wallis two-sided
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omnibus test followed by post-hoc tests (MATLAB functions kruskalwallis
and multcompare) were applied to check for statistically significant
differences between groups. Bonferroni corrections were applied in
both cases.

Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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