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Chromosomal DNA double-strand breaks (DSBs) are potentially lethal DNA lesions that pose a significant
threat to genome stability and therefore need to be repaired to preserve genome integrity. Eukaryotic
cells possess two main mechanisms for repairing DSBs: non-homologous end-joining (NHEJ) and homol-
ogous recombination (HR). HR requires that the 50 terminated strands at both DNA ends are nucleolyti-
cally degraded by a concerted action of nucleases in a process termed DNA-end resection. This
degradation leads to the formation of 30-ended single-stranded DNA (ssDNA) ends that are essential to
use homologous DNA sequences for repair. The evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 com-
plex (MRX/MRN) has enzymatic and structural activities to initiate DSB resection and to maintain the DSB
ends tethered to each other for their repair. Furthermore, it is required to recruit and activate the protein
kinase Tel1/ATM, which plays a key role in DSB signaling. All these functions depend on ATP-regulated
DNA binding and nucleolytic activities of the complex. Several structures have been obtained in recent
years for Mre11 and Rad50 subunits from archaea, and a few from the bacterial and eukaryotic orthologs.
Nevertheless, the mechanism of activation of this protein complex is yet to be fully elucidated. In this
review, we focused on recent biophysical and structural insights on the MRX complex and their interplay.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Chromosomal DNA double-strand breaks (DSBs) pose a signifi-
cant threat to cell viability and genome stability because failure
to repair them can lead to loss of genetic information and chromo-
some rearrangements. Although DSBs threaten genome integrity,
germ cells deliberately sever both strands of their chromosomes
Fig. 1. Overview of the DSB repair mechanisms. DSBs are repaired by non-homologous e
DSB ends and occurs predominantly in the G1 phase of the cell cycle. HR utilizes homolo
recruited to the DSB ends. After ATP hydrolysis by Rad50, Mre11 together with phospho
both DSB ends, followed by bidirectional resection catalyzed by Mre11 in the 30 to 50 dire
ssDNA overhangs and is then replaced by Rad51. The Rad51-ssDNA complex promotes th
of the donor duplex to template DNA synthesis (dashed line).
to initiate meiotic recombination that ensures proper homologous
chromosome segregation [1]. Furthermore, DSBs are programmed
recombination intermediates during antigen-receptor diversity in
lymphocyte development [2].

Eukaryotic cells have evolved two main mechanisms to repair
DSBs: non-homologous end joining (NHEJ) and homologous
recombination (HR) (Fig. 1). NHEJ allows direct rejoining of the
nd joining (NHEJ) or homologous recombination (HR). NHEJ directly rejoins the two
gous template and is active in S and G2. Once a DSB occurs, MRX and Ku are rapidly
rylated Sae2 catalyzes an endonucleolytic cleavage of the 50-terminated strands at
ction and by Exo1 and Dna2-Sgs1 in the 50 to 30 direction. RPA binds to the 30-ended
e homology search and strand invasion, pairing the invading 30 end with one strand



R. Tisi et al. / Computational and Structural Biotechnology Journal 18 (2020) 1137–1152 1139
broken DNA ends with no or minimal base pairing at the junction
and it operates predominantly in the G1 phase of the cell cycle [3].
By contrast, HR is the predominant repair pathway in the S and G2
phases of the cell cycle and it requires an undamaged homologous
sequence (sister chromatids or homologous chromosomes) to
serve as a template for repair of the broken DSB ends (Fig. 1) [4].

The initial step of NHEJ involves the binding to the DSB ends of
the Ku70-Ku80 (Ku) heterodimer, which protects DNA ends from
degradation and recruits additional NHEJ components such as the
DNA ligase IV (Fig. 1) [3]. While NHEJ does not require extensive
DSB end processing, HR initiates by nucleolytic degradation of
the 50-terminated strands at both DSB ends, in a process referred
to as resection (Fig. 1) [5]. This degradation results in the genera-
tion of 30-ended single-stranded DNA (ssDNA) ends, which are ini-
tially bound by the ssDNA binding protein complex Replication
Protein A (RPA). RPA is then displaced by Rad51 to form a right-
handed Rad51-ssDNA nucleoprotein filament that is essential for
the homology search and pairing of the ssDNA with the comple-
mentary strand of the donor duplex DNA (Fig. 1) [4]. The 30-
terminated strand at the other side of the break anneals to the dis-
placed strand. Extension by DNA synthesis and ligation generate a
double Holliday junction that can be dissolved or resolved to yield
intact duplex DNA molecules [4].

One of the primary protein complexes responsible for recogni-
tion, signaling and repair of DNA DSBs is the evolutionarily con-
served Mre11-Rad50-Xrs2/NBS1 complex (MRX in Saccharomyces
cerevisiae, MRN in humans). MRX/MRN is rapidly recruited to DSBs,
where it initiates DSB resection and maintains the DSB ends teth-
ered to each other for their repair [6]. Furthermore, it is required to
recruit and activate the protein kinase Tel1 (ATM in mammals),
which coordinates DSB repair with cell cycle progression [7]. Both
MRX and Tel1 are also necessary to maintain the length of telom-
eres, specialized nucleoprotein complexes at the ends of eukaryotic
chromosomes [8]. Finally, MRX/MRN also supports DNA replication
under stress conditions. In particular, it promotes the recombina-
tional repair of damaged replication forks by resecting nascent
DNA strands [9,10]. In mammals, emerging evidence indicates that
MRE11-mediated degradation of stalled replication forks is
restrained by the recombination proteins BRCA1 and
BRCA2 that promote formation of stable RAD51 nucleoprotein
filaments [9,10].

At the molecular level, MRX/MRN is a hetero-hexameric
(M2R2X2/N2) protein complex, in which the Mre11 subunit dimer-
izes and interacts independently with both Rad50 and Xrs2/NBS1
[6]. Rad50 is a member of the structural maintenance of chromo-
somes (SMC) protein family, characterized by ATPase motifs at
the N- and C-termini separated by two long coiled-coil domains.
The coiled coils fold back on themselves to form two complete
ATPase sites on a Rad50 dimer [11,12].

Mre11 displays 30–50 exonuclease and endonuclease activities
[13–18]. In both yeast and mammals, Mre11 catalyzes the endonu-
cleolytic cleavage of the 50-terminated DNA strand in the vicinity of
the DSB end [19–22] (Fig. 1). This endonucleolytic cleavage
requires the ATPase activity of Rad50, as well as the Sae2 protein
(Ctp1 in Schizosaccharomyces pombe, CtIP in mammals) that pro-
motes the Mre11 endonuclease activity within the MRX/MRN com-
plex [23–25]. The MRX-Sae2 initial cleavage is followed by
bidirectional resection using the Mre11 30–50 exonuclease, which
proceeds back towards the DSB ends, and the nuclease activities
of Exo1 (EXO1 in mammals), or of Dna2 (DNA2 in mammals) in
complex with the RecQ-helicase homolog Sgs1 (BLM or WRN in
mammals), which degrade DNA in the 50–30 direction away from
the DSB ends [26–32] (Fig. 1).

While orthologs of Rad50 and Mre11 are found in all kingdoms
of life, the Xrs2/NBS1 subunit is specific to eukaryotes. In humans,
germline hypomorphic mutations in MRE11, NBS1, or RAD50 are
associated with ataxia telangiectasia-like disorder (ATLD), Nijme-
gen breakage syndrome (NBS), and NBS-like disorder (NBSLD),
respectively, which are characterized by cellular radiosensitivity,
immune deficiency and cancer predisposition [33]. Aside from
germline mutations, all three MRN complex components are
mutated in more than 50 types of cancer, as assessed from the
International Cancer Genome Consortium projects. Furthermore,
in mammals, the MRN complex is essential for cell viability, as
deletions of any MRN subunits result in embryonic lethality [34].
2. MR complex architecture

Recent findings have added more and more elements to the
complexity of MRX/MRN flexible and dynamic mechanism of
action, which evolved in order to integrate protein–protein and
protein-DNA interactions, together with Mre11 intrinsic enzymatic
activities, with organism specific regulatory networks. A plethora
of structural and biophysical data were added to genetic and bio-
chemical characterization of MRX/MRN function, allowing to
develop a generally accepted model for Mre11 and Rad50 (MR)
heterotetramer assembly, ATP hydrolysis by Rad50 and Mre11
nucleolytic activities [35]. A couple of decades of analyses by X-
ray crystallography, small-angle X-ray scattering (SAXS), analytical
ultracentrifugation, inductively coupled plasma mass spectrome-
try, dynamic light scattering, atomic force microscopy (AFM), elec-
tron microscopy (EM) and lately cryo-electron microscopy (cryo-
EM) were collected and generally agreed on a well conserved archi-
tecture for a tetrameric complex constituted by a dimer of dimers
of Mre11 and Rad50 (usually indicated as M2R2).

Early EM and AFM analyses had revealed a structure character-
ized by a globular head and a long, straight rod or ring bent projec-
tion that can adopt different conformations [11,36–41]. Structural
studies allowed to identify the head as deriving from the associa-
tion of two Rad50 nucleotide binding domains (NBD) and two
Mre11 nuclease domains (ND), while the projections are consti-
tuted by the about 500 Å anti-parallel coiled-coil (CC) domain in
the middle of Rad50 molecule (Fig. 2A) [11,12]. The coiled coils
can form large proteinaceous rings or rods, which are joined by a
CXXC motif at the apex of the coiled-coils that mediates Rad50
subunits interactions via tetrahedral coordination of a zinc ion
[37,39,42–48].

Rad50 NBD contains the ABC ATPase domain, comprising the N-
terminal Walker A and the C-terminal Walker B, as well as signa-
ture motifs typical of this family (Fig. S1A-C). Binding of a non-
hydrolysable ATP analogue (AMP-PNP) to Rad50 induces a dra-
matic conformational rotation of the C-terminal ATPase subdo-
mains (lobe II) relative to the N-terminal half (lobe I) [11,49–51]
that increases the binding affinity of two Rad50 subunits [49,51].
This rotation also allows the formation of a dimer, which adopts
a closed conformation with two molecules of ATP shared at the
interface (Fig. 2B and C) [49,51].

Mre11 has five highly conserved phosphodiesterase motifs in
the N-terminal nuclease domain (Fig. S2A and B) [13–18]. Besides,
Mre11 protein is composed by a capping domain and a Rad50
binding domain (RBD). RBD consists in a helix-loop-helix (HLH)
domain that takes contact with the base of Rad50 CC portion
[50–52] (Fig. 2B and C). Actually, Mre11 embraces Rad50-ATP
dimer not only with its RBD, but also with residues in the nuclease
and the capping domains as well, resulting in Mre11 being com-
pletely inaccessible to double-stranded DNA (dsDNA) [50–56]
(Fig. 2B and C). Residues in the nucleolytic catalytic sites are also
involved in stabilizing protein–protein interaction [57]. The N-
terminal and C-terminal portions of Mre11 are structurally and
functionally distinct [58] and connected by a long and largely dis-
ordered linker that ensures high flexibility.



Fig. 2. The Mre11-Rad50 heterotetrameric complex can assume different configurations depending on nucleotide binding. (A) Schematic representation of the ATP-bound
and nucleotide-free M2R2 complex configurations as characterized by SAXS. (B, C) Structure of the archaean Methanocaldococcus jannaschii Mre11-Rad50 heterotetrameric
(M2R2) complex in presence of an ATP analogue (closed configuration) (B, front view; C, top view; PDB ID: 5DNY). (D, E) Structure of the bacterium T. maritima M2R2 complex
in the absence of ATP (open configuration) (D, front view; E, top view; PDB ID: 3QG5). RBD, Rad50 binding domain; NBD, nucleotide binding domain; ND, nuclease domain;
CC, coiled coil. Mre11 subunits are represented in green and cyan; Rad50 subunits are in magenta and yellow. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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In the absence of ATP, the MR complex was resolved in a config-
uration where Mre11 only holds the Rad50 ATPase domains near
the base of the coiled coils by its RBDs [50], while the NBDs of
Rad50 are wide open and available to contact dsDNA (Fig. 2D
and E). Other interfaces were proposed to stabilize this open con-
figuration and involve Mre11 capping domain competing with
ATP for Rad50 signature motif binding [50]. Mutations preventing
this predicted second interface to be settled (such as S. cerevisiae
Y328A) actually destabilize Rad50 dimer association with Mre11
and partially or completely fail to rescue the sensitivity to DNA
damaging agents of mre11D cells [50], suggesting that this config-
uration could be a transition state required for correct MR assem-
bly (see Table S1 for complete mutants information).

At the top of the long Rad50 CC domain, conserved and essential
CXXC motifs allow formation of two zinc-hooks that are critical for
MRX complex function, and whose conformation influences the
structural behavior of the head domains [39,44,59–61]. Further-
more, an additional interface is present within the Homo sapiens
Rad50 distal coiled-coil domains, also validated in a corresponding
S. cerevisiae hypomorphic rad50-48 mutant, which is defective in
Rad50 dimerization due to loss of CC stabilization of the hook [48].

The third component of MRX/MRN complexes, Xrs2/NBS1, is far
less conserved than the previous ones. Apart from the functional
similarities, Xrs2 and NBS1 have different structural and functional
features (Fig. 3A). They both show a fork-head associated (FHA)
domain in the N-terminal and Mre11 and Tel1/ATM interaction
domains, as well as nuclear localization signals in the C-terminal
that promote the nuclear import of MRN/MRX [62–67]. In S. pombe,
Nbs1 was revealed to wrap as an extended chain around the Mre11
phosphodiesterase domain with 2:2 (M:N) stoichiometry, but only
one of the two Nbs1 completely binds via the NFKXFXK motif to
the Mre11 latching loop (Fig. 3B). The stability of this last interac-
tion was reported to be fundamental for at least some of MRX/MRN
complex functions, which are compromised when amino acid sub-



Fig. 3. Effect of Nbs1 binding on S. pombe Mre11 dimer conformation. (A) Scheme depicting the conserved domains present in NBS1 and Xrs2. (B, C) Mre11 dimer from S.
pombe (PDB ID:4FCX) either alone or with an associated fragment of Nbs1 (aa 474–531) (PDB ID:4FBW). Mre11 subunits are represented in dark blue and green; Nbs1 is in
red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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stitutions corresponding to ATLD/NBSLD clinical mutations were
introduced in S. pombe Mre11 (for example N113S) [68]. It is still
unclear if this asymmetric bridging of the Mre11 dimer has any
functional meaning: DNA-bound archaeal and S. pombe Mre11
structures have different angles in the Mre11 dimer, probably
due to the difference in the dimerization interface and thanks to
the presence of the latching loop only in eukaryotic orthologs
(Fig. S2B). High flexibility of the latching loop confers dynamic
properties to eukaryotic dimers suggesting that conformational
changes in the Mre11 dimer due to Mre11-Nbs1 interaction could
be relevant for MRN function (Fig. 3B). In detail, a variation in
Mre11 dimer angle rotation, controlled by Nbs1 on one side and
by DNA and/or Rad50 plus ATP on the opposing side of Mre11,
might be sensed by effectors of the complex and/or directly influ-
ence nuclease activity. Nevertheless, the dimer interface residues
of bacterial and archaeal Mre11 also undergo conformational
changes upon Rad50 dependent ATP binding [13,50,51,56].

While Xrs2 is largely disordered, NBS1 also contains two BRCT
(Breast Cancer Suppressor Protein BRCA1) domains in the N-
terminal, after the FHA (Fig. 3A), and they are all involved in the
recruitment of NBS1 to phosphorylated histone H2AX at DSBs
[69–74]. NBS1 was also recently reported to sense CtIP phosphory-
lation with its N-terminal domains and activate MRE11 endonucle-
ase activity [75], but this feature does not seem to be shared by
Xrs2. In fact, the N-terminal FHA domain of S. cerevisiae Xrs2 binds
phosphorylated Sae2, although this capacity appears to be partially
dispensable for DSB end resection [76].
3. ATP hydrolysis drives a huge MR complex reconfiguration

Several structural data suggested that Rad50-catalyzed ATP
hydrolysis would induce a switch between a closed state, in which
Mre11 nuclease domain is occluded, to an open configuration with
exposed Mre11 nuclease sites [50,51,55,56], suggesting that this
event would be fundamental for the regulation of MR activity
and DNA repair. Structural studies on P. furiosus (Pf) nucleotide-
free Rad50 revealed a solvent-accessible channel extending deep
into the Rad50 hydrophobic protein core. This channel is substan-
tially remodeled and reduced when the ATPase subdomain rotates
in response to ATP binding by concerted movement of R805 and
R797 residues, which block and partially fill the remaining cavity
upon ATP binding [51].

Structures of Rad50 alternative conformational states were
resolved in different organisms [11,49–51]. Some insights,
obtained by methyl-based NMR spectroscopy [77] and by molecu-
lar dynamics [78], suggest that conformational changes in the a1-
b4 loop in Rad50 would be involved in the molecular events driv-
ing Rad50 transition from the ATP-bound to the ADP-bound state.
Consistently, a shift in a1-b4 loop conformation was previously
reported for the Pf Rad50R805E mutant variant, which is character-
ized by high affinity ATP binding and slow hydrolysis rate [55].
Upon ATP-binding, the switch of Rad50 R12 residue towards the
nucleotide releases K54 in the a1-b4 loop, which moves to the pro-
tein surface gaining solvent accessibility. The R805E mutation
induces a conformational rearrangement that alters a neighboring
hydrogen bonding network of Y157, R12, and the a1-b4 loop resi-
dues D41, D60 and K54, releasing this last and facilitating the tran-
sition to the ATP-bound state. Interestingly, deletion of the entire
a1-b4 loop (D51–60) eliminates ATP-stimulated DNA binding of
full-length MR [55].

Rad50 ATPase activity is intrinsically low and it is not clear yet
which molecular event triggers ATP hydrolysis, although the
coiled-coils and hook domains were proposed to influence the cat-
alytic behavior of Rad50 NBD by a long-range allosteric mechanism
[48]. Consistently, single amino acid substitutions (e.g. L828F and
D829N) in a conserved motif in the D loop (Fig. S1C) of Rad50
NBD were reported to increase the ATP hydrolysis rate, particularly
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when they were coupled with CC domain shortening [79]. These
mutant variants seem to adopt a hydrolysis competent state in
Rad50 dimer head more easily, which would require the two
Rad50 NBDs within the dimer at a wider distance, while the
wild-type dwells upon a tightly closed conformation that would
be recalcitrant to ATP hydrolysis [79]. Surprisingly, these mutants
both in S. cerevisiae and in mouse embryonic fibroblast cells show a
disruption of the DNA damage response, coupled to a loss of Tel1/
ATM kinase activation [80]. This behavior was proposed to rely on
the scarce persistence of the ATP-bound MRX configuration. Actu-
ally, proper Tel1/ATM activation was recently found to require
MRX in a tightly closed configuration [81], also according to molec-
ular dynamics simulation of a Rad50 A78T mutation in budding
yeast [78]. The Rad50A78T mutant variant is in fact defective in
Tel1 activation and it was found to induce a spontaneous switch
in Rad50 conformation, albeit bound to ATP, in molecular dynam-
ics simulation of the MR heterotetramer.

In its turn, ATP hydrolysis triggers large changes in MR config-
uration that lead to the dislocation of Rad50 from the nuclease
domain of Mre11 to clear its nuclease site [50,51,53–55]. The C-
linker flexibility is mandatory to allow this reorganization in MR
complex. In fact, a Ser499 substitution with the more rigid proline
residue in the linker of S. cerevisiae Mre11 was reported to affect
Mre11-Rad50 interaction, although it is not directly involved in
any of the described interfaces [78].

The open configuration would allow M2R2 complex to contact
dsDNA, but the complex would efficiently bind to DSB end only
in presence of ATP, suggesting a model where the complex clamps
on DNA by adopting the closed configuration [50] (Fig. 2B and C).
This model tallies with previous observation by AFM, suggesting
that a transition in the orientation of the coiled-coils is dependent
on DNA binding by the MRN head [82] and with nucleotide-
dependent conformational changes reported at the proximal traits
of the coiled-coils in different Rad50 structures [50,51,53,54,56].
Supporting this idea, the affinity of Rad50 to ATP and its hydrolysis
are different when coiled-coils are truncated [55]. The conforma-
tional change would require both ATP molecules to be either
hydrolyzed or recruited in order to promote dimer dissociation
or association, which is ensured by the observed cooperativity of
ATP hydrolysis and binding which is typical of ABC-ATPases [40].

The early proposed model for dsDNA binding to M2R2 [50] has
striking analogy to a recently resolved structural model (Fig. 4A)
based on cryo-EM analysis of SbcC-SbcD, Escherichia coli MR, com-
plex either in presence of ATP (Fig. 4B and C) or of ADP and a short
dsDNA (Fig. 4D and E) [83]. In the absence of DNA, the E. coli tetra-
mer M2R2 (Fig. 4B and C) adopts a similar but not identical config-
uration to the previously described ‘closed’ state (Fig. 2B and C).
Notably, the orientation of the Mre11 dimer with regards to the
Rad50 dimer is not exactly identical to the structures obtained
by SAXS on crystals (Fig. 5), though this could be attributable to
the different organism of origin (archaea vs prokaryotic origin),
to the artificial shortening of the coiled-coil traits in the archaea
Rad50 or to the different techniques used to obtain the structure
(SAXS vs cryo-EM).

Upon DNA binding, E. coli MR complex actually forms a clamp
around dsDNA through the two complete coiled-coils (CC)
(Fig. 4D and E). Though the inability of CC to directly contact
dsDNA in previous structural models may be due to the artificial
truncation (Fig. 6A), here they zip up into a rod and tightly embrace
DNA, together with the Rad50 nucleotide-binding domains
(Fig. 6B). Consistently with the most recent finding, one previously
reported structure of Thermotoga maritima Rad50 dimer together
with dsDNA revealed a contact between dsDNA and a single
Rad50 subunit strand-loop-helix motif in the proximal CC [84].
However, corresponding mutations in yeast that abolished this
contact were found not to affect DNA double-strand break repair
[84].

Upon DNA end binding, Mre11 dimer surprisingly moves to the
side of Rad50 dimer, thus reaching the DNA end, which plunges in
a channel bordered by Rad50 CC and Mre11 capping domain, and
leading to Mre11 nuclease site (Fig. 4D and E). In this configuration,
Mre11 and Rad50 share the usual interface between the former
RBD and the latter CC domain. A second interface is shared by
one of the Rad50 subunits and one of the Mre11 subunits
(Fig. 7A), involving in particular the outer b sheet of Rad50 and
the 137–149 aa loop in E. coli Mre11, the latter, defined as the ‘fas-
tener’ [83], not conserved in eukaryotes (Fig. S2B and Fig. 7A, see
below). This interface is claimed to be essential for both endonu-
clease and exonuclease activity of the complex, since mutants los-
ing this interaction, such as Rad50E115K or Mre11K149E, are defective
in both [83]. Actually, this model was demonstrated to be suitable
for binding only to DSB ends [83].

It is still to be assessed if this configuration is also topologically
compatible with DNA binding far from the DSB end, which is a pre-
requisite for Mre11 nucleolytic activity, since Mre11 endonuclease
cuts from 40 up to 200–300 nucleotides from the DSB end [20–
22,85–87]. Furthermore, the abundant Ku heterodimer is generally
believed to be the first protein to bind to DSBs at least in mam-
malian cells [88–92], allowing NHEJ to make the first DSB repair
attempt [91]. Experimental data in mammalian cells suggest that
the MRN complex can attach to DNA ends that have already been
claimed by Ku, which forms a constitutive ring specific for DNA
ends and unfit for internal DNA binding [93]. In budding yeast,
the absence of Ku weakens the requirement for MRX in DNA end
resection to process ‘‘clean” DNA ends, suggesting that the two
complexes compete for binding to DSB ends [94–98]. The struc-
tural traits allowing eukaryotic MR to interact with DNA ends cov-
ered by Ku or other associated proteins remain yet to be defined.
4. Interaction of Rad50 and Mre11 with DNA

The MR complex was previously proved to bind to dsDNA effi-
ciently only in presence of ATP [50]. This is consistent with
Rad50 interacting primarily with dsDNA in the ATP-dependent
dimer conformation [99]. In this closed conformation, Rad50 dimer
creates a groove that can host dsDNA, binding it with a patch of
several positive residues both on the globular head and on the
proximal CC surface (Fig. 6) [50,52,54,83,84].

Nonetheless, the MR complex was previously reported to make
contact with DNA even in absence of any nucleotide, as observed
by electron microscopy or AFM [39,82]. The large majority of the
coiled-coils in DNA-associated MR complex were rod-shaped
either in the presence or in the absence of a non-hydrolysable ana-
logue of ATP [82]. Most recently, the same rod-shaped conforma-
tion was proposed for the DNA end-bound post-ATP hydrolysis
cutting state of MR complex (Fig. 4D and E) [83]. Although it is
not clear if the rod-shaped conformation of the coiled-coils has
any requirements as for the nucleotide binding in Rad50 dimer,
it is clear that it involves a tight contact with nucleosome-free
DNA and, likely, intact Zn2+-hooked CC. In fact, crystals obtained
with shorter versions of Rad50 proteins in presence of dsDNA do
not reveal significant contacts between the proximal CC domains
and dsDNA (Fig. 6A) [52,54]. Rad50 CC was found to have flexibility
properties that could explain its structural dynamic nature [40].
Since the coiled-coils are generally not stiff [37,38], they hardly
can transmit changes in conformation of the globular domain to
changes in relative orientation of the ends of the coiled-coil, as pro-
posed [39,48]. This would confirm that DNA interaction is a key
force required for circular coiled-coils transition to rod-like
configuration.



Fig. 4. The Mre11-Rad50 heterotetrameric complex can assume different configurations depending on dsDNA end binding. (A) Schematic representation of the ATP- and
DNA-bound E. coli M2R2 complex configurations as characterized by cryo-EM. (B, C) Structure of bacterial E. coli M2R2 complex in presence of ATP (closed configuration) (B,
front view; C, top view; PDB ID: 6S6V). (D, E) Structure of bacterial E. coliM2R2 complex in presence of ADP and a 60 bp-dsDNAmolecule (cutting state configuration) (D, front
view; E, top view; PDB ID: 6S85). RBD, Rad50 binding domain; NBD, nucleotide binding domain; ND, nuclease domain; CC, coiled coil. Mre11 subunits are represented in
green and cyan; Rad50 subunits are in magenta and yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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DNA access to Mre11 nuclease active sites has long been a
major puzzling point, since the appearance of the first tetramer
closed configuration structure [53], where Rad50 subunits clearly
obstructed Mre11 catalytic sites (Fig. 2A). The Mre11 capping
domains were also claimed to be involved in DNA binding, accord-
ing to structural data obtained with isolated Mre11 dimer together
with DNA (Fig. 8A) [13], which was recently confirmed by genetic
and molecular dynamics simulations of a Mre11 mutant able to
overcome some of sae2D mutant defects [100]. The clearance of
the Mre11 nuclease catalytic sites is apparent in the open configu-
ration structure described by Lammens et al. [50] (Fig. 2D and E),
and this would easily allow interaction with dsDNA according to
the reported structure for DNA-bound Mre11 dimer (Fig. 8A). The
most recent cutting state model described by Käshammer et al.
[83] (Fig. 4D and E) describes a different configuration for dsDNA
end contact with Mre11 catalytic sites, which is actually still in
agreement with formerly identified contact sites (Fig. 8B).

Interestingly, high-throughput single-molecule microscopy
data showed that MRN, as well as MR, complex tracks the DNA
helix for free DNA ends by one-dimensional facilitated diffusion,
even on nucleosome-coated DNA [101]. Rad50 would bind homod-
uplex DNA and promote facilitated diffusion, whereas Mre11 was
found to be required for DNA end recognition and nuclease activi-
ties [101]. Thus, the ability to bind and track the DNA helix,



Fig. 5. Differences in Rad50-Mre11 dimer of dimers interaction by comparison between heterotetrameric ATP-bound MR structures. Complexes superposition of the
structures of M2R2 complex from M. jannaschii (PDB ID: 5DNY, red and orange structures) and E. coli (PDB ID: 6S6V, yellow and magenta structures) was obtained by
structural alignment of Mre11 dimers. Then, only Rad50 dimers were shown, revealing a non-perfect alignment of the Rad50 dimers in the complexes: two subunits are
pivoted by 23� (orange and yellow), while the others are rotated by 5� (red and magenta). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Rad50 dimer can interact in different configurations with dsDNA. The dsDNA-Rad50 interface in the structure of the filamentous fungus Chaetomium thermophilum
Rad50 dimer in presence of an ATP analogue and dsDNA (A, PDB ID: 5DAC) and in the structure of E. coliM2R2 complex in presence of ADP and dsDNA (B, PDB ID: 6S85) reveals
that Rad50 can interact with dsDNA with two different interfaces: Rad50 nucleotide binding domain (NBD) groove and proximal coiled-coil (CC) domain. Rad50 subunits are
represented in magenta and yellow; dsDNA is in grey. Basic amino acids (Lys, Arg and His) that can be implicated in DNA binding are shown as blue sticks. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1144 R. Tisi et al. / Computational and Structural Biotechnology Journal 18 (2020) 1137–1152
whether on naked DNA or on DNA associated to nucleosomes,
would rely on Rad50 contacts with dsDNA, while the ability to rec-
ognize clean DNA ends would be reliant on Mre11 directly taking
contact with the DSB ends.
5. Regulation of Mre11 nuclease activity

Sae2/CtIP promotes the Mre11 endonuclease activity within the
MRX complex to initiate DSB resection [23] and this function
requires Sae2/CtIP phosphorylation by cyclin-dependent kinases
(CDKs) in both mitosis and meiosis [24,25,102–104]. This CDK-
dependent regulation of Sae2 activity ensures that resection only
takes place in the S/G2 phase of the cell cycle when a sister chro-
matid is available as repair template [105,106]. Furthermore, it
also explains why NHEJ repair predominates in the G1 phase, when
CDK activity and therefore DSB resection is low.

In S. cerevisae, CDK-mediated Sae2 phosphorylation promotes
MRX nuclease by at least two distinct mechanisms. During the
G1 phase of the cell cycle, Sae2 exists in an unphosphorylated state
and is part of an inactive soluble multimeric complex [107]. During
S phase in mitosis and prophase of the first meiotic division, Sae2
phosphorylation promotes the formation of Sae2 tetramers, which
likely represent the active Sae2 species that promote the Mre11
nuclease within the MRX complex [25,107–110]. Additionally
and independently of regulating Sae2 size distribution, phosphory-
lation of the conserved C-terminal domain of Sae2 is necessary for
a direct physical interaction with Rad50 [25], which is crucial to
promote the Mre11 endonuclease activity. As ATP hydrolysis by
Rad50 is necessary for MRX-Sae2 endonuclease [23], phosphory-
lated Sae2 may control the Mre11 nuclease by promoting produc-
tive ATP hydrolysis.

In vitro, the efficiency of Sae2/CtIP-induced Mre11 endonucle-
olytic activity is strongly enhanced by the presence of proteins sta-
bly bound either internally or at the end of a DNA molecule
[86,87,111]. The E. coli SbcCD nuclease can cleave dsDNA past pro-
tein blocks as well, indicating that this seems to be a conserved
mechanism [112]. Such protein blocks include histones, the Ku
complex bound at the DSB ends, the RPA complex bound to either



Fig. 7. The interface between Rad50 and Mre11 fastener loop in bacterial cutting state of MR complex is not conserved in eukaryotes, but residues involved in Sae2
interaction with MR complex are localized in these regions. (A) Detail of the Mre11-Rad50 interface in the structure of E. coli M2R2 complex bound to DNA in the so called
‘cutting state’ (PDB ID: 6S85). (B) Localization of residues affected by the rad50S (K6, R20 and K81), mre11S (T188) and R184A mutations in S. cerevisiae. Mre11 subunits are
shown in green and cyan; Rad50 subunits are in magenta and yellow; fastener loop is in red. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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partially resected DNA ends or terminal hairpin structures, the
type II topoisomerase-like Spo11 covalently bound at meiotic DSBs
and the MRX/MRN complex itself [22,23,86,87,111,113–117].

During meiosis, formation and repair of programmed DSBs
ensures correct alignment and segregation of chromosome homo-
logs in addition to generating diversity [1]. The meiosis-specific
Spo11 protein generates DSBs by forming a covalent linkage
between a conserved tyrosine residue and the 50 end of the cleaved
strand [118,119]. In budding yeast, the MRX complex plays at least
two roles during meiotic recombination. First, it is required for
Spo11 to generate DSBs. Then, the Mre11 endonuclease activity
and Sae2 removes Spo11 from break ends by endonucleolytic
cleavage, releasing Spo11 attached to a short oligonucleotide
[22,85]. In fact, both the lack of Sae2 or of Mre11 nuclease-
defective variants allow Spo11-induced DSB formation, but pre-
vent Spo11 removal and meiotic DSB end resection in both S. cere-
visiae and S. pombe cells [15,18,120,121].
Interestingly, similar to SAE2 deletion and Mre11 nuclease-
defective variants, a group of rad50 and mre11 mutants, called S
mutants, are proficient in meiotic DSB formation but are unable to
remove Spo11 from the DSB ends (Table S1) [15,18,120–124], due
to the corresponding mutations impairing MRX- Sae2 interaction
not only functionally but also physically [11,25]. Surprisingly, com-
parison of the structures of S. cerevisiae Rad50 and Mre11 (Fig. 7B),
generated by homology modeling [58], with E. coli cutting state
model (Fig. 4D and 7A) shows that these sites are localized exactly
at the regions of S. cerevisiae Mre11 and Rad50 corresponding to
the interface identified between Rad50 b sheet and Mre11 fastener
loop in the DNA end binding configuration of E. coli MR complex.
The fastener loop is hardly conserved in the other eubacterial
Mre11 whose structure is available, which is T. maritima (PDB ID:
4NZV), while it is not present in archaea or in eukaryotes
(Fig. S2B). Indeed, it is not conserved in S. cerevisiae as well. However,
it is interesting that the T188 residue affected by the mre11S muta-



Fig. 8. Structural data agree on Mre11 capping domain contacting dsDNA. (A) Structure of M. jannaschii Mre11 dimer in complex with dsDNA (PDB ID: 4TUG). (B) Detail of
Mre11 interface with dsDNA end in E. coli M2R2 complex in cutting state configuration (PDB ID: 6S85). Mre11 subunits are reported in green and cyan; dsDNA in grey. Basic
amino acids (Lys, Arg and His) that can be implicated in DNA binding are shown as blue sticks. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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tion in budding yeast [122] is localized in the Mre11 a helix facing
the same region of the fastener loop (Fig. 7B). Moreover, in a sgs1D
background, the R184A mutant, affecting a residue on the exposed
side of the same helix (Fig. 7B), is sensitive to DNA damaging agents
as a catalytic dead Mre11 mutant variant (Mre11-H125N) [125].
Thus, it was speculated that a similar configuration could be valid
for eukaryotic MR complexes as well, but it could involve the forma-
tion of a ternary complex with CtIP/Sae2 [83].

It is not clear yet which structural adjustments allow Mre11 to
exert its function as an endo- or an exonuclease. Separation-of-
function mutants were isolated, such as H52S in Pf Mre11, in one
of the conserved Mn2+-coordinating motifs, in particular in the
phosphoesterase motif II (Fig. S2B), that drove to selective loss of
exonuclease activity but retained endonuclease competence
[126]. This conserved motif II histidine was proposed to be
required for the proper rotation of the 30-end last nucleotide phos-
phate bond over the catalytic Mn2+ ions prior to its hydrolysis. The
H52S mutation was also suggested to affect an allosteric network
between the Mre11 active site and capping domain, which is
involved in ssDNA binding [13,126].

Another mutant, the Y187C mutant of PfMre11, was also found to
be inactive as an exonuclease but active as an endonuclease [39]. The
mutation affects the conserved aromatic residue Tyr187 in PfMre11
(S. cerevisiae F224, H. sapiens F227), situated in a loop corresponding
to the sealing loop important for E. coli MR nuclease activity [83], on
the opposite side of the catalytic Mn2+ ions. Tyr187 was found by X-
ray crystallographic structural studies to interact with the nucleotide
of the dAMP released by the cleavage, while the monophosphate
interacted with the Mn2+ ions in the catalytic site [39]. Structural
studies via methyl-based solution-state NMR spectroscopy revealed
that both Y187C and H52S mutations in PfMre11 alter the structural
and dynamical interactions with dsDNA [126].

A series of mirin-based inhibitors binding to the same motif II
were also designed that could specifically interfere with either
one of the nuclease activity [19]. It was hypothesized that the
small-molecule inhibitors that differentially prevented endonucle-
ase but not exonuclease activity were able to specifically limit
ssDNA binding [19].
6. Regulation of Exo1 recruitment and processivity

MRX/MRN-Sae2/CtIP creates a nick that provides an internal
entry site for nucleases capable of degrading DNA in a 50–30
direction. These nucleases comprise Exo1 and Dna2, which con-
trol two partially overlapping pathways [20,21]. While Exo1 is
able to release mononucleotide products from a dsDNA end
[127], Dna2 has endonuclease activity that can cleave both 50

and 30 single-stranded DNA overhangs adjoining a duplex region
[128]. Reconstitution experiments revealed that Exo1 nuclease
requires the support of various factors that promote its nuclease
activity. The mismatch recognition complex MutSa was shown
to stimulate Exo1 processivity in the presence of a mismatch
[129], whereas the proliferating cell nuclear antigen (PCNA) pro-
motes human EXO1 processivity by enhancing its association
with DNA [30,130]. Noteworthy, in addition to the end-
clipping function, MRX/MRN also stimulates resection by Exo1/
EXO1 [28–32,98], thus explaining why mre11D cells show a
resection defect more severe than sae2D or mre11 nuclease
defective mutants.

Human EXO1 is a processive enzyme per se, unless the gener-
ated ssDNA is rapidly associated to RPA, as usually happens within
the cell, which reduces EXO1 life-time on DNA by ~100-fold [101].
In this condition, physical interaction with MRN [28,30,31], pri-
marily with MRE11 and less strongly with NBS1, is required to
maintain EXO1 processivity, retaining the exonuclease on DNA
and allowing fully efficient long-range resection [101].

The MRX/MRN complex was early reported to exert an ATP
hydrolysis-requiring partial and not processive unwinding of a
short DNA duplex [17,131–134]. This limited activity seems to be
conserved in prokaryotes as well [54]. Later, it was proposed that
Mre11 capping domain could retain a DNA unwrapping activity,
ensuring duplex melting at the DNA end, linked to capping domain
rotation [13]. This movement was actually reproduced by molecu-
lar dynamics simulations of S. cerevisiae Mre11, and was reported
to be able to cause DNA terminus unwinding [135]. The movement
was exacerbated by the presence of a R10T single amino acid sub-
stitution in Mre11, which implied an altered orientation of the
Mre11 capping domain leading to more persistent melting of the
dsDNA end. This hyperactivation allowed a higher exonuclease
activity by Exo1, achieving the suppression of the DNA damage
hypersensitivity and the resection defect of sae2D cells [100]. In
fact, although Exo1 is able to degrade a filament in dsDNA
in vitro, indicating that it does not require the intervention of a
helicase, it actually prefers dsDNA bearing a 30 ssDNA overhang
[32], and the DNA end unwinding by MR complex could facilitate
its access to the DNA 50 terminus.
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7. DNA tethering

Besides DNA end processing reaction, a second key requirement
of MRX/MRN complexes in DSB repair is the ability to coordinate
and bridge DNA ends, achieved through the MRN complex archi-
tectural DNA scaffolding activities [39,42–47,55,82,136]. A role in
DNA bridging was also proposed for CtIP/Ctp1/Sae2 [137,138],
Fig. 9. Comparison among DNA tethering models for MRX/MRN complex and SMC prote
and DNA tethering by intercomplex Zn-hook dimerization. (C) Schematic representation
SMC is in blue and the kleisin family proteins ScpA and B are in yellow and green) co
representation of the DNA tethering structure observed for SMC-ScpAB (same colors as i
(For interpretation of the references to colour in this figure legend, the reader is referre
although it cannot substitute for MRX/MRN deficiency, and it
was proposed to supersede after DSB processing.

The DNA tethering function for the MRX/MRN complex is gen-
erally ascribed to the extended coiled-coil regions of Rad50
[37,39,45,136] and requires the Rad50 hook domain [39,44,139].
These observations lead to a model describing in trans bridging
of DNA molecules through an alternative arrangement of the Zn-
ins. (A) Open configuration for MR complex. (B) Clamping model of dsDNA binding
of the DNA tethering structure observed for the Bacillus subtilis SMC (SMC-ScpAB,

mplex with J head conformation and overall V shape configuration. (D) Schematic
n panel C) with E head configuration, leading to the so called I shape configuration.
d to the web version of this article.)
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hook interface. In the so-called intercomplex configuration
(Fig. S3), the coiled coils of the Rad50 subunits in one heterote-
trameric complex connect at the hook with the coiled coils of the
Rad50 subunits from another complex, effectively bridging two
molecules of DNA (compare Fig. 9A and B).

Other data revealed that the hook alone would not be sufficient
for establishing of DNA tethering, which rather involves Rad50
coiled-coils as well. For instance, although mutations in the cys-
teine residues in the hook actually impair MR complex assembly
and chromatin binding in mammals [47,61], this is not sufficient
in yeast [44,140], where simultaneous loss of hook and coiled-
coil distal interface is required to induce a phenotype similar to
rad50 loss-of-function both in sister chromatid recombination
and in NHEJ [48]. Previously, dramatic shortening of the coiled-
coils in yeast, though in presence of the hook domain and thus
compatible with intercomplex hook-mediated dimerization, was
reported to be sufficient to dramatically impair NHEJ, which
requires MRX/MRN to tether the two DNA ends together, but not
to process them [44].

Moreover, observation by AFM of nucleoproteins formed by
incubation of 400 bp-dsDNA with MRX particles revealed that
internal and terminal nucleoprotein complexes had similar size,
suggesting that the DNA molecules were held together by a single
MRX complex [141]. And finally, very recently, high-speed AFM
imaging of the human MR complex has shown that the Rad50
coiled-coil arms are stably bridged by the dimerized hooks, while
the MR ring rather opens by disconnecting the head domains
[142,143].

Taken together, these considerations raise an issue on the pos-
sibility that DNA tethering could be achieved in different manners
depending on the DNA repair pathway to be undertaken. DNA
binding by clamping, as proposed by Lammens et al. [50]
(Fig. 9B), and in general dsDNA making contact with Rad50 proxi-
mal coiled-coils and DNA binding cleft on its dimer heads presume
that DNA is actually protein-free, which would be achieved near
the DNA ends by chromatin remodeling and histones eviction
[144–146]. Recently, CC clamping on the DNA helix was actually
observed by cryo-EM, but only after ATP hydrolysis [83]. Hitherto,
no structural evidence allows to predict if DNA molecule actually
makes contact with Rad50 proximal CC in the ATP-bound state,
although the presence of ATP is necessary to enforce MRN binding
to DNA [49,132].

Indeed, the ATP-driven Rad50 dimerization promotes the
assembly of MRX/MRN globular domain and has previously been
proposed to allow to topologically encircle homoduplex DNA
within the ring-shaped CC compartment [52,54], similar to the
model envisioned for S compartments defined by cohesin heads
in J configuration [147–150] (Fig. 9C). Like its homolog Rad50,
cohesin displays two ~30- to 50-nm-long coiled coils as well.
Nonetheless, human and S. pombe cohesins were reported to fail
to overcome diverse roadblocks [151,152]. In contrast, MRX/
MRN, unless Rad50 coiled-coils extension is reduced [101], can
efficiently diffuse on nucleosome arrays, provided that they are
not too dense, which ensures that MRX/MRN can rapidly find
DSB ends in euchromatin and nucleosome-depleted genomic
regions. Reduced MRN diffusion on highly chromatinized DNA
may indeed contribute to scarce HR and delayed repair at hete-
rochromatic DNA breaks (see [5] for a recent review on chromatin
context in DSB processing).

Previous cross-linking studies confirmed this topology for DNA
capture in the S compartment inside SMC rings in eukaryotic cohe-
sin [153] or prokaryotic condensin [154] in a V shape conformation
(Fig. 9C). However, after ATP hydrolysis the yeast cohesin heads
adopt a E configuration and the coiled coils seem to be juxtaposed
throughout their length, adopting the I shape conformation, for
bacterial Smc proteins and eukaryotic cohesin as well [155–157].
The I shape configuration was claimed to hamper DNA entrapment
in S compartment and allowing DNA to enter the K compartment,
defined by Smc and kleisin heads [142] (Fig. 9D). Consequently, it
has been recently proposed that the long, flexible arms of SMC-like
proteins would be fundamental to allow DNA translocation by
mediating large steps on chromatin, rather than to embrace chro-
mosomal DNA fibers [154], which is a fascinating hypothesis for
Rad50 proteins as well. Further experiments will be required to
assess if this bimodal DNA tethering mechanism could be adopted
by MR complexes.
8. Summary and outlook

DNA damage and DNA repair are fundamental topics in genetics
and molecular biology due to their correlation with genomic insta-
bility and DNA mutations. Cells possess mechanisms conserved
among eukaryotes apt to recognize DSBs and promote their repair.
Misrepair of DSBs often leads genomic instability and loss of
genetic information that can result in cell death or oncogenic
transformation. Consistently, cancer cells have a higher DSB gener-
ation rate related to oncogene-induced replication stress and dra-
matically rely on efficient DSB repair for their survival [158]. To
date, a number of inhibitors related to DNA damage repair systems
have been developed, particularly for breast cancer [159]. Under-
standing the mechanism involved in DNA damage repair would
be extremely useful in order to identify novel targets for drug dis-
covery efforts.

Events driving DSB-triggered MR-driven ATP hydrolysis and
subsequent DNA access to Mre11 endonuclease site have not been
clarified yet, despite the joined effort of genetics, biochemical, bio-
physical, computational, and structural approaches. In particular,
the conformational transition recently proposed for E. coliMR com-
plex upon recognition of the DNA end poses a novel focus on the
molecular rearrangements that can either trigger or allow such
transition. Extending this framework to eukaryotic MR complex
will be a further and challenging step required to transfer and com-
pare available experimental data on the different molecular
systems.

Computational approaches such as molecular dynamics simula-
tions contributed to this issue by providing unique insights on the
MR components molecular properties. Indeed, further structural
insights in eukaryotic complexes, which display specific traits
totally absent in archaea and prokaryotic homologs, will be
required to experimentally validate predictions obtained in these
homologs by advanced structural analysis techniques. Future
investigation will enable to determine whether the novel confor-
mational rearrangement proposed for bacterial MR complex could
be envisioned for eukaryotic MR complexes as well, allowing to
exploit the available structural insight and transfer the novel con-
cept to other organisms systems.
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