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A B S T R A C T

Parkinson’s Disease provokes alterations of subcortical deep gray matter, leading to subtle changes in the shape
of several subcortical structures even before the manifestation of motor and non-motor clinical symptoms. We
used an automated registration and segmentation pipeline to measure this structural alteration in one early and
one advanced Parkinson’s Disease (PD) cohorts, one prodromal stage cohort and one healthy control cohort.
These structural alterations are then passed to a machine learning pipeline to classify these populations. Our
workflow is able to distinguish different stages of PD based solely on shape analysis of the bilateral caudate
nucleus and putamen, with balanced accuracies in the range of 59% to 85%. Furthermore, we compared the
significance of each of these subcortical structure, compared the performances of different classifiers on this task,
thus quantifying the informativeness of striatal shape alteration as a staging bio-marker for PD.

1. Introduction

Parkinson’s Disease (PD) is a neurodegenerative disease resulting
from the degeneration of the dopamine-producing areas of the basal
ganglia. Although originally perceived as a primarily motor disease, its
symptoms are now known to extend far beyond motricity including
cognitive and neuropsychiatric symptoms (Pfeiffer, 2016). Some non-
motor clinical symptoms may be detectable before the appearance of
the more distinctive motor symptoms (Mahlknecht et al., 2015). This
prodromal stage of PD is crucial for medical treatment but difficult to
diagnose. There are a variety of treatments for PD, including pharmo-
cological treatment such as the dopamine precursor levodopa or in-
terventional treatments such as Deep Brain Stimulation (DBS), which
are proposed to obstruct disease progression and enhance the patient’s
quality of life. The choice of treatment remains under debate, and the
high heterogeneity of the disease (Thenganatt and Jankovic, 2014)
renders the space of treatment options highly variable and patient-
specific (Connolly et al., 2014; Limousin et al., 2008). Finally, there are
unanswered questions regarding the long term effects of these treat-
ments and the evolution of the disease (Limousin and Foltynie, 2019).
For all of these reasons, PD is unanimously considered in pressing need
of biomarkers both for improved diagnosis and treatment monitoring
(Delenclos et al., 2015).

In terms of the underlying neuroanatomy of Parkinson’s disease

symptomology, promising results have been found in the bilateral pu-
tamen and caudate (the two major components of the dorsal striatum).
It is well known that these structures are central to the progression of
PD, which greatly alters their behavior. The lack of dopamine in the
putamen as a result of PD is considered the direct cause of motor dys-
function, while the lack of dopamine in the caudate is more related to
alterations in cognitive function (Kish et al., 1988). Griffiths et al.
(1994) reported an alteration of the density of some neurotransmitter
receptors in both of these structures in post mortem brains of PD sub-
jects. Kish et al. (1988) observed a large loss of dopamine in both pu-
tamen and caudate nucleus, with reductions of over 99% in caudal
portions of the putamen.

In clinic, the diagnosis of PD, staging of the disease, and selection of
the treatment are made primarily using clinical biomarkers such as
UPDRS scores or Hoehn and Yahr scale. Although brain alteration is
prior to any clinical symptom, brain morphometry via Magnetic
Resonance Imaging (MRI) is considered a marginal source of informa-
tion in clinic PD (Péran et al., 2018; Paul, 2016). With increasing
availability and resolution of MRI, the research community is moving
towards finding reliable imaging biomarkers for the diagnosis and
monitoring of PD.
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1.1. Subcortical morphological biomarkers

Shape alterations in subcortical structures aside from volume or
thickness reduction has long been identified as a potential area of
analysis. Voxel Based Morphometry (VBM) has been for a long time the
favoured method due to its fine granularity, although with defined
limitations (Loretxu Bergouignan et al., 2009; Davatzikos, 2004). Most
modern methods fall into the category of Surface-based Morphometry
(SBM) which is a two-stage process. The first stage involves the seg-
mentation and registration of subcortical structures from the MRI into a
template space, and the second stage involves the representation and
analysis of the segmented surface’s shape with respect to that of the
population. While there are a variety of segmentation methods in the
first stage, the second almost unanimously extracts vertex-wise
boundary displacements on a template mesh, representing each surface
as a large, but constant-sized, vector. Among the most used, the Baye-
sian Appearance Model (BAM) is now a native part of the FSL library
using the FIRST implementation. This method proposes to add a
Bayesian framework to the Active Appearance Model (AAM), which
incorporates intensity information on top of the shape deformation
model. The authors claims that this Bayesian framework allows to
capture more subtle shape deformation than the other methods, even
when the training data amount is low. Other widely used methods for
shape analysis are single-atlas segmentation or multi-atlas label fusion,
followed by Large Deformation Diffeomorphic Metric Mapping
(LDDMM) (Faisal Beg et al., 2005) for registration.

Amongst the techniques explored to analyze the brain morpho-
metric variations, shape analysis has proved itself more reliable and
consistent than volume analysis, thickness analysis, and voxel-based
morphometry (Péran et al., 2018; Berner et al., 2019; van den Bogaard
et al., 2011; Gerig et al., 2001; Menke et al., 2014; Tang et al., 2014;
Wade et al., 2015) and is considered as a promising source of insight
into various neurological and psychiatric disorders.

1.2. Subcortical shape analysis in Parkinson’s Disease

Several studies have tried to evaluate the significance of subcortical
shape displacements as a bio-marker for PD, leading to often contra-
dictory results with the literature showing the impact of cohort and
methodology on the relevance of subcortical structures as diagnosis
biomarkers. Garg et al. (2015) show that the morphology of the bi-
lateral caudate nucleus as well as the putamen is discriminant in
Nemmi et al. (2015) found significant results only in the left caudate
and putamen, whereas Owens-Walton et al. (2018) didn’t find any
correlation in shape information outside of gross volumetric differ-
ences.

Some tried to use subcortical shape displacement for other purposes
than classifying PD patients from healthy controls. Mak et al. (2014)
and Foo et al. (2017) attempted to correlate subcortical shape dis-
placement with Mild Control Impairment (MCI) in PD, the first not
showing significant results while the second found significant in-
formation only in the left caudate. Both Nemmi et al. (2015) and Garg
et al. (2015) tried to correlate subcortical shape displacement with
disease severity (using left, right and global UPDRS and disease dura-
tion for the first, and global UPDRS only for the second). The only
significant result obtained, on these two studies, was between the right
UPDRS and the left putamen shape (Nemmi et al., 2015). Owens-
Walton et al. (2018) failed to show discriminating shape features in the
putamen and caudate nucleus to classify different stages of PD, getting
only significant results through volume analysis. Ultimately, the lit-
erature shows that correlation between specific clinical symptoms and
subcortical shape displacements in PD remains a difficult task.

1.3. Contributions

To the best of our knowledge, no cross-validated studies has been

done to quantify the predictive power of subcortical shape displace-
ments in PD. Moreover, little work has been done to compare the re-
levance of classifiers and to compare the informativeness of the struc-
tures. Finally, most of the studies focus on diagnosing PD against
Healthy Control (HC), without differentiating intermediate stages, and
the need to assess the relevance of morphometric biomarkers to diag-
nose PD prodromal phase has been pointed out (Garg et al., 2015).

Our proposed method is the first fully-automated, cross-validated
pipeline to classify different stages of PD. This data-driven pipeline uses
the state of the art of machine learning and data analysis to quantify the
relevance of shape displacements of putamen and caudate nucleus as
diagnostic and staging biomarkers, benchmarking different classifiers
and structures. We have extended clinical knowledge by investigating
subcortical shape displacements and determining those which are re-
levant for diagnosing prodromal stages of PD, therefore responds to the
necessity raised by Péran et al. (2018) to extend the morphometric
biomarkers research on prodromal stage of the disease.

We also shown that the MDS-UPDRS3 score of PD patients can be
predicted from subcortical shape displacements with our method,
showing weak, yet significant (at <p 0.001) results.

2. Materials and methods

2.1. Proposed method

The pipeline proposed is composed of three steps, as presented in
Fig. 1, which include the extraction of displacement vectors, their
compression, and finally the classification of the patient based on this
information.

The first step is to extract the displacement fields of the four striatal
structures from T1-weighted MRI sequences, compared to a fixed atlas
template described in Section 2.3 using the method presented in Section
2.1.1. The output of this process is a vector of vertex-wise signed dis-
placement magnitudes, with positive values indicating displacement
outwards from the template surface and negative indicating an inwards
displacement. We chose not to analyze the full displacement vectors
themselves, as we hypothesize that taking into account the direction of
the vectors would not add substantial information, while increasing the
vector size by a factor of three.

As the vector of displacements magnitudes is high dimensional
(6362, 6391, 6490, and 6510 elements for left and right caudate and
left and right putamen respectively), a compression step was performed
prior to the final classification step. Each structure has been compressed
through Principal Component Analysis (PCA). The number of principal
component kept has been chosen through Hyper-parameters
Optimization (HPO), as explained in Section 2.6.

Finally, a classification is performed using the concatenation of the
compressed displacements magnitudes vectors as input. These methods
are explained in more detail in the subsequent sections.

2.1.1. Image processing pipeline
We used a single-atlas based segmentation followed by LDDMM

registration and label propagation to automatically extract subcortical
shape displacements. More details about this image processing pipeline
can be found in Khan et al. (2019), and the full scripts have been made
available by the authors (https://github.com/khanlab/diffparc-sumo).

The original version of this method was proposed by Khan et al.
(2008) and shown a high degree of robustness for the segmentation of
the caudate nucleus and putamen with a Dice overlap measure of 81%
and 83%. As the reliability of this method has already been proven many
times (Garg et al., 2015; Khan et al., 2019; Khan et al., 2008; Garg et al.,
2014; Wang et al., 2009; Ansari, 2010), we did not perform any ex-
tensive segmentation quality check at this stage.

To summarize, this pipeline first registered the T1-weighted MRI
scan into MNI152NLin2009cAsym space. Then, a Region of Interest
(RoI) around the desired structure of interest on T1-weighted MRI scans
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was coarsely aligned with a template segmentation using an initial af-
fine registration step. Finally, this mapping is deformably refined using
LDDMM. The output of this process is a smooth diffeomorphic vector
field, which can be sampled at the surface vertex locations in order to
create the surface displacement vector. The magnitude of each vertex
displacement is then saved for each surface.

2.1.2. Compression
We compressed displacements vectors through PCA. By keeping

only the first few principal components which are orthogonal and
therefore decorrelated, the data is compressed while keeping most of
the information. On top of that, it often eliminates noise in the data, as
noise (assuming it is of lower variation than the data and is, in-
dependent of it) is often relegated to the least-significant principal
components. This triple advantage of compression, decorrelation, and
denoising makes PCA useful for downstream statistical or machine
learning analysis, especially when the original dimensionality of the
data is high compared to the number of available samples.

2.1.3. Classification
We used and compared four different classifiers in this study:

Support Vector Machine (SVM) with linear and radial basis kernels,
Random Forests (RF) and Ensemble Learning (EL) through stacking
classifiers. Stacking classifiers combines the strengths of different
classifiers. The meta-classifier may be trained solely on the predictions
of the base classifiers or to rather extend the original pool of features
with them. Although the former is simpler and has much lower para-
meterization, the latter allows the meta-classifier to use the underlying
data to determine which classifiers are likely to be more accurate for
any particular datapoint. In this study, we chose the later option in
order to give the meta-classifiers the theoretical ability to dynamically
adapt the weight of base-classifier, depending on the inputs. We used
logistic regression as a meta-classifier.

2.2. Data

2.2.1. Cohort description
Data for this article come from two databases. The first database

consists of PD patients from the cohort of DBS patients recruited at
Rennes University Hospital (from now refered as ’DBS PD’). These pa-
tients are all candidates for DBS, indicating that they experience suffi-
ciently advanced motor symptoms to warrant such an intervention and
are thus in an advanced phase of the disease. All patients of this cohort

have been informed and gave their consent to be included in this study,
which have been approved the institution’s ethics committee (trial code
“35RC19_4001_PSCP”). The second database is derived from the
Parkinson’s Progression Markers Initiative (PPMI), which is a program
sponsored by the Michael J. Fox Foundation for Parkinson’s Research. It
is an observational clinical study which tracks cohorts of subjects with
different forms of Parkinson disease for up to 8 years, with the goal of
identifying biomarkers of disease progression using MR imaging, bio-
logic sampling as well as clinical and behavioural assessments.

The PPMI database is used to define three separate cohorts. The first
consists of HC subjects without any neurologic disorder and who do not
have an immediate relative with PD. The second is a prodromal stage
cohort. Prodromal PD patients are at risk of developing PD and display
some characteristic clinical symptoms but not the more diagnostic
motor symptoms (Mahlknecht et al., 2015). The third is the early PD
cohort, composed of subjects with a diagnosis of PD for two years or
less, and not taking PD medications.

Fig. 2 shows the normalized distribution of UPDRS3 score, the main
motor assessment for PD, for the different cohorts. The UPDRS3 score
used for the DBS PD cohort has been converted to the MDS-UPDR3
score used in PPMI with the equation proposed by Hentz et al. (2015).
The three PPMI cohorts follow well-defined exponential or Gaussian
distributions, whereas the Rennes cohort is more heterogeneous. This
heterogeneity is expected as DBS is now sometimes proposed quite
early during the disease at the Rennes University Hospital. More in-
formation about the inclusion criteria of the PPMI cohorts can be found
on the PPMI study protocol, following the link https://www.ppmi-in-
fo.org/study-design/research-documents-and-sops/.

Fig. 1. Pipeline proposed and tested in this study.

Fig. 2. UPDRS-3 normalized distribution of the cohorts used in this study.
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Table 1 shows the UPDRS mean and standard deviation of each
cohort. From this, one can observe a natural progression of the disease
in terms of motor symptoms: first healthy, then prodromal stage, then
early-stage Parkinson and finally late-stage Parkinson. One can also
note that the standard deviation of each cohorts is quite high, indicating
that this information alone is not optimal and underscoring the im-
portance of finding other biomarkers.

2.2.2. Image acquisition
All patients from the Rennes database had one preoperative 3T T1-

weighted MRI scan (1 mm × 1 mm × 1 mm, Philips Medical Systems).
All sequences were acquired prior to DBS electrode placement.

For the PPMI database, all T1-weighted sequences (e.g. MPRAGE or
SPGR) were required to have a total scan time between 20 and 30 min
and to have a slice thickness of 1.5 mm or less with no interslice gap.

2.3. Atlas

Probabilistic segmentation of striatal structures were obtained with
the MNI PD25 atlas (Xiao et al., 2017). This atlas was built by averaging
3T MRI scans (T1w (FLASH and MPRAGE), T2*w, T1-T2* fusion, phase,
and an R2* map) of 25 PD patients, making it an atlas of choice for
studying PD patients in the MNI152NLin2009cAsym space. Eight sub-
cortical structures have been segmented in this atlas, including the
caudate nucleus and the putamen. This atlas is freely available through
the link http://nist.mni.mcgill.ca/?p = 1209.

As noted in Section 1.0.2, the striatum has been of particular in-
terest in morphological image analysis for PD. Thus, the segmentation
of the left and right caudate and putamen were extracted for use in our
study.

2.4. Accuracy and loss metrics

As cohort sizes are uneven, we used balanced accuracy (BACC) (Eq.
1) as a classification performance and comparison metric. This balanced
accuracy is necessary to prevent systemic bias towards the larger cohort
during the classification step. For compression, we used the re-
construction mean standard error as a compression performance and
comparison metric. Each classifier was trained with class weighting,
giving a weight to training sample inversely proportional to the re-
presentation of the belonging class in the training set.

= ⎛
⎝

+ ⎞
⎠

BACC TP
P

TN
N

1
2 (1)

2.5. Training and validation

For each test, we used a stratified 10-fold Cross-Validation (CV).
Each model has been trained 10 times separately, using one fold as a
validation data and the remaining nine as training data. Each model has
been trained and evaluated with the same folds, removing this as a
potential source of variation. Additionally, each fold contains ap-
proximately the same number of samples from each cohort. In the event
that a patient has multiple MRI acquisitions, all the acquisitions are
assigned to the same fold, in order not to ensure the folds are in-
dependent of each other and there is no training-evaluation set

corruption. To address the issue of class-balance in training, each
classifier has been trained weighting samples by the inverse of the class
size.

2.6. Hyper-parameter optimization

The hyper-parameters of each classifier have been optimized for
each CV fold through Bayesian optimization using a Gaussian processes
as a surrogate model with expected improvement as the criterion. The
number of points tested was the number of hyper-parameters to opti-
mize squared plus one.

2.7. Statistical analysis

The resulting BACC’s were analyzed statistically using multi-fac-
torial ANOVA in order to estimate the effect size and possible con-
tributions of different classifiers and combinations of structures, our
literature review suggesting these as potential sources of variability.

2.8. Software environment

The Scikit-learn implementation of PCA as well as each classifier
was used, and the Python code-base used to perform the different ex-
periments is available at https://github.com/m-prl/ParDi. Statistical
analysis was performed using IBM SPSS Statistics.

3. Results

3.1. Compression performance

Fig. 3 presents the PCA compression mean squared errors for all four
structures, and with different numbers of components kept.

3.2. Classification results

We performed a total of 1200 binary classifications (10 folds times 6
cohort-pairs times 5 combinations of structures times 4 different clas-
sification algorithms) each involving an independent hyper-parameter
optimization process. We reported the best balanced accuracy config-
uration of 10-fold classification. Table 2 presents the multi-factorial
ANOVA analysis of the classification results, showing that every vari-
able contributed to the results with a high level of significance.

As expected, the Problem (pair of cohorts being distinguished)
factor had a more defined effect over the Structs (the combination of

Table 1
Statistics of the cohorts used in this study.

Cohort F/M (total) Age (range) Mean UPDRS (range)

HC 64/113 (177) 67.8 ± 11.2 (39–90) 1.73 ± 3.35 (0–34)
Prodromal 9/32 (41) 74.9 ± 6.93 (56–91) 6.73 ± 8.60 (0–52)
Early PD 127/241 (368) 68.4 ± 9.73 (40–98) 25.4 ± 11.7 (0–90)
DBS PD 76/104 (180) 65.1 ± 9.48 (26–85) 43.4 ± 16.1 (14–92)

Fig. 3. Reconstruction mean squared error of PCA compression on test set for
left caudate nucleus (blue), right caudate nucleus (orange), left putamen
(green) and right putamen (red), with various number of components kept. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

M. Peralta, et al. NeuroImage: Clinical 27 (2020) 102272

4



structures used for classification) and Algo (classification algorithm)
factors. We can also note the significance of the Structure*Problem
factor, indicating that the structures of interest vary through the stage
of the disease.

In order to further investigate the effects of the structures and
classifiers used, follow-up analysis using Tukey’s Honestly Significant
Difference (HSD) test was performed. This test partitions the values for
each factor (e.g. Structure, Classifier, etc…) into a series of clusters that
are statistically significantly different from each other. This allows for
us to infer which structures or classifiers have improved performance
given that significance under the ANOVA test.

3.2.1. Classification performance between problems
In order to develop a reference of the relative difficulty between the

problems, a preliminary classification using only the clinical sympto-
matology was performed. Table 3 presents the classification metrics
obtained on the training base for the 6 different binary classification
problems, based solely on the MDS-UPDRS3 using a naive Bayes clas-
sifier. It is to note that the dataset is heavily class unbalanced between
the DBS cohort and the others, as in the PPMI program the MDS-
UPDRS3 is assessed at multiple visits, thus explaining the low f1 scores
and sensitivity of the last three rows of the Table. The accuracy is ex-
pected to be higher using clinical symptomatology than via the use of
morphological information as clinical symptomatology is currently re-
lied upon for the diagnosis and staging of PD (Mahlknecht et al., 2015).
Imaging, let alone morphological analysis, is not always used in the
diagnosis of PD. This is particularly relevant for defining Early and Late
stage PD in which the motor symptoms are a defining characteristic of
the disorder (Mahlknecht et al., 2015). Thus, one would expect nearly
perfect accuracy between these two stages and Prodromal or HC based
solely on motor symptomatology, although this gives little information
about the underlying etiology of Parkinson’s disease, only the clinical
workflow used to diagnose it.

Table 4 presents different performance metrics for all the six pro-
blems using all structures as input and Ensemble Learning as the highest
performing classifier. Further statistical analysis (i.e. Tukey’s HSD test)
could not be performed as the cohort size plays a preponderant role in
the analysis of these results. It shows that logically, the DBS cohort was
the easiest to classify, as it is composed of patients with the most

advanced state of the disease. The three other cohorts were more dif-
ficult to distinguish between themselves.

An interesting result was that the use of morphological information
for classifying between Prodromal stage PD and healthy controls ap-
pears to outperform the use of motor clinical symptomatology. This is
likely as the motor symptomatology does not capture the other symp-
toms that are more indicative of Prodromal stage PD which may be
related to morphological changes detectable from imaging.

It however is unexpected that the HC versus Early PD problem was
more difficult than the Prodromal versus Early PD, as the prodromal
stage is widely considered anterior than the early stage, in the course of
the disease. Yet, prodromal stage is considered as very heterogeneous in
terms of symptomatology (Mahlknecht et al., 2015).

3.2.2. Classifier comparison
Table 5 shows the BACC’s across the different classification algo-

rithms as well as the results of a Tukey’s HSD test. It shows three
clusters of classifiers with algorithms in different clusters having sta-
tistically significant differences in performance. The first cluster is
composed of RF alone indicating that it has significantly worse per-
formance of all the methods investigated. The second cluster is com-
posed of SVM with a linear kernel indicating that although it sig-
nificantly outperformed RF, it still underperformed SVM with a non-
linear kernel and ensemble learning. The final, highest-performing
cluster is composed of the SVM with radial basis kernels and Ensemble
Learning (EL) indicating that these two methods are roughly equivalent
in performance, neither outperforming the other significantly.

The fact that EL does not have significant better results than SVMr
can be explained by the fact that it often relied solely on the prediction
of SVMr, which is the highest accuracy base classifier. Indeed, the three
base classifiers mostly agree on the classification outcomes. This lack of
variety in the predictions between base classifiers limits the interest of
stacking these classifiers together. Nevertheless, stacking classifiers can
be considered as a safer choice in general as it theoretically and ex-
perimentally does not under-perform any base classifier. Overall, our
results indicate that although different classification algorithms deliv-
ered statistically significantly different performance, this effect is
marginal.

Table 2
Multivariate ANOVA test of the BACC across methods organized by problem,
combination of structures used, and classification algorithm.

Source T.III SS df Mean Sqr F Sig. ηp2

Corr. Model 7.31a 12 0.61 260.7 0.00 0.81
Problem 6.80 5 1.4 832.5 0.00 0.78
Structs 0.31 4 0.08 47.12 0.00 0.14
Structs*Problem 0.52 20 0.03 15.93 0.00 0.22
Algo 0.21 3 0.07 42.11 0.00 0.10
Fold 0.36 9 0.04 24.66 0.00 0.16
Error 1.89 1158 0.02
Corr. Total 10.08 1199

a R Squared = 0.812 (Adjusted R Squared = 0.806)

Table 3
Results of different binary problems using MDS-UPDRS3 score as input and a
naive Bayes classifier.

Problem BACC Sens. Spec. F1

Early vs HC 95% 99% 82% 97%
Early vs Pro. 82% 98% 27% 86%
Pro. vs HC 64% 69% 77% 46%
DBS vs Pro. 94% 85% 98% 90%
DBS vs Early 72% 11% 98% 19%
DBS vs HC 99% 85% 100% 92%

Table 4
Results of different binary problems, with Ensemble Learning as a classifier, and
all the structures in input. The first class of the problem is considered the po-
sitive class.

Problem BACC Sens. Spec. F1

Early vs HC 59% 77% 38% 67%
Early vs Pro. 64% 93% 23% 88%
Pro. vs HC 69% 42% 88% 49%
DBS vs Pro. 78% 89% 62% 86%
DBS vs Early 80% 64% 91% 68%
DBS vs HC 85% 87% 87% 83%

Table 5
Tukey’s HSD test to compare classifier performances. Mean BACC for each
classifier is also displayed. Alpha = 0.05.

Classifier N Cluster

1 2 3

RF 300 68.0%
SVMl 300 69.3%
SVMr 300 70.9%
EL 300 71.3%
Within-group Sig. 1 1 0.674
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3.2.3. Structure comparison
Table 6 shows Tukey’s HSD test results to compare the informa-

tiveness of the four different structures studied identifying three clus-
ters. The first and lowest performing cluster included the left and right
caudate as well as the left putamen, implying that these structures
provide an equivalent amount of information to the classification al-
gorithm. The second cluster contained the right putamen, which was
statistically significantly more informative than the other individual
structures. The final and highest performing cluster reflects when the
classifier had information regarding all structures simultaneously.

It is unsurprising that taking all four structures together to make
predictions is statistically significantly better than taking any individual
one (Table 6). This demonstrates that there exists some non-over-
lapping information across structures, i.e. that the effect of PD cannot
be isolated solely to a single structure, and that striatal structure de-
terioration is not uniform between all structures. Subcortical structure
deterioration in PD is likely to be specific to each structure, with these
specificities being differently informative. It was unexpected, however,
that right structures seem to be more informative overall than the left
ones which is investigated in the following section.

3.3. Laterality significance

As shown in Section 3.2, right structures appeared to be more in-
formative than the left ones when considered in isolation. This asym-
metry could be due to two sources: a consistent right-left difference in
the algorithm or underlying disease progression, or a contralateral-ip-
silateral difference which is exposed from a left–right bias in the un-
derlying population. A possible technical reason for the first source
could be the higher compressibility of right structures, shown in Section
3.1. As fewer principal components are needed to embed more in-
formation about the shape displacements for right structures, it is
possible that classifiers favour these structures more than the left ones.

The second source is partially confirmed by the slight over re-
presentation of right-side PD in our DBS PD cohort (81 left side start
against 86 right side start). In this cohort, we could extract information
regarding the symptom progression of PD, determining whether or not
the symptoms began on the right or left side. Indeed, if the disease starts
evolving earlier on one side of the brain, the subcortical structures of
this side may be in a more advanced phase of deterioration, and thus
are more informative to diagnosis the disease.

To verify this hypothesis, we ran a new experiment to compare the
significance of left against right structures for both left sided PD pa-
tients and right sided PD patients. We ran a 10-fold CV, using Ensemble
Learning as a classifier, as it is the most performant, as shown in
Table 5. Two problems have been tested, HC versus Left sided PD and
HC versus Right sided PD. For each problem, we reported the BACC of
the 10-fold CV, using in one case the left caudate nucleus and the left
putamen, and in the other case the right caudate nucleus and right
putamen. For each new problem, a paired-sample t-test has been per-
formed to assess if the side ipsilateral to disease progression is giving
statistically better accuracy results than the contralateral side. Results

are reported in Table 7. We can see that, for left-sided PD patients, the
left structures were consistently more informative than the right ones (p
= 0.009). For right-sided PD patients, right structures were consistently
more informative than left ones (p<0.001).

This experiment confirms the hypothesis that the starting side of PD
is an important source of diagnostic information, and should be taken
into account when interpreting medical images. This suggests that the
left–right difference observed in Table 6 is a result of a difference in
population size of left-sided and right-sided PD in which there is a
contra- vs. ipsi-lateral difference in terms of the information content of
each structure. However, more longitudinal studies would be necessa-
rily to determine if this difference persists in the Early and Prodromal
cohorts in which this laterality may not have yet manifested.

3.4. MDS-UPDRS3 prediction

In order to quantify the predictive power of striatal shape mor-
phology for the motor symptomatology of the patients, we used an
analogous pipeline as in the previous experiment, with RF as a regressor
instead of a classifier, to predict the MDS-UPDRS3 score of the patients
of all cohorts, besides HC. We decided to remove the HC cohort from
this experiment, as the task of predicting their MDS-UPDRS3 is not
relevant, as it is concentrated at zero, thus biasing the model’s predic-
tion towards zero. Fig. 4 presents the results of a 10-fold CV, after
having ran an HPO. We compared the performance of our system with a
baseline predicting always the cohorts’ mean MDS-UPDRS3 score. The
performance of both systems are shown on Table 8. The correlation
coefficient R of the regression is equal to 0.215, which can be considered
as weak, yet significant ( <p 0.001). This may indicate that the in-
vestigate subcortical shape alterations are co-caused along with motor
symptomatology, rather than being in direct causation.

4. Discussion

When comparing the baseline classification results of Table 3

Table 6
Tukey’s HSD test to compare structures’ performances. Mean BACC for each
structure combination is also displayed. Alpha = 0.05.

Structures N Cluster

1 2 3

Left caudate 240 68.3%
Left putamen 240 68.7%
Rigth caudate 240 69.3%
Right putamen 240 70.6%
All structures 240 72.7%
Within-group Sig. 0.224 1.000 1.000

Table 7
BACC for Ensemble Learning between HC and DBS cohorts, the latter having
laterality information regarding PD progression.

Struct. side Left struct. Right struct. p-value

HC vs Left PD 81.8%±0.5% 78.5 ± 3.4% 0.009
HC vs Right PD 76.5%±1.2% 87.9 ± 2.1% <0.001

Fig. 4. 10-fold CV MDS-UPDRS3 prediction with proposed method, for cohorts
DBS PD, Early PD and Prodromal. Red curve is the linear regression line of the
predictions. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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exclusively based on motor symptomatology, and the results of Table 4
obtained with our system, we can observe that, in 4 cases out of 6, the
results are better for the baseline. We can explain that by the fact that
the stage of the disease is derived from these clinical measurements,
including the motricity. The most interesting exception is for the pro-
dromal versus healthy control problem, where our systems performs
better. It confirms that brain alteration in PD’s prodromal stage is prior
to and globally more informative than any motor symptoms, and seem
to be correlated with the apparition of non-motor symptoms. Secon-
darily, it indicates that information from subcortical structures shape
alteration is somewhat orthogonal to the clinical motor symptoma-
tology of the patients, and that both should be taken into account when
monitoring the evolution of the disease. This conclusion, coherent with
the literature (Garg et al., 2015; Nemmi et al., 2015), is supported by
the results presented in Fig. 4, which shows that motor symptomatology
of the patients is largely orthogonal to striatal shape alterations.

Using only subcortical shape analysis, our system shows, with each
structure, consistent results for classifying PD patients from healthy
controls, whether they are on early or advanced phases, contrary to
most of the literature presented in the Introduction, where the results
are more subtle, and often contradictory (Nemmi et al., 2015; Owens-
Walton et al., 2018). We are also the first to successfully differentiate
healthy controls and Prodromal subjects using subcortical shape ana-
lysis. The main difference between our study and the current state of
the art is that we are using larger cohorts and more advanced machine
learning algorithms, which consider non-linear relations along all the
surface mesh, whereas the literature usually considers linear relations,
one point at a time. This observation shows that subcortical shape al-
teration is complex and non-linear, and that a supplementary metho-
dological effort has to be done when working with subcortical imaging
data in this context.

An unexpected result from our study is that Prodromal patients
seem to be easier to distinguish from healthy controls than early PD
patients. Although we don’t have any clear explanation to provide, this
observation illustrates that subcortical shape alteration is not uniform
in time.

In term of compression, all four structures displayed the same ex-
pected behaviour (Fig. 3), although right structures appeared to be
more easily compressed. This observation is not linked to the volume of
the segmentations on the atlas. We cannot be sure if right structures
have a more coherent shape deformation pattern, or if this observation
is caused by a unexpectedly noisier output from the segmentation, re-
gistration and vertex-wise boundary displacements on the left struc-
tures.

We also tried a non-linear data compression method using a neural
network and more specifically deep stacked residual autoencoder. In
addition, we used feature selection with the k-best algorithm using
different correlation scores. However, neither of these approaches
yielded consistent better performance while greatly increasing its
complexity, in the case of neural networks.

It should be noted that the different stages of PD exist in a con-
tinuum, that is, there is no clearly defined, objective delineation be-
tween stages. In addition, the Prodromal cohort do not all uniformly
progress to full symptomatic PD, although it is increasingly been seen as
a common pre-cursor (Mahlknecht et al., 2015). This has a distinct
effect on the accuracy of the methods using either motor symptomology
or striatal morphology, specifically for problems that can be seen as

’adjacent’ such as classifying between early-stage and late-stage PD, or
between healthy controls and the Prodromal cohort.

Our system was able to predict MDS-UPDRS3 score of various PD
subjects. The performance is weak, yet significant (p < 0.001) as
shown in Table 8. To us, it indicates that our methodology can be used
in theory to predict the motor symptomology of a patient based on
striatal morphology, but that they are either not strongly correlated or
causally connected. The fact that cohort classification is an easier task
than motor symptomatology prediction also supports our conclusion
that PD striatal shape alteration is orthogonal to motor symptoma-
tology.

4.1. Future work

By observing that the shape displacements of some structures are
more relevant in some problems than others, we hypothesized that
striatal structures would deform non–homogeneously through time. We
attempted to find a pattern in the spreading of relevant clusters of
points through the evolution of the disease, but couldn’t find anything
reliable. Further study would be needed in this direction. Additionally,
we could not find a clear interpretation regarding the most relevant
structures of every problem.

In this extent, the longitudinal observation of a cohort of patients
would be a good follow up for this study. Indeed, tracking patient’s
disease on several years could allow to conclude more reliably on
patterns in striatal shape alteration by removing the inter-population
bias.

A second important direction would be to correlate subcortical
shape alterations and the severity of non-motor symptoms, such as
cognitive and neuropsychiatric decline. So far, most of the literature,
including this manuscript, focuses essentially on motor symptoma-
tology. Finding biomarkers hinting at the severity and the speed of
cognitive and neuropsychatric decline would allow for greatly im-
proved medical care, as the choice of treatment would benefit from this
information. The ability of our system to classify healthy controls and
prodromal subjects, two cohorts for which the motor symptomatology
difference is marginal, highlights the relevance of subcortical shape
alterations for non-motor symptomatology. Present work could be ex-
tended to study other subcortical structures, from other imaging se-
quences than t1-weighted MRI especially for a better understanding of
Prodromal Parkinson’s disease with its more heterogeneous symptoms.

Finally, methodologically speaking, our study suffers from some
biases. First of all, the sizes of the cohorts are very uneven, which keeps
us from directly comparing the relevance of shape displacement for
different diseases stages. Secondarily, PPMI being a multi-centre pro-
gram, the imaging acquisition methodology and devices are not con-
sistent. Although the registration and segmentation processes are de-
signed to be somewhat agnostic to these differences, there is a
possibility that they could have impacted the output of the shape
analysis pipeline, and thus bias the results. Nonetheless, this study
being mostly preliminary and comparative, the observations drawn in
this paper are still relevant to the scientific community and give some
insight into the progression pattern of PD.

5. Conclusions

In this paper we presented a pipeline able to successfully differ-
entiate populations at different stages of PD, solely from the morpho-
logical shape alterations of the bilateral caudate nucleus and putamen.
This is an important conclusion for the PD research, as MRI is only
marginally used as a bio-marker for the disease, compared to clinical
biomarkers. Imaging biomarkers also give more direct insight into
disease progression, giving targeted information about the patient’s
neuroanatomy, as opposed to the more global behavioural view at-
tained through measuring manifested motor symptoms. This is crucial
for the understanding of prodromal and early stages of PD in which

Table 8
Statistics for 10-fold CV MDS-UPDRS3 prediction with our method and a mean-
prediction baseline, for cohorts DBS PD, Early PD and Prodromal.

Method MSE MAE R

Proposed method 224.4± 380.4 11.64 ± 9.434 0.215
Mean baseline 234.9 ± 433.1 11.77 ± 9.816 −0.160
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symptoms are not confined solely to motor performance.
Our analysis framework was constructed as a series of binary clas-

sifiers distinguishing between different stages of PD. Subjects with ad-
vanced PD are reliably distinguished from the other cohorts, with a
high sensitivity and specificity. Distinguishing between more similar
stages of PD has lower performance, but still outperforms diagnosis
based solely on symptomology indicating that shape alterations occur
early in the disease and progress over time. We show that striatal
structures shape displacements can be reliably used as a diagnosis bio-
marker for PD, even with relatively simple and well-validated machine
learning tools.

The performance is more limited in distinguishing between the
healthy control, prodromal PD and early PD groups. Yet, the results are
significant, and we show that subtle shape displacements exists, are
detected and are exploitable with this methodology. Subcortical shape
displacement can thus be used as a staging biomarker. We notably
showed, for the first time, that striatal structures shape displacements
allows to diagnosticate PD’s prodromal stage.

We showed that each of these structures are informative in a dif-
ferent way, as the best performance is given when using them all as
input. Thus, the shape displacements of each structure carries different
relevant information. Then, we investigated on the informativeness of
left and right structures, and concluded that the starting side of the
disease is directly correlated to it.

Finally, we shown that our system is hardly capable to predict motor
symptomatology from striatal shape displacement, showing that both
are either poorly, or difficultly correlated.
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