
Fornasiero et al. Parasites Vectors          (2020) 13:271  
https://doi.org/10.1186/s13071-020-04143-w

RESEARCH

Inter‑annual variability of the effects 
of intrinsic and extrinsic drivers affecting West 
Nile virus vector Culex pipiens population 
dynamics in northeastern Italy
Diletta Fornasiero*, Matteo Mazzucato, Marco Barbujani, Fabrizio Montarsi, Gioia Capelli and Paolo Mulatti

Abstract 

Background:  Vector-borne infectious diseases (VBDs) represent a major public health concern worldwide. Among 
VBDs, West Nile virus (WNV) showed an increasingly wider spread in temperate regions of Europe, including Italy. 
During the last decade, WNV outbreaks have been recurrently reported in mosquitoes, horses, wild birds, and humans, 
showing great variability in the temporal and spatial distribution pattern. Due to the complexity of the environ-
ment–host–vector–pathogen interaction and the incomplete understanding of the epidemiological pattern of the 
disease, WNV occurrences can be difficult to predict. The analyses of ecological drivers responsible for the earlier WNV 
reactivation and transmission are pivotal; in particular, variations in the vector population dynamics may represent a 
key point of the recent success of WNV and, more in general, of the VBDs.

Methods:  We investigated the variations of Culex pipiens population abundance using environmental, climatic and 
trapping data obtained over nine years (2010 to 2018) through the WNV entomological surveillance programme 
implemented in northeastern Italy. An information theoretic approach (IT-AICc) and model-averaging algorithms were 
implemented to examine the relationship between the seasonal mosquito population growth rates and both intrinsic 
(e.g. intraspecific competition) and extrinsic (e.g. environmental and climatic variables) predictors, to identify the most 
significant combinations of variables outlining the Cx. pipiens population dynamics.

Results:  Population abundance (proxy for intraspecific competition) and length of daylight were the predominant factors 
regulating the mosquito population dynamics; however, other drivers encompassing environmental and climatic variables 
also had a significant impact, although sometimes counterintuitive and not univocal. The analyses of the single-year data-
sets, and the comparison with the results obtained from the overall model (all data available from 2010 to 2018), highlighted 
remarkable differences in coefficients magnitude, sign and significance. These outcomes indicate that different combina-
tions of factors might have distinctive, and sometimes divergent, effects on mosquito population dynamics.

Conclusions:  A more realistic acquaintance of the intrinsic and extrinsic mechanisms of mosquito population 
fluctuations in relation to continuous changes in environmental and climatic conditions is paramount to properly 
reinforce VBDs risk-based surveillance activities, to plan targeted density control measures and to implement effective 
early detection programmes.
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Background
Climate changes have raised global awareness towards 
the spread of vector-borne infectious diseases (VBDs) 
at an international level [1]. VBDs, and arboviruses in 
particular, represent an important threat for human 
and animal health, as also stressed by the widespread 
diffusion of these pathogens in temperate European 
countries in the last decade [2–5]. Despite recent inten-
sive research, the behavior and the successful expan-
sion of VBDs have not been fully clarified yet. Due to 
the complexity of the biological cycle of arboviruses, 
and the limited knowledge of their epidemiological 
patterns, outbreaks might be temporally and spatially 
unpredictable [6, 7].

One of the most widely distributed arboviruses in 
the world is West Nile virus (WNV) [8]. The transmis-
sion cycle of WNV includes wild and domestic birds as 
maintenance hosts, and mosquitoes, primarily belong-
ing to the genus Culex, as vectors. Humans and horses, 
and other mammals to a lesser extent, are susceptible to 
WNV, although they are considered dead-end hosts [9]. 
Usually, infections in humans and horses are asympto-
matic; however, some infected subjects may develop dis-
ease with symptoms ranging from a mild flu syndrome to 
severe encephalitis or, in the worst cases, death [9].

WNV has been circulating in the Mediterranean Basin 
at least since the 1960s [10], and numerous outbreaks 
in human and equine populations have been witnessed 
since then. In Italy, the first outbreak of WNV was in 
1998, in Tuscany, with 14 neuroinvasive cases in horses 
and no involvement of the human population [11]. The 
virus re-appeared in 2008, with 251 outbreaks confirmed 
in equines located in three different regions in north-
east Italy [12]. Since then, WNV has been recurrently 
detected in horses, wild birds and humans. In northeast 
Italy, WNV was also detected in pools of Culex pipi-
ens mosquito in 2010, and positive pools were thereaf-
ter found every year. Nowadays, WNV is considered 
endemic in the northeastern Italy [13], and Cx. pipiens it 
is deemed as its primary vector [14].

The first national veterinary surveillance system 
for WNV was implemented in 2001, and was further 
improved in 2010, after the re-emergence of the virus 
in north-east Italy. In 2013 a risk-based surveillance 
approach was attempted by the regional Veterinary 
Authorities in Veneto and Friuli Venezia Giulia (FVG), 
and based on the identification of recurrent WNV hot-
spots in humans, equines and mosquitoes [15]. The plan 
was annually updated with the areas considered most at 
risk of WNV reactivation, according to the continuous 
evolution of the epidemiological situation.

In the last decade, the timing and location of positive 
cases detected in Veneto and FVG varied substantially. 

In fact, the distribution of the outbreaks over the years 
did not seem to follow a predictable pattern, except for a 
progressively earlier detection of the first positive cases 
in mosquitoes and horses, and a massive increase in 
human cases, which peaked in 2018 with 257 confirmed 
cases [16]. The hypothesis underlying this trend over the 
years could be related to changes in several drivers of the 
disease, including the ecological and biological aspects 
of the vectors, virus ecology, reservoir hosts, and the 
human population [17–19]. There is a strong need for 
in-depth studies on the ecology of the environment-host-
vector-pathogen interaction, in order to seek which fac-
tors could trigger earlier WNV reactivation. In particular, 
variations in vector population dynamics may represent 
a key point of the recent success of WNV and, more in 
general, of the VBDs [20].

It is widely acknowledged that vector population abun-
dance is strongly affected by environmental and climatic 
variability [18], as well as by intrinsic, density-dependent 
variables [21, 22], even though no clear patterns of these 
interactions have emerged from several studies [23]. A 
thorough knowledge of the ecology of the vector popula-
tion is the first step to analyse the complex phenomenon 
of the VBDs in their entirety.

Here, we investigated the variations of Cx. pipiens 
population abundance using environmental, climatic 
and trapping data obtained over nine years from WNV 
entomological surveillance programme implemented in 
northeastern Italy. The seasonal mosquito population 
growth rates were analyzed to evaluate the presence of 
possible differences among single-year and overall period 
(i.e. all data available from 2010 to 2018) data analyses, 
in order to identify the most significant combinations of 
variables outlining the Cx. pipiens population dynamics. 
The great variability in the pattern of occurrence of WNV 
cases in this territory led us to envisage a potential differ-
ent response for vector population dynamics to different 
combinations of environmental conditions; this could 
affect the distribution pattern of the disease distinctively 
over the years. Ultimately, a more realistic acquaintance 
of vector population drivers could offer baseline infor-
mation for planning targeted density control measures, 
improved risk-based surveillance activities and early 
detection programmes.

Methods
Area and period of study
The study was conducted exploiting the results of ento-
mological surveillance plans carried out in the flatlands 
of Veneto (below 300 m above the sea level) and FVG 
Regions, northeastern Italy. Environmental, climatic, 
and entomological data were collected for the period 
2010–2018 for Veneto, and for 2011–2018 for FVG, as 
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entomological surveillance started later in this Region 
(Fig. 1).

Mosquito data collection
Mosquito captures were conducted using CDC traps 
baited with dry ice pellets as source of carbon dioxide 
(IMT®, Italian Mosquito Trap, Cantù, Italy), aiming at 
attracting blood meal seeking females and powered by 
a 12 V battery. Traps were activated overnight every 
two weeks, from 17:00 h to 11:00 h on following day. 
The entomological surveillance season ran each year 
between approximately the first week of May until two 
consecutive captures with no mosquitoes collected 
(generally between the last week of October and the 
first week of November).

CDC traps were located mainly in rural/agricul-
tural areas, but some natural and urban sites were also 
included (Additional file  1: Table  S1). Collected adult 
mosquitoes were transported at 4 °C to the laboratory 
where they were stored at − 20 °C, and then identified 
under a stereomicroscope using taxonomic keys [24].

Only adult females belonging to the Cx. pipiens com-
plex (i.e. encompassing both the Cx. pipiens pipiens and 
Cx. pipiens molestus forms, which are phenotypically 
indistinguishable) have been included in the analyses, 
as they are considered the most important WNV vec-
tors in Italy [14]. To obtain a more reliable picture of 
the population dynamics, only traps that had at least 
four consecutive catches were included in the study.

Environmental data
Environmental data were extracted through a system 
developed at the Istituto Zooprofilattico Sperimentale 
delle Venezie and named Environmental data for Vet-
erinary Epidemiology (EVE), and included: tempera-
ture and vegetation measurements derived from NASA 
MODIS satellite imagery [25, 26], precipitation derived 
from interpolation of ground sensors (ARPA Veneto, 
https​://www.arpa.venet​o.it; ARPA FVG, https​://www.
osmer​.fvg.it; Autonomous Province of Trento, https​://
www.meteo​trent​ino.it; Autonomous Province Bozen, 
http://meteo​.provi​ncia.bz.it), and length of daylight 
(Table  1). All the environmental data were stored and 
managed as geographical raster images, with a spatial 
resolution of 1 km for precipitation and vegetation 
measurements, and 200 m for temperature.

As Cx. pipiens larvae were assumed to develop 
into adults in approximately two weeks [27, 28], we 
extracted measures concurrent with the capture 
moments, and summarizing values for the 15 days prior 
to trapping. This allowed describing the potential influ-
ence of environmental and climatic factors on both 
adult mosquito dynamics and the development of the 

larval forms. Synoptic variables included: the average 
of the distributions of the cumulative daily precipita-
tion (PREC.avg15d) and of the daily average temperature 
(T.avg15d); the De Martonne Index (DMI15d); the nor-
malised difference vegetation index (NDVI15d); and 
the growing degree days (GDD15d). Furthermore, since 
mosquitoes had been observed being sensitive to fluc-
tuations in weather trends [29], measures of climatic 
variability were also included in the analyses to better 
investigate associations between mosquito dynamics 
and their drivers. In addition to average measurements, 
the kurtosis and standard deviation of the distributions 
of cumulative daily precipitation (PREC.k15d and PREC.
sd15d), and of the daily average temperature (T.k15d and 
T.sd15d) in the 15 days prior captures were also taken 
into account, to evaluate whether the extent of cli-
matic variation may influence the mosquito population 
growth rates, during the assumed larval development 
period.

The De Martonne index provides information on the 
overall level of aridity of an area [30]. Values lower than 
20 are considered indicative of arid or semi-arid lands. 
The formula proposed for monthly estimates [31] was 
adapted to account for only 15 days prior to capture as 
follows:

where PREC15d and T.avg15d are the cumulative pre-
cipitation and the average temperature during 15 days, 
respectively, and 24.3 is a scaling factor to account for 
calculation of DMI at a 15-day scale.

As NDVI showed negligible variation in time, in 
each single capture season, only the maximum values 
observed within 1 km from the capture sites in the 15 
days prior to the trappings were included in further 
analyses.

The growing degree days (GDD) were considered to 
capture the direct effect of temperature on development 
cycle of mosquitoes. GDD estimates were considering 
a defined range for mosquito activity [23, 32]. A lower 
threshold (LT) was set at 11.5 °C and an upper threshold 
(UT) was set at 34.7 °C, accounting for corrections for 
average differences between air temperature and the land 
surface temperature (LST). GDD daily values were calcu-
lated as:

where T is mean daily LST.

DMI15d =
24.3 ∗ PREC15d

T .avg15d + 10







0 if T < LT
T − LT if T ≥ LT and T ≤ UT
UT if T > UT

https://www.arpa.veneto.it
https://www.osmer.fvg.it
https://www.osmer.fvg.it
https://www.meteotrentino.it
https://www.meteotrentino.it
http://meteo.provincia.bz.it


Page 4 of 12Fornasiero et al. Parasites Vectors          (2020) 13:271 

Four daily values of LST were available for each trapping 
day, recorded at 13:30 h and 22:30 h on the day in which 
the trap was positioned, and at 1:30 h and 10:30 h on the 
following day. The four measurements were combined to 
obtain an estimate of the average temperature during the 
period of most intense Cx. pipiens activity, which was 
observed occurring between 18:00 h and 6:00 h in this area 
(T.night) [33, 34].

To capture the effect of diapause and the suppression of 
feeding behaviour on mosquito populations [35, 36], the 
length of daylight was included in the analyses (DT.h). In 
fact, the start and end of diapause had been described as 
strongly related to photoperiod, indicating that Cx. pipi-
ens mosquitoes could enter a quiescent period when the 
length of daylight decreases [35]. The length of daylight 
was retrieved from the repositories of the Astronomical 

Applications Department of the USA Naval Observatory 
(http://aa.usno.navy.mil/).

Statistical analyses
To investigate the trends of the mosquito population 
abundance over the years, growth rates were calculated at 
each capture site. Mosquito abundances were processed 
to compute the geometric moving average on three con-
secutive captures, allowing to flatten short term fluctua-
tions and highlight longer term trends. The per-capita 
growth rate was then computed as:

rt = log
Nt+1

Nt

Fig. 1  Geographical location of capture sites during the years of study (2010–2018)

http://aa.usno.navy.mil/
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where Nt is the averaged population abundance at time 
t and Nt+1 is the averaged population abundance at the 
succeeding capture.

A series of statistical models was fitted using Maximum 
Likelihood mixed-effects linear regression (linear mixed-
effects model, LME) [37], to evaluate the influence of 
the environmental and climatic drivers on the mosquito 
population growth rate trends. An additional density-
dependent variable was included in the analysis, con-
sidering that the population growth rates could follow a 
Gompertz-logistic model, which accounts for the satura-
tion of the carrying capacity at each capture site [23, 38]. 
According to the Gompertz model, the density depend-
ent variable (indicated as GMP) was calculated as:

where N is the abundance of mosquitoes per capture and 
K is the carrying capacity, which was assumed to vary 
through years and capture sites and was set as the most 
abundant capture recorded for each year and site.

Data were grouped per capture site and year, as nested 
random effects, as we assumed that population growth 
rates might vary among different capture sites, and for 
each site, the population growth rates might vary in dif-
ferent years. Before model fitting, all variables included 
in the statistical analyses were scaled and centered to 
allow easier inferences through the direct comparison 
of the coefficients estimates: higher absolute values of 
the estimates indicate stronger effects on the population 
growth rates [39]. A temporal autocorrelation structure 
was also considered, to handle repeated measurements 

GMP =
log (N )

log (K )

and seasonal data, allowing to account for the presence 
of potential serial correlation of the residuals. A series 
of statistical models were then built to investigate the 
effects of intrinsic and extrinsic drivers on the mosquito 
population dynamics. In particular, one model was fit 
including all data collected during the whole study period 
(2010–2018), while nine other models were fit on single-
year data, separately. These full initial models were built 
including the GMP variable, and the environmental and 
climatic variables (Table 1). Further sets of models were 
then generated considering all of the possible combina-
tions of variables.

Model selection was based on the information theo-
retic (IT) approach [40] based on the corrected Akaike 
information criterion (IT-AICc) [40–42]. The IT-AICc 
approach is based on a comparative fit analysis through 
the calculation of Akaike weights (wAICc) for each gener-
ated model and can be interpreted as the probability of 
each single model to be the AIC-best model [42]. Follow-
ing the IT-AICc approach, models within each set were 
compared to assess whether there was a single model 
with high statistical support or many models with a simi-
lar fit. In the absence of a single outperforming model, 
model averaging was performed, combining the param-
eter estimates from the selected set of models consider-
ing the contribution of each model being proportional to 
its likelihood weight [40, 42]. For each generated set of 
models, a subset was selected so that their total cumula-
tive wAICc was equal to 0.95. This subset of models was 
assumed to include the AICc-best model, with a prob-
ability of 0.95. Furthermore, the number of selected 
models provides information on the level of uncertainty 

Table 1  Extrinsic and intrinsic variables considered in the analysis, and variables included in the IT-AICc models

a  Some variables were excluded due to collinearity

Variable Description Included 
in IT-AICc 
approacha

GMP Density dependent variables measuring the saturation of the carrying capacity Yes

DT.h Length of daylight (hours) Yes

DMI15d De Martonne aridity index in 15 days prior to capture (mm/°C) Yes

GDD15d Growing degree days in 15 days prior to capture Yes

NDVI15d Maximum normalized difference vegetation index in 15 days prior to capture Yes

PREC Daily cumulative precipitation (mm) Yes

PREC.avg15d Average cumulative precipitation in 15 days prior to capture (mm) No

PREC.k15d Precipitation kurtosis in 15 days prior to capture (mm) Yes

PREC.sd15d Precipitation standard deviations in 15 days prior to capture (mm) No

T.avg15d Average temperature in 15 days prior to capture (°C) No

T.k15d Temperature kurtosis in 15 days prior to capture (°C) Yes

T.sd15d Temperature standard deviations in 15 days prior to capture (°C) Yes

T.night Average temperature recorded during the overnight capture period (18:00–6:00 h) (°C) Yes
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encountered. From models with averaged coefficients, 
the importance of each single predictor variable was 
calculated as the sum of the AICc weights over all of the 
models in which the variable of interest appeared, and 
was intended as the probability of each single predictor 
to appear in the AICc-best model [42].

The linear mixed-effect models were fitted using the 
nlme package [43], the IT-AICc approach was performed 
through the package MuMIn [44], using R statistical soft-
ware version 3.5.2 [45].

Results
Annual trends in mosquito catches and abundance, 
and in environmental and climatic factors
A variable number of trap sites were operating in the 
study area each year, according to variations in the 
regional surveillance plans (Table 2).

The mean abundance of captured mosquitoes varied 
significantly between several years (F(8, 4899) = 28.55, P < 
0.001; Additional file 1: Figure S1). Overall mosquito cap-
tures were most abundant in 2013 (P < 0.05 for all of the 
comparisons), followed by 2010. Conversely, 2011 in par-
ticular, but also 2015, 2017, and 2018 were the years with 
least abundant mosquito populations. Despite several 
statistical differences observed in the population consist-
ency, the mosquito population growth rates did not vary 
significantly among years (F(8, 4899) = 0.70, P = 0.697). 
Statistical differences were observed for the density-
dependent variable (F(8, 4899) = 4.83, P < 0.001); post-hoc 
tests showed an overall higher value for 2018 (compared 
with 2010, 2013 and 2015–2017), and lower estimates for 
2017 when compared with 2011, 2014, and 2018 (Addi-
tional file 1: Figure S1).

The cumulative precipitation measured on the days 
of capture resulted significantly variable throughout the 
whole period of study (F(8, 4899) = 12.70, P < 0.001), with 
post-hoc Tukey’s test indicating similar higher values for 
2014 and 2015 (Additional file  1: Figure S1). Significant 
between-year differences were also detected for cumula-
tive precipitations on 15 days prior to trappings (F(8, 4899) 
= 17.90, P < 0.001), and the higher values were recorded 
in 2010 and 2014 (Additional file  1: Figure S1). Both 
temperatures concurrent with the trapping nights and 
average temperatures recorded 15 days before captures 
showed significant differences (F(8, 4899) = 27.73, P < 0.001 
and F(8, 4899) = 43.16, P < 0.001, respectively). Overall, 
night temperatures concurrent with mosquito captures, 
and average temperatures in 15 days before trapping were 
markedly lower for 2010 with respect to other years, and 
for 2014 in comparison with 2015–2018. In contrast, 
2018 showed the warmest temperatures in the whole 
period of study (on average, +  1.70 °C on the concur-
rent night and +  2.08 °C in the 15 days before capture, 

compared to the other years; Additional file 1: Figure S1). 
Also, the level of aridity significantly varied by year (F(8, 

4899) = 17.97, P < 0.001). Post-hoc tests indicated a simi-
lar trend with the average precipitation in 15 days: 2010 
and 2014 showed an overall higher DMI15d, indicating 
lower aridity levels (Additional file  1: Figure S1). As for 
NDVI15d (F(8, 4899) = 18.90, P < 0.001), significantly lower 
values were observed in 2012 and 2013, while more abun-
dant vegetation indices were reported for 2014, 2015, and 
2018 (Additional file 1: Figure S1).

Drivers of mosquito population growth rates
Preliminary analyses indicated the presence of a high cor-
relation between some environmental variables (Addi-
tional file  1: Table  S2). Therefore, before model fitting, 
the average values of precipitation and temperature were 
excluded, due to a high correlation with PREC.sd15d and 
DMI15d, and with GDD15d, respectively. Variance inflation 
factors (VIFs) were calculated on a preliminary model 
fitted with the remaining variables, resulting in high 
VIF for DMI15d and PREC.sd15d (9.24 and 7.72, respec-
tively), indicating potential collinearity. Following further 
exploratory GLMM considering either DMI15d or PREC.
sd15d alone as independent variables, the model account-
ing for DMI15d as a predictor of population growth 
rates showed greater statistical support (wAICc = 0.68). 
Therefore, we excluded PREC.sd15d from further analy-
ses. All of the initial models were then built including 
ten explanatory variables; GMP, DT.h, PREC, PREC.k15d, 
T.k15d, T.sd15d, T.night, DMI15d, GDD15d and NDVI15d. 
The model selection process based on the IT-approach 
generated 1024 models for each year and for the whole 
period (2010–2018), encompassing all of the possible 
combinations of explanatory variables. For each set, dif-
ferent numbers of models were necessary to reach a total 
cumulative wAICc of at least 0.95 (Table 3). The subsets 
ranged from a minimum of 70 models for 2015 to a maxi-
mum of 195 models for 2017, indicating different levels 
of uncertainty among years. Additional file  2: Table  S3 
reports the subsets of selected models; the relative like-
lihood-ratio based pseudo-R2 ( R2

LR ) were calculated to 
express the proportion of data variation explained by the 
models. R2

LR varied from a minimum of 0.70 in 2011 to 
a maximum of 0.82 in 2012, indicating and overall high 
goodness-of-fit.

The results of the analyses (i.e. coefficient estimates, 
confidence intervals, P-values and importance) for the 
significant variables are graphically shown in Fig.  2; 
Additional file  3: Table  S4 reports the numerical coef-
ficients estimates, confidence intervals and importance 
for all the variables included in the averaged models. 
Additional file 1: Figure S2 shows annual trends for tem-
perature, aridity and vegetation indexes to improve the 
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interpretation of the results of our study. The highest 
absolute values for the coefficients were associated with 
length of daylight (DT.h) and with the density-depend-
ent variable (GMP) (Fig.  2, Additional file  3: Table  S4). 
Coefficients of daylight were always positive and ranged 
between 0.657–1.251, suggesting that higher population 
growth rates were observed when days were longer. The 
density-dependent variable always had a negative sign, 
which reflects its inverse relationship with the popula-
tion growth rates (i.e. the growth rates decreased when 
the carrying capacity was saturating). Both DT.h and 
GMP were always highly significant (P < 0.001) and had 
maximum importance (i.e. importance = 1), which indi-
cated they were included in all of the models selected for 
the averaging process. Precipitation values concurrent 
with mosquito trapping (PREC) were not significant in 
any set of models (Additional file 3: Table S4). As factors 
measured on the day of capturing did not provide indi-
cations on the effects on population growth rates, but 
more on how the adult mosquitoes were affected, the 
results suggested rainfall did not likely influence the cap-
ture of adult mosquitoes. As for the variables summariz-
ing the variation of rainfall during larval development, 
the kurtosis of the distribution of cumulative precipita-
tion values (PREC.k15d) was significant only for 2015 
(P < 0.001), although the coefficient was not as large as 
those observed for DT.h and GMP (Coef. = 0.048) (Fig. 2, 
Additional file  3: Table  S4). The positive coefficient 

suggested that increases in population growth rates were 
more likely when the cumulative rainfall followed a lepto-
kurtic distribution, which indicated that periods charac-
terized by a more homogeneous rainfall may favor larval 
development and consequently the population growth 
rate. The coefficient for the GDD15d was significant and 
highly important in 2014 and 2018 (P < 0.05, importance 
= 0.92 and 0.95, respectively), with negative coefficients 
(2014, Coef. = −  0.175; 2018, Coef. = −  0.102) (Fig.  2, 
Additional file  3: Table  S4). Conversely, the coefficient 
for 2011 (P < 0.1) was positive, although with a relatively 
smaller effect on the population growth rate (Coef. = 
0.081). Increased temperature variability during larval 
development (T.sd15d) appeared to be positively corre-
lated to mosquito population dynamics in 2014 (Coef. 
= 0.042, P < 0.1), while an opposite effect was observed 
for 2016 (Coef. = − 0.047, P < 0.001) (Fig. 2, Additional 
file  3: Table  S4). Overall temperatures in 2014 were, on 
average, significantly lower (Additional file 1: Figures S1, 
S2), and characterized by the smallest average of stand-
ard deviations, which corresponds to a smaller range of 
temperatures. This means that 2014 was characterized 
by a cooler summer and a less harsh winter. The results 
of our analyses suggested that even small rises in tem-
perature during an on average cooler period may lead to 
increased population growth rates, as they probably pro-
mote the development of larval forms. On the contrary, 
in 2016 temperatures did not present peculiar trends 

Table 2  Number of mosquitoes collected during the sampling period 2010–2018

a  In Veneto Region only
b  Date of first capture - date of last capture

Year 2010a 2011 2012 2013 2014 2015 2016 2017 2018

Trapping 
periodb

17 May–26 
Oct

17 May–25 
Oct

22 May–31 
Oct

14 May–29 
Oct

19 May–29 
Oct

3 Jun–28 Oct 25 May–27 
Oct

5 Jun–30 Oct 4 Jun–4 Oct

No. of active 
traps

42 55 33 60 38 65 66 65 72

Total no. of 
captures

423 552 310 732 395 611 611 667 577

Total no. of 
collected 
mosquitoes

119,742 69,080 88,210 275,450 88,580 92,194 188,570 101,424 104,069

Total no. of 
collected 
Cx. pipiens

110,892 59,573 70,182 257,970 75,567 79,733 172,759 82,950 87,197

Mean no. of 
Cx. pipiens 
per capture 
(95% CI)

262.15 
(208.17–
316.14)

107.92 
(91.53–
124.31)

226.39 
(186.21–
266.58)

352.42 
(308.75–
396.09)

191.31 
(165.62–
217.00)

130.50 
(112.12–
148.87)

246.45 
(219.58–
273.31)

137.33 
(118.35–
156.31)

150.34 
(130.85–
169.83)

Percent-
age of Cx. 
pipiens

92.61 86.24 79.56 93.65 85.31 86.48 91.62 81.79 83.79

Total no. of 
identified 
species

15 16 17 21 17 18 15 19 16
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compared to the other years, although temperatures 
seem to decrease less steeply after the July peak (Addi-
tional file 1: Figure S2). The slower decrease of summer 
temperatures may have determined a prolonged period 
characterized by more homogeneous temperatures, 
which may have been more favorable for the mosquito 
population growth. The average temperature during the 
captures (T.night) had a significant contribution on pop-
ulation growth rates for 2010 and 2012 only, with a nega-
tive effect (Coef. = − 0.114 and –0.082, P < 0.01 and P < 
0.05 for 2010 and 2012, respectively; importance > 0.90 
for both years) (Fig.  2, Additional file  3: Table  S4). No 
other variables related to temperature appeared to have 
a significant influence on mosquito population dynamics 
(Additional file  3: Table  S4). The coefficients for the De 
Martonne index (DMI15d) was significant for the aver-
aged model built for 2013 (Coef. = −  0.052, P < 0.01, 
importance = 0.99), and for 2018 (Coef. = 0.049, P < 0.1, 
importance = 0.91) (Fig. 2, Additional file 3: Table S4). A 
smaller effect was also observed for the whole period of 
study (Coef. = 0.014, P < 0.1, importance = 0.92). A posi-
tive coefficient of 0.040 for the NDVI15d was highly sig-
nificant (P < 0.001) and important (importance = 1.00) 
in the averaged model built for the entire study period 
(2010–2018) (Fig.  2, Additional file  3: Table  S4). As for 
single-year averaged models, the coefficient estimates 
showed high importance (importance > 0.80) only for 
years 2013–2016 and ranged between 0.064 (2016) and 
0.100 (2013).

Discussion
In-depth knowledge of mosquito population dynamics 
and variability over time is paramount to understand how 
WNV infections might spread in an area. Although Cx. 
pipiens population dynamics is known to be regulated by 
both density-dependent and climatic and environmental 
factors [23, 46, 47], the complexity of its ecology ham-
pers the capacity to assess unequivocally to what extent 
the key drivers regulate the population dynamics. In 
this study, we aimed at evaluating whether the effect of 
environmental, climatic, and density-dependent factors 
affected the population dynamics in a consistent way, 
year by year, or if there were variations on how vector 
populations responded along the nine years of the study 
period.

From our results, it emerged that only two factors were 
regularly detected in the models, indicating consistency 

in how they are associated with Cx. pipiens popula-
tion dynamics: the first, population density, appeared to 
always have a negative effect, while the second, length 
of daylight, had a positive influence on the population 
growth rate. The negative sign associated with the den-
sity-dependent variable reflects the trend of the growth 
rate saturation curve as described by a Gompertz-logistic 
model [38]: the growth rates decrease as the mosquito 
density reaches the population carrying capacity. The 
impact of population density stresses the relevance of 
endogenous factors in regulating the internal dynamics 
of the Cx. pipiens population [47, 48], however, they may 
not be completely sufficient to entirely explain the varia-
tion observed.

The length of daylight had the strongest effect, with 
positive coefficients, indicating that growth rates were 
higher in periods with a greater number of light hours, 
and dropped when the photoperiod decreased. This 
could be related to changes in the mosquito behavior [48, 
49], as females prepare for the diapause and stop search-
ing for blood meals, opting for a more sugary diet [50].

The effect of precipitation was appreciable only for 
one model out of ten, stressing the uncertainty already 
reported in literature on the effect of rainfall on mosquito 
populations [48, 51]. In general, it is acknowledged that 
precipitation could contribute to create small basins of 
enriched water, suitable as reproductive foci for mosqui-
toes [29]. Also, since larval stages are water-dependent, 
precipitation could play an important role in creating 
and maintaining the wet environment necessary for the 
development of mosquitoes [52]. On the contrary, an 
excess of rainfall flushes the development foci used by 
larvae, leading to a decrease in the number of adult mos-
quitoes at a later moment, determining a reduction in the 
population growth rates [29, 53].

Of the two factors we included in the model to 
account for the variability of temperature during the 
larval development period, only the standard devia-
tion appeared to be significantly associated with varia-
tions in mosquito growth rates, although its effect was 
not univocal. This was also observed in other studies, 
which inferred that environmental drivers such as tem-
perature might have complex and opposing impacts 
on the demographic rates of mosquito life-cycle stages 
[54]. Overall, increasing temperatures lead to a faster 
development of the immature stages and stimulate the 
flight activity of Cx. pipiens, but too much heat could 

Table 3  Number of selected models for each subset, with cumulative wAICc = 0.95

2010–2018 2010 2011 2012 2013 2014 2015 2016 2017 2018

84 106 152 129 79 104 70 92 195 107
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dry up the eggs and larvae, as well as decrease the lifes-
pan of adults. As for the growing degree days, within 
certain limits, higher GDD15d appeared to significantly 
determine a greater growth rate, as the accumulated 
heat allowed eggs and larvae to develop into adults, so 
a larger number of adult mosquitoes can be trapped in 
the succeeding capture. However, when the amount of 
GDD15d is very high, it could also lead to an apparent 
decrease in growth rates. In fact, the generally positive 
effect of temperature could shorten the time needed for 
larvae to develop into the adult form [36]. Therefore, 
multiple overlapping mosquito generations might have 
developed in 15 days. The increase in population abun-
dance would then cause a reduction of growth rates due 
to the density-dependent effect, as the carrying capac-
ity is rapidly saturated.

The effect of average overnight temperature appeared 
to be in contrast with what has been reported in the lit-
erature, namely that temperatures are positively linked 
to mosquito abundance [48, 51, 55]. Our observation 

suggested that night temperatures alone might not 
be sufficient to account for the variations observed in 
the trapped adult mosquitoes, and likely unaccounted 
interactions with other environmental/ecological fac-
tors could be responsible for the negative effect found. 
A definitive explanation for this relationship remains 
elusive, and further studies are needed to investigate 
this apparent discrepancy in the nature of temperature 
effects.

Contrasting effects were also detected for the De 
Martonne index, which described the effect of the arid 
environment. Overall, it appeared that a more humid 
environment is positively associated with increased 
growth rates, although the finding was significant only 
for the overall period model and for 2018. The negative 
impact of DMI15d on mosquito population dynamics 
for 2013, although counterintuitive, could be partially 
explained when looking at the precipitation and tempera-
ture trend of that year. In fact, 2013 was characterized by 
a warmer and rainy spring followed by an exceptionally 
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Fig. 2  Graphical representation of the results of the average models per year; upper row: weighted averages of coefficients, 95% CI are shown 
(solid lines, significant coefficients; dashed lines, non-significant coefficients); lower row: importance of the variables. Only significant variables for at 
least one year of study (P < 0.1) are reported
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dry and arid summer. Heavy rainfall in spring might 
have contributed in creating suitable ecological niches 
for the development of larval stages, which in turn could 
have led to an increase in the abundance of adult mos-
quitoes at the beginning of the entomological surveil-
lance season. This might have elicited a faster saturation 
of the population carrying capacity, with a consequential 
decrease of the population growth rates due to density-
dependent effects. Another potential explanation could 
be related to the fact that drought conditions can cause 
massive evaporation, consequently determining the 
enrichment of the existing larval foci with organic mate-
rial, hence creating environments more suitable for larval 
development [53, 56]. In addition, in periods of drought, 
artificial irrigation is more frequent especially for wheat 
and corn fields, which are particularly abundant in north-
eastern Italy. The continuous availability of water pro-
vides suitable Cx. pipiens larval foci, and in turn higher 
growth rates and WNV diffusion [57].

The results for the measurements of biomass (NDVI15d) 
were consistent with other studies, where similar effects 
were observed [29, 51]. High estimates of NDVI in rural/
agricultural areas had been put into the relationship with 
the presence of breeding and resting sites suitable for Cx. 
pipiens mosquitoes, also providing a source of organic 
matter and nutrients necessary for the developing of the 
immature stages [58].

Overall, the results of the models highlighted that 
population density and daylight were the predominant 
factors regulating mosquito population dynamics, as 
they appeared in all of the models with the highest coef-
ficients and direct effects. Other drivers encompassing 
environmental and climatic variables also had an impact, 
although sometimes counterintuitive and not univocal. 
Analysing single-year datasets and comparing the results 
to overall period models, highlighted remarkable differ-
ences in coefficients magnitude, sign, and significance. In 
fact, it could be argued that mosquito populations may 
respond in different ways to fluctuations of environmen-
tal conditions, according to different variables combina-
tions over the years. The inclusion of factors indicating 
environmental variability was useful to investigate asso-
ciation patterns between mosquito dynamics and cli-
matic trends, as also seen in other countries [29], where 
population densities appeared to be positively correlated 
to increased variability in both temperature and rain-
fall. However, in our study this result occurred only for 
years in which climatic factors appeared to be extreme, 
and thus unfavorable for Cx. pipiens population growth. 
Therefore, when environmental conditions are more suit-
able for mosquito populations, a more homogeneous 
trend was positively associated with increased population 
growth rates.

The sets of models selected per year, with a cumula-
tive wAICc of at least 0.95, were always very numerous, 
ranging from 70 models in 2015 to 152 for 2011. This 
output of the IT-AICc approach reflected the high level of 
uncertainty in defining single best models for each year 
of analysis. However, to limit the complexity of the initial 
models, and hence the potential uncertainty in results, 
interactions between variables were not taken into 
account in the models, as well as quadratic or non-linear 
effects for variables as temperature and temperature-
derived factors, which could actually have a non-linear 
influence on mosquito population dynamics. Further 
study would be required to investigate how to incorpo-
rate more complex variables to model the population 
dynamics.

An acknowledged limitation of our study was related 
to the source of mosquito data, which derived from the 
regional WNV entomological surveillance plan. The sur-
veillance activities had a precise start date, which likely 
did not catch the exact beginning of the mosquito season 
after the end of the winter diapause. This could hamper 
the statistical support of the models, as it was not possi-
ble to assess how the intrinsic and extrinsic drivers influ-
enced the population dynamics in the earliest phases. 
The availability of mosquito collection data for the entire 
non-diapause period of Cx. pipiens could improve the 
robustness of the models, and soundness of inferences 
made upon them. Another aspect to be recognized is 
related to the different number of capture sites in the 
nine years of study and their variable position through-
out the study period, in accordance with the needs and 
requirements of the regional WNV surveillance plan. In 
fact, inconsistencies in the trapping patterns might intro-
duce artefacts and biases, indicating variations that may 
not necessarily reflect the actual fluctuations in local 
population dynamics during the study period [29]. To 
overcome this issue and limit as much as possible any 
loss in performance, we considered environmental and 
climatic factors measured at each capture site during the 
trappings and the two weeks before. This would help to 
capture the actual influence of the location on the mos-
quito population dynamics.

Conclusions
This study provides an extensive insight into the Cx. 
pipiens population dynamics in north-eastern Italy, 
an area considered endemic for WNV. The availability 
of a large dataset with entomological, environmental, 
and climatic data over a nine-year period, allowed the 
estimation of the contribution of the most important 
drivers on the regulation of the population dynamics, 
highlighting interesting ecological differences among 



Page 11 of 12Fornasiero et al. Parasites Vectors          (2020) 13:271 	

years. One of the most interesting results indicates that 
an overall model for the entire study period might be 
excessively generic, not allowing to assess the granular-
ity of the effects of environment and climate on mos-
quito populations along the entire study period. In fact, 
differences were detected in environmental/climatic 
drivers in single-year models, allowing inference that 
different combinations of factors or different trends of 
factors might have distinctive, and sometimes diver-
gent, influences on mosquito dynamics. Enhancing the 
understanding of the intrinsic and extrinsic mecha-
nisms of mosquito population fluctuations in relation 
to continuous changes in environmental conditions is 
paramount to properly reinforce risk-based surveil-
lance plans and control measures. The capacity to iden-
tify areas where an increased mosquito population 
density should be expected would allow triggering tar-
geted countermeasures such as disinfestations, as well 
as suggesting where to capture mosquitoes to optimize 
resources for entomological WNV surveillance.
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