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Abstract

The Pearl River Delta (PRD), one of the most polluted and populous regions of China, 

experienced a 28% reduction in fine particulate matter (PM2.5) concentration between 2013 (47 

μg/m3) and 2015 (34 μg/m3) under a stringent national policy known as the Air Pollution 

Prevention and Control Action Plan (hereafter Action Plan). In this study, the health and economic 

benefits associated with PM2.5 reductions in PRD during 2013 to 2015 were estimated using the 

Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) 

software. To create reliable gridded PM2.5 surfaces for BenMAP-CE calculations, a data fusion 

tool which incorporates the accuracy of monitoring data and the spatial coverage of predictions 

from the Community Multiscale Air Quality (CMAQ) model has been developed. The population-

weighted average PM2.5 concentration over PRD was predicted to decline by 24%. PM2.5-related 

mortality was estimated to decrease by more than 3800 due to decreases in stroke (48%), ischemic 

heart disease (IHD) (35%), chronic obstructive pulmonary disease (COPD) (10%), and lung 

cancer (LC) (7%). A 13% reduction in PM2.5-related premature deaths from these four causes 

yielded a large economic benefit of about 1300 million US dollars. Our research suggests that the 

Action Plan played a major role in reducing emissions and additional measures should be 

implemented to further reduce PM2.5 pollution and protect public health in the future.
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1. Introduction

Exposure to ambient fine particulate matter with aerodynamic diameter less than 2.5 μm 

(PM2.5) has been associated with adverse human health effects including mortality (Crouse 

et al., 2015; Di et al., 2017a; Di et al., 2017b; Künzli et al., 2005; Pope et al., 2002) and has 

attracted substantial attention in China due to the extremely high PM2.5 concentrations 

(Huang et al., 2014; Jung et al., 2009; Lv et al., 2017; van Donkelaar et al., 2016; Xing et al., 

2017). To reduce PM2.5 pollution, Chinese State Council has implemented air pollution 

control policies including Air Pollution Prevention and Control Action Plan (hereafter 

Action Plan; http://www.gov.cn) that aims to reduce emissions from power plants, industrial 

boilers, motor vehicles and fugitive dust. As reported in the Bulletin of Environmental 

Status, the average PM2.5 concentration at monitors in the Pearl River Delta (PRD) region 

decreased from 47 μg/m3 in 2013 to 34 μg/m3 in 2015 (Ministry of Environmental 

Protection of China. http://www.mep.gov.cn). This rapid decline in PM2.5 resulted in the 

PRD region achieving China’s national air quality goal of 35 μg/m3 two years ahead of the 

Action Plan schedule.

Policy analysts commonly rely on health benefit evaluation tools that incorporate 

concentration-response (C-R) functions from epidemiologic studies to assess the health 

benefits of air quality improvements (Maji et al., 2018; Pascal et al., 2013; U.S.EPA, 2009). 

In particular, the Environmental Benefits Mapping and Analysis Program-Community 

Edition (BenMAP-CE) developed by U.S. EPA has been widely used to estimate health 

benefits at the local, regional, national and global scale (Chen et al., 2017; Kheirbek et al., 

2014; Sacks et al., 2018; Voorhees et al., 2014). BenMAP-CE provides three options to 

evaluate the cost burden of disease based on common monetary methods: willingness to pay 

(WTP), cost of illness (COI), and the human capital approach (HC). The WTP approach 

comprehensively measures the amount of money people are willing to pay for reduction in 

the risk of illness. The COI approach is used to measure the cost associated with health 

endpoints, such as medical resources used and the value of lost productivity. The HC 

approach measures the lost production due to illness by multiplying the period of absence by 

the wage rate of the absent worker (Yin et al., 2018; Yin et al., 2017). WTP is widely used 

for evaluating PM2.5-related health benefits in China (Li et al., 2016; Lu et al., 2016) 

because it considers intangible losses, such as pain, suffering and other adverse effects due 
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to illness. The reliability of BenMAP-CE estimates depends on the accuracy and suitability 

of information used in benefit calculations such as air quality exposure fields, C-R functions, 

and baseline incidence rates. In previous health benefit assessments in China, the PM2.5 

exposure fields used in BenMAP-CE calculations were mostly based on chemical transport 

model (CTM) simulations. Predictions of CTMs, such as the Community Multiscale Air 

Quality (CMAQ) model, have the advantage of providing complete spatial and temporal 

coverage but suffer from bias compared with measured concentrations. Conversely, 

monitoring networks provide accurate measurements of PM2.5 but suffer from limited 

coverage compared with CTM simulations. The number of PM2.5 monitoring sites in China 

has recently increased from 1450 in 2013 to 1604 in 2015 (http://106.37.208.233:20035/), 

but the monitoring network still provides limited spatial coverage for such a large area with 

diverse emission sources.

Methods that combine information from PM2.5 monitoring networks with other data sources 

including CTMs have recently been developed to improve exposure characterizations for 

health studies. For instance, Di et al. (2016) used a neural network approach to combine 

information from data sources including monitoring, CTMs, land use, and satellite sensors to 

predict daily PM2.5 concentrations across the continental U.S. from 2000 to 2012. PM2.5 

fields for the U.S. were also developed by Beckerman et al. (2013) using a hybrid approach 

incorporating information from monitors, land use, traffic, and satellite retrievals in 

combination with CTM predictions. Zhan et al. (2017) used a spatially explicit machine 

learning algorithm to predict PM2.5 concentration fields across China based on PM2.5 

monitoring, satellite, and meteorological measurements. Lv et al. (2016) developed PM2.5 

fields for North China using data from PM2.5 monitors, satellites, and other sources (e.g., 

meteorological monitoring networks). These studies indicated that using hybrid models or 

multiple data sources could improve the accuracy of PM2.5 prediction. Furthermore, cross-

validation of PM2.5 fields developed by multiple methods for regions in the U.S. have 

recently demonstrated the potential value of hybrid methods that combine information from 

CTMs with other data sources compared with directly using CTM output (Friberg et al., 

2016; Huang et al., 2018). Both the strength of monitoring data’s accuracy and CTM’s 

spatial coverage can be integrated into prediction to reduce model biases and errors. Yet 

despite the advantages of combining monitor data with information from CTMs and other 

data sources, we are not aware of any studies that have applied air quality fields based on 

model-monitor fusion to estimate the benefits of air quality management in China.

In this study, we estimated the health and economic benefits associated with PM2.5 reduction 

in the PRD region between 2013 and 2015 using gridded PM2.5 fields developed by 

combining information from CMAQ modeling and China’s monitoring network. Avoidable 

mortality associated with PM2.5 reduction was estimated using BenMAP-CE with the 

integrated exposure-response (IER) model that provides C-R functions for the full range of 

ambient PM2.5 concentrations (Apte et al., 2015; Burnett et al., 2014). To facilitate creation 

of the gridded PM2.5 fields, we developed an innovative Data Fusion (DF) tool to derive 

spatial fields based on three algorithms commonly applied in benefit assessments: Voronoi 

Neighbor Averaging (VNA) (Gold et al., 1997), enhanced Voronoi Neighbor Averaging 

(eVNA) (Ding et al., 2016), and Downscaler (DS) (U.S.EPA, 2015, 2016). The DF tool 
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provides advanced capabilities for visualization and cross-validation and is available for 

download upon request (http://www.abacas-dss.com/abacas/Default.aspx).

2. Methodology

An overview of the analysis process for estimating health and economic benefits is provided 

in Figure 1. Briefly, the Weather Research and Forecasting (WRF) model was used to 

simulate meteorological conditions in 2013 and 2015 to drive CMAQ air quality simulations 

for the PRD region. Gridded PM2.5 spatial fields for each year were then developed with the 

DF tool using the simulated and monitored PM2.5. Cross-validation (CV) was done to 

examine the performance of the methods, and the PM2.5 fields considered most reliable for 

our application were selected for input to BenMAP-CE. Finally, BenMAP-CE was applied 

to estimate human health and economic benefits resulting from the PM2.5 reductions using 

information on population, incidence rates, and unit value for avoided deaths. Further details 

on the process are provided below and in the Supplementary Data.

2.1 Configuration of the WRF-CMAQ modeling system

The WRF-CMAQ modeling system used three nested modeling domains with horizontal 

resolutions of 27 km, 9 km and 3 km (Figure 2a). The innermost 3-km domain covers the 

entire PRD region for which benefits were estimated (Figure 2b). One-way nesting was used 

for meteorological simulations with WRF version 3.7 (http://www2.mmm.ucar.edu/wrf) and 

air quality simulations with CMAQ version 5.2 (http://www.epa.gov/cmaq). The initial and 

boundary conditions for the CMAQ simulation on the outer 27-km domain were based on 

default profiles in the CMAQ model. Boundary conditions for the middle 9-km and inner 3-

km domains were generated from simulations on the outer and middle domains, respectively. 

The emission inventories for the outer and middle domains were provided by Tsinghua 

University, and the emission inventory for the inner 3-km domain was developed by the joint 

research team of Tsinghua University and South China University of Technology. Six 

pollutants were included in the inventories: SO2, NOX, CO, PM10, PM2.5 and volatile 

organic compounds (VOCs). Pollutant emissions decreased in the inventories between 2013 

and 2015 by 57% (SO2), 13% (NOX) and 28% (PM2.5). More details on emission 

inventories are provided in Table S1 and Table S2. PM2.5 monitoring data over the PRD 

region were obtained from the Chinese Guangdong Environment Information Issuing 

Platform (http://www.gdep.gov.cn/). The monitoring sites are concentrated in the central 

urban area of PRD due to the high population, and outlying suburban areas are sparely 

monitored due to the low population. The implications of the monitoring network design for 

our study are discussed below.

The performance of the WRF model was evaluated by comparing hourly mean predicted and 

measured values at the Sugang and Ronggui monitoring sites. The average Pearson 

correlation coefficient (R) and Index of Agreement (IOA) for wind speed were about 0.5 or 

greater at the sites, but wind speeds were biased high (normalized mean bias, NMB: 169%) 

at Sugang. For relative humidity and temperature, R and IOA were greater than 0.8. For 

CMAQ predictions of daily mean PM2.5, the correlation coefficient was 0.83 in 2013 and 

0.86 in 2015, and predictions were slightly biased high in 2013 (NMB: 2.1%) and low in 
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2015 (NMB: −18.1%) (Table 1). The model performance statistics indicate that the WRF-

CMAQ system had acceptable performance for our application based on consideration of 

statistics for CTM modeling in the U.S. (Emery et al., 2017) and our use of data fusion 

methods to reduce model biases and errors.

2.2 Estimating PM2.5 with the Data Fusion tool

Annual average gridded PM2.5 fields with 3-km horizontal resolution were developed for 

2013 and 2015 over the PRD region based on algorithms of VNA, eVNA and DS using the 

DF tool. VNA calculates the concentration at the center of each grid cell as the inverse-

distance-squared weighted average of PM2.5 concentrations at neighboring monitors 

(U.S.EPA, 2017), where the neighboring monitors are identified using Delaunay 

triangulation. In the eVNA approach, the monitored concentrations used in VNA 

interpolation are multiplied by the ratio of the modeled concentration in the target grid cell 

to that in the monitor-containing grid cell (Ding et al., 2016). Therefore eVNA places strong 

weight on CMAQ gradients between the target cell and cells with nearby monitors. The DS 

model is a relatively complex statistical prediction model, but DS resembles a simple linear 

regression model with spatially varying coefficients at a high level. DS uses Markov chain 

Monte Carlo (MCMC) methods with Gibbs sampling to develop a relationship between 

observed and modeled concentrations, and then uses the relationship to predict 

concentrations at points in the spatial domain (Berrocal et al., 2010a, b; Rundel et al., 2015). 

The DS model is frequently applied in health studies (Bravo et al., 2016; Breitner et al., 

2016; Warren et al., 2013). More details on the algorithms of VNA, eVNA and DS are 

provided in the Supplementary Data Section S2.

The annual average PM2.5 fields were calculated as the average of fields developed for each 

of the four calendar quarters. The skill of the PM2.5 prediction models was evaluated using 

random ten-fold CV for predictions of quarterly average concentrations. Specifically, all 

monitoring sites were randomly divided into groups containing 10% or 90% of the sites. 

Each algorithm was then applied using data from 90% of the monitoring sites to predict 

PM2.5 at the remaining 10%. This process was repeated for all groups so that predictions 

could be evaluated against measurements at all sites. Performance was characterized using 

root mean square error (RMSE) and R2 statistics as defined in Section S1. As in other recent 

studies (Di et al., 2016), we refer to R2 calculated for cases including multiple samples over 

all sites as the total R2.

2.3 Evaluating health and economic benefits attributable to PM2.5 reductions

BenMAP-CE v1.3 was applied to evaluate the health and economic benefits of the PM2.5 

reductions in the PRD region between 2013 and 2015. The BenMAP-CE calculations are 

based on three key elements: (1) PM2.5 fields for exposure characterization, (2) C-R 

functions and baseline incidence rates for health impact estimation, and (3) a unit value for 

willingness to pay (WTP) economic benefit estimation.

As discussed above, 3-km gridded PM2.5 fields for 2013 and 2015 were developed using 

VNA, eVNA and DS methods with the DF tool. Population-weighted average PM2.5 

concentrations were calculated from these fields using population data from the 2010 China 
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census provided by the Data Center for Resources and Environmental Sciences, Chinese 

Academy of Sciences (RESDC) (http://www.resdc.cn). The 2010 census is the most recent 

and accurate national census and provides data at 1-km resolution that was mapped to the 3-

km PM2.5 grid for this study. Aggregated PM2.5 concentrations referred to below are 

population-weighted values.

C-R functions were used to estimate PM2.5-related health impacts in BenMAP-CE as is 

commonly done in human health risk assessments (Fann et al., 2013; Voorhees et al., 2011). 

Since previous studies have reported that mortality contributes > 90% of the health impacts 

of air pollution (U.S.EPA, 2011), premature mortality was selected to represent the health 

impacts of air pollution control in our study. The integrated exposure-response model (IER 

model), which provides C-R functions for the full range of ambient PM2.5 concentrations 

(Burnett et al., 2014), was applied to estimate the avoidable mortality related to PM2.5 

reduction for adults (age ≥ 25) (Xujia et al., 2015). The four leading causes of death in the 

IER model were selected for our application: lung cancer (LC), chronic obstructive 

pulmonary disease (COPD), ischemic heart disease (IHD), and stroke. The C-R functions for 

these health endpoints are the same (Equation 1 and 2), but different parameter values are 

used based on the relevant studies (Table 2).

The relative risk (RR) of mortality for each health endpoint can be defined by Equation (1),

RR C =
1 + α 1 − e−γ C − C0

δ , if   C > C0

1,   if   C ≤   C0
(1)

where C is the average PM2.5 concentration in 2013 or 2015; C0 is the endpoint-specific 

counterfactual concentration for minimum-risk to PM2.5; and α, γ, and δ are parameters that 

define the shape of the C-R curves as presented in Table 2. The premature mortality, 

Me,g(Cg), for each endpoint (e) associated with PM2.5 in grid cell g was calculated using the 

RR values for 2013 and 2015 as follows:

Me, g Cg = Be · Pg · RRe Cg − 1
RRe Cg

(2)

where Be represents the baseline endpoint-specific mortality incidence in the PRD region in 

2013, Pg represents population in grid cell g, and RRe(Cg) is the relative risk of endpoint e 
for concentration Cg in grid cell g. Baseline incidence rates for the health endpoints were 

based on Xujia et al. (2015), which referred to governmental statistics from the Guangdong 

Provincial Health Statistical Yearbook (2013), and population distributions were based on 

the 2010 China census as described above.

The economic benefits associated with the health impact estimates were quantified using the 

WTP method. The unit value for avoided premature deaths was based on Xie (2011), and 

was adjusted by the Consumer Price Index (CPI) and exchange rate with US dollars using 

the 2010 currency year.
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3. Results and discussion

3.1 Model validation and comparisons

PM2.5 predictions of CMAQ were evaluated by direct comparison with measurements, and 

the VNA, eVNA and DS predictions were evaluated using ten-fold CV as summarized in 

Table 3 and Figure S1. The three DF tool algorithms had higher R2 and lower RMSE than 

CMAQ in both 2013 and 2015. The high R2 values for the DF tool algorithms were due to 

the high density of monitoring sites in the urban area. VNA, eVNA and DS had lower R2 

values in 2015 than 2013, whereas CMAQ predictions had higher R2 in 2015 than 2013. 

Model performance differences for the years could be related to the movement of industrial 

point sources from the densely monitored urban area to the sparsely monitored suburban 

area between 2013 and 2015 (http://www.gdep.gov.cn/; Figure 3). Although the 

productivities of industrial sources improved during this period, the PM2.5 filtration 

efficiency was relatively constant and led to increases in PM2.5 emissions in parts of the 

suburban area between 2013 and 2015. The better performance for CMAQ in 2015 suggests 

that model performance improves with distance from the largest emission sources. The 

change in bias in CMAQ predictions from 2013 (NMB: 4.8%) to 2015 (NMB: −18.4%) 

would lead to an overestimate of the PM2.5 change between these years. Compared with 

CMAQ predictions, the NMBs for the three DF tool algorithms were small and relatively 

constant between years.

Spatial distributions of annual PM2.5 for the four approaches are illustrated in Figure 4. For 

2013, CMAQ predicts sharp gradients between high PM2.5 concentrations in the central 

urban area and relatively low concentrations in the surrounding suburban area. In contrast, 

CMAQ predicts relatively low PM2.5 in the central urban area and high concentrations near 

point sources in the suburban area in 2015 consistent with the emission fields (Figure 3). 

The PM2.5 spatial patterns for the VNA fields seem unrealistic in the suburban areas due to 

the extrapolation of measured values from the central monitored area to the surrounding 

unmonitored area. This degradation in performance away from monitors demonstrates the 

need to incorporate other data sources for predictions in sparsely or unmonitored areas. For 

the eVNA fields, relatively sharp gradients are evident compared with the other fields. These 

gradients are consistent with eVNA’s algorithm, which applies weights based on ratios of 

CMAQ predictions in different spatial locations. eVNA’s gradients may be beneficial in well 

monitored areas where emissions are well characterized but could be unreliable in 

unmonitored parts of the domain, and they cannot be verified in suburban areas due to the 

lack of monitoring. Overall, DS predictions appear to be most reliable for our application. 

DS performs well in CV for the central monitored area, and predictions are smooth but 

retain features of the CMAQ simulation in areas where monitors are not available for CV. 

Also, since the DS formulation does not directly involve interpolation of monitored 

concentrations, DS is conceptually sounder than VNA or eVNA where monitors are lacking. 

Therefore, DS predictions were used in our primary health benefit calculations, and CMAQ 

predictions were also applied to characterize the sensitivity of results to the use of data 

fusion.
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3.2 Predicted PM2.5 exposure level

DS predictions of changes in PM2.5 in the PRD region between 2013 and 2015 under the 

Action Plan are displayed in Figure 5. Reductions in PM2.5 ranged from −10 to 26 μg/m3 

over grid cells, and the population-weighted average PM2.5 concentration decreased from 45 

μg/m3 to 34 μg/m3 (a 24% reduction) (Figure 5a). The decrease in PM2.5 predicted by DS 

was confirmed by the monitoring data, for which the annual mean PM2.5 concentration 

decreased from 47 μg/m3 to 34 μg/m3 during the same period. The largest PM2.5 reductions 

were observed in the most polluted regions, such as Foshan and Shenzhen. The reduction in 

population-weighted average PM2.5 aggregated by city is shown in Figure 5b. During 2013 

to 2015, PM2.5 concentration decreased in all cities, with reductions greater than 10 μg/m3 in 

Foshan, Shunde, Guangzhou, Shenzhen, Jiangmen and Zhongshan. Considering the PM2.5 

reductions and their spatial consistency with the change in anthropogenic emissions, the 

results suggest that implementation of the Action Plan played a major role in improving air 

quality in the PRD region.

3.3 Mortality reduction and economic benefit evaluation related to PM2.5 concentration

We estimated health benefits for the four leading causes of PM2.5-related premature 

mortality (IHD, stroke, COPD and LC). We estimated that there were about 29,600 PM2.5-

related premature adult deaths due to these four causes in the PRD region in 2013. 

Therefore, about 11% of the number of adult deaths in the PRD region were estimated to be 

associated with these PM2.5-related health endpoints in 2013. IHD, stroke, COPD and LC 

contributed 45%, 44%, 7% and 4%, respectively, to the premature mortality estimate (Figure 

6a). In 2013, PM2.5-related mortality in Guangzhou, Shenzhen and Dongguan were over 

4000, and the value in Guangzhou was close to 7000 (Figure 6b).

Although the number of PM2.5-related premature adult deaths from IHD, stroke, COPD, and 

LC were still substantial (about 25,700) in 2015, the reduction in PM2.5 from 2013 to 2015 

led to about 3900 avoided PM2.5-related adult deaths from these four causes. The reduction 

in mortality varied by endpoint consistent with the different C-R functions (Apte et al., 

2015), with stroke and IHD accounting for about 48% and 35% of the avoided mortality, 

respectively (Figure 6c). The decrease in premature mortality from stroke and IHD was only 

about 14% and 10%, respectively, due to the high baseline mortality rates of stroke and IHD 

in 2013.

PM2.5-related mortality reductions and economic benefits aggregated by city in 2013 and 

2015 are shown in Figure 6d. Shenzhen and Guangzhou achieved mortality reductions of 

about 1700 with economic benefits over 570 million US dollars. The mortality reductions 

and economic benefits for Shenzhen, Guangzhou, Dongguan, Foshan and Jiangmen 

accounted for over 75% of the improvements in the PRD region. In cities with more than 5 

million residents (Table 4), population-weighted PM2.5 concentration declined by over 24% 

on average, which led to a mortality reduction greater than 2200 and economic benefits of 

about 740 million US dollars. However, in cities with relatively small population (e.g., 

Shunde), the avoidable PM2.5-related mortality and economic benefits were limited 

(avoidable mortality < 150, economic benefit < 50 million US dollars) despite PM2.5 
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reductions of 11 μg/m3. This pattern demonstrates the strong influence of population on the 

health impact evaluation.

The percent reduction in PM2.5 concentration is compared with the percent reduction in 

PM2.5-related mortality in Figure 7. The relationship between percent reductions in PM2.5 

and PM2.5-related mortality varies across cities. The highest PM2.5 percent reduction was 

29% in Foshan, where the estimated mortality reduction was 14%. Shenzhen achieved a 

higher percent reduction in PM2.5-related mortality (16%) than Foshan with a smaller 

percent decrease in PM2.5 concentration (28%). Apte et al. (2015) indicated that avoided 

mortality estimated by the IER model increases sharply with PM2.5 at low concentrations 

but increases gently at higher concentrations. Therefore the marginal health benefits (i.e. 

mortality abatement induced by unit reduction of PM2.5 level) increases with declines in 

PM2.5 concentrations in the model.

Although Shenzhen achieved a relatively high health benefit compared to other cities due to 

the dense population and considerable PM2.5 reductions, its marginal health benefits 

(reduction of mortality) were only 560 (per 100 thousand). Moreover, marginal health 

benefits for Guangzhou, Foshan and Shunde were all less than 500 (per 100 thousand), and 

the annual average PM2.5 concentrations in these cities were still over than the national air 

quality secondary standard (35 μg/m3) in 2015. Accordingly, the health benefits attributed to 

air quality improvement in the PRD region were still limited. For example, the World Health 

Organization (WHO) annual average PM2.5 guideline to protect public health is 10 μg/m3, 

while China’s secondary standard of 35 μg/m3 corresponds to WHO’s interim target. To 

achieve the WHO PM2.5 target, current policies should remain in place and additional 

measures should be implemented (e.g., optimization of industrial structures and the 

adjustment of energy structures (Dai et al., 2016; Li et al., 2017)).

To examine the influence of model-monitor fusion on health benefit estimates, we compared 

benefits estimated using DS fields with those estimated using CMAQ and monitor-based 

fields. To develop the monitor-based fields, PM2.5 concentrations in a grid cell were 

assigned the concentration of the nearest monitoring site as has been considered in previous 

studies (Baxter et al., 2013; Hodas et al., 2013) (Table 4). In PRD, the avoided mortality 

using DS fields was estimated at 3886, close to the estimate of Xujia et al. (2015), which 

assumed that annual average PM2.5 concentration in PRD reached the national air quality 

secondary standard (35 μg/m3) in 2017 and applied the IER model to estimate the avoided 

deaths. The avoided mortality estimated using CMAQ fields was over than 7200, nearly two 

times that based on DS. The difference in avoided mortality is due to the difference in bias 

of CMAQ predictions for 2013 and 2015 compared with the relatively consistent and small 

bias for DS predictions. Specifically, CMAQ predictions were biased high in 2013 and low 

in 2015, and so the reduction in PM2.5 between the years and the associated benefits would 

be overestimated if CMAQ output were applied directly.

The avoided mortality estimated using the nearest-site concentration assignment was about 

3500 with economic benefits of about 1200 million dollars (Table 4). Therefore, in 

aggregate, the nearest-site approach yielded avoided mortality estimates within about 10% 

of the DS-based estimates. However, the spatial pattern of health benefits differed 
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considerably for the methods. For instance, Guangzhou achieved the highest health benefits 

in the nearest-site approach, but Shenzhen achieved the highest in DS. Avoided mortality 

estimates were 43% lower in Shenzhen for the nearest-site approach than for DS. The 

nearest-site approach likely underestimated concentrations in northwest Shenzhen where 

there are no monitors by using the relatively low concentrations measured at sites to the 

southeast. These limitations likely led to underestimates of avoided mortality in Shenzhen in 

the nearest-site approach.

Since CMAQ suffers from bias compared with measurements and the nearest-site approach 

provides limited spatial resolution, the model-monitor fusion approach used in this study 

provides a pragmatic approach to provide improved air quality surfaces for health impact 

assessments. More details of health benefits including VNA and eVNA are provided in Table 

S4.

3.4 Methodological uncertainties

There were several methodological uncertainties in our study. (1) The PM2.5 monitoring 

sites are heavily concentrated in the central and southeastern parts of PRD, and the lack of 

monitoring in the suburban areas could limit the accuracy of predictions there. The overall 

benefit estimates should not be strongly influenced by these limitations though, considering 

that over 75% of the population was within about 10 km of a monitor and CMAQ 

predictions helped reduce uncertainty away from monitors. (2) The IER function was 

applied to estimate mortality reduction; however, the IER parameters were desired values 

based on 1000 simulations with 1000 sets of IER parameters from limited epidemiologic 

studies (Burnett et al., 2014; Xujia et al., 2015). Moreover, for stroke and IHD endpoints, the 

mortality reductions for adults (age ≥ 25) were estimated without age groupings, which can 

lead to slightly overestimated avoidable mortality (Burnett et al., 2014). (3) Baseline 

mortality incidence (BMI) data for 2013 was used for the entire analysis, because 

information on BMI variations between 2013 and 2015 is not available. (4) Population data 

was mapped to a 3 × 3 km grid to be consistent with the resolution of the gridded PM2.5 

fields, and population and PM2.5 values in each grid cell were assumed to be independent 

and uniform. The uncertainty associated with these assumptions is believed to be small 

because 3-km resolution is relatively high compared with typical health impact assessments. 

Also, although people may have changed address between the 2010 census and the 2013–

2015 study period, movement likely occurred in the core area of PRD without changing the 

overall population distribution. (5) Only the WTP method was used to evaluate economic 

benefits, and the unit value for monetization was based on studies in other regions (Xie, 

2011), adjusted by CPI, due to the limited information available for the PRD region.

4. Conclusion

In this study, an innovative DF tool was developed and applied to create improved estimates 

of PM2.5 distributions by combining the accuracy of monitoring data with the spatial 

coverage of CMAQ modeling. The model-monitor fused PM2.5 fields were then used with 

BenMAP-CE to estimate the health impacts and economic benefits related to PM2.5 

reduction in the PRD region between 2013 and 2015. The study illustrates a pragmatic 
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approach to produce improved air quality surfaces for health benefits evaluation and is the 

first application of BenMAP-CE to assess the health benefits associated with PM2.5 

reduction under the implementation of Action Plan in PRD, China.

PM2.5 concentrations in the PRD region decreased by 24% between 2013 and 2015 

according to a spatial pattern consistent with emission controls implemented under the 

Action Plan. This behavior suggests that the Action Plan played a major role in the air 

quality improvement. High levels of PM2.5 observed in the central and southeastern parts of 

PRD in 2013 decreased by more than 10 μg/m3 following the emission reductions. The 

avoided PM2.5-related premature mortality during 2013 to 2015 was estimated at 3886, 

which yielded an economic benefit of about 1300 million US dollars. However, the health 

benefits associated with the PM2.5 reductions were still limited in the PRD region due to the 

relatively low marginal benefits under high PM2.5 conditions. The health benefit estimates 

from this study strongly suggest that retain current policies and implement additional 

pollution control policies to further reduce PM2.5 and protect public health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by the National Research Program for Key Issues in Air Pollution Control (No. 
DQGG0301), the Emissions, Air Quality, and Meteorological Modeling Support (EMAQ, EP-D-12-044), the 
National Key Research and Development Program of China (No. 2016YFC0207606), the Natural Science and 
Technology Foundation of Guangdong Province, China (No. 2016A020221001), the Outstanding Youth Fund Of 
National Natural Science Foundation (No. 21625701) and the Fundamental Research Funds for the Central 
Universities (No. D2160320&D2170150).

References

Apte JS, Marshall JD, Cohen AJ, Brauer M, 2015 Addressing Global Mortality from Ambient PM2.5. 
Environ. Sci. Technol 49 (13), 8057–8066. DOI: 10.1021/acs.est.5b01236. [PubMed: 26077815] 

Baxter LK, Dionisio KL, Burke J, Sarnat SE, Sarnat JA, Hodas N, Rich DQ, Turpin BJ, Jones RR, 
Mannshardt E, Kumar N, Beevers SD, Özkaynak H, 2013 Exposure prediction approaches used in 
air pollution epidemiology studies: Key findings and future recommendations. J. Expos. Sci. 
Environ. Epidemiol 23 (6), 654–659. DOI: 10.1038/jes.2013.62.

Beckerman BS, Jerrett M, Serre M, Martin RV, Lee S-J, van Donkelaar A, Ross Z, Su J, Burnett RT, 
2013 A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the 
Contiguous United States. Environ. Sci. Technol 47 (13), 7233–7241. DOI: 10.1021/es400039u. 
[PubMed: 23701364] 

Berrocal VJ, Gelfand AE, Holland DM, 2010a A bivariate space-time downscaler under space and 
time misalignment. Ann. Appl. Stat 4 (4), 1942–1975. [PubMed: 21853015] 

Berrocal VJ, Gelfand AE, Holland DM, 2010b A Spatio-Temporal Downscaler for Output From 
Numerical Models. J. Agric. Biol. Environ. Stat 15 (2), 176–197. DOI: 10.1007/s13253-009-0004-z. 
[PubMed: 21113385] 

Bravo MA, Anthopolos R, Bell ML, Miranda ML, 2016 Racial isolation and exposure to airborne 
particulate matter and ozone in understudied US populations: Environmental justice applications of 
downscaled numerical model output. Environ. Int 92–93, 247–255. DOI: 10.1016/
j.envint.2016.04.008.

Breitner S, Schneider A, Devlin RB, Ward-Caviness CK, Diaz-Sanchez D, Neas LM, Cascio WE, 
Peters A, Hauser ER, Shah SH, Kraus WE, 2016 Associations among plasma metabolite levels and 

Li et al. Page 11

J Environ Manage. Author manuscript; available in PMC 2020 May 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



short-term exposure to PM2.5 and ozone in a cardiac catheterization cohort. Environ. Int 97, 76–84. 
DOI: 10.1016/j.envint.2016.10.012. [PubMed: 27792908] 

Burnett RT, Pope CA, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, 
Anderson HR, Smith KR, Balmes JR, Bruce NG, Kan H, Laden F, Prüss-Ustün A, Turner MC, 
Gapstur SM, Diver WR, Cohen A, 2014 An Integrated Risk Function for Estimating the Global 
Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Environ. Health Persp 
122 (4), 397–403. DOI: 10.1289/ehp.1307049.

Chen L, Shi M, Gao S, Li S, Mao J, Zhang H, Sun Y, Bai Z, Wang Z, 2017 Assessment of population 
exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. Environ. 
Pollut 221, 311–317. DOI: 10.1016/j.envpol.2016.11.080. [PubMed: 27919584] 

Crouse DL, Peters PA, Hystad P, Brook JR, van Donkelaar A, Martin RV, Villeneuve PJ, Jerrett M, 
Goldberg MS, Pope CA, Brauer M, Brook RD, Robichaud A, Menard R, Burnett RT, 2015 
Ambient PM2.5, O3, and NO2 Exposures and Associations with Mortality over 16 Years of 
Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Health 
Persp 123 (11), 1180–1186. DOI: 10.1289/ehp.1409276.

Dai H, Xie X, Xie Y, Liu J, Masui T, 2016 Green growth: The economic impacts of large-scale 
renewable energy development in China. Applied Energy 162, 435–449. DOI: 10.1016/
j.apenergy.2015.10.049.

Di Q, Dai L, Wang Y, Zanobetti A, Choirat C, Schwartz JD, Dominici F, 2017a Association of short-
term exposure to air pollution with mortality in older adults. JAMA 318 (24), 2446–2456. DOI: 
10.1001/jama.2017.17923. [PubMed: 29279932] 

Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J, 2016 Assessing PM2.5 Exposures with 
High Spatiotemporal Resolution across the Continental United States. Environ. Sci. Technol 50 
(9), 4712–4721. DOI: 10.1021/acs.est.5b06121. [PubMed: 27023334] 

Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, Dominici F, Schwartz JD, 2017b Air 
Pollution and Mortality in the Medicare Population. The New England journal of medicine 376 
(26), 2513–2522. DOI: 10.1056/NEJMoa1702747. [PubMed: 28657878] 

Ding D, Zhu Y, Jang C, Lin C-J, Wang S, Fu J, Gao J, Deng S, Xie J, Qiu X, 2016 Evaluation of health 
benefit using BenMAP-CE with an integrated scheme of model and monitor data during 
Guangzhou Asian Games. J. Environ. Sci. (China) 42, 9–18. DOI: 10.1016/j.jes.2015.06.003. 
[PubMed: 27090690] 

Emery C, Liu Z, Russell AG, Odman MT, Yarwood G, Kumar N, 2017 Recommendations on statistics 
and benchmarks to assess photochemical model performance. J. Air. Waste. Manag. Assoc 67 (5), 
582–598. DOI: 10.1080/10962247.2016.1265027. [PubMed: 27960634] 

Fann N, Fulcher CM, Baker K, 2013 The Recent and Future Health Burden of Air Pollution 
Apportioned Across U.S. Sectors. Environ. Sci. Technol 47 (8), 3580–3589. DOI: 10.1021/
es304831q. [PubMed: 23506413] 

Friberg MD, Zhai X, Holmes HA, Chang HH, Strickland MJ, Sarnat SE, Tolbert PE, Russell AG, 
Mulholland JA, 2016 Method for Fusing Observational Data and Chemical Transport Model 
Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution. Environ. Sci. Technol 
50 (7), 3695–3705. DOI: 10.1021/acs.est.5b05134. [PubMed: 26923334] 

Gold CM, Remmele PR, Roos T, 1997 Voronoi methods in GIS, in: van Kreveld M, Nievergelt J, Roos 
T, Widmayer P (Eds.), Algorithmic Foundations of Geographic Information Systems Lecture 
Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 21–35.

Hodas N, Turpin B, Lunden M, Baxter L, Özkaynak H, Burke J, Ohman-Strickland P, Thevenet-
Morrison K, Rich DQ, 2013 Refined ambient PM(2.5) exposure surrogates and the risk of 
myocardial infarction. J. Expos. Sci. Environ. Epidemiol 23 (6), 573–580. DOI: 10.1038/
jes.2013.24.

Huang R-J, Zhang Y, Bozzetti C, Ho K-F, Cao J-J, Han Y, Daellenbach KR, Slowik JG, Platt SM, 
Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, 
Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger 
U, Haddad IE, Prévôt ASH, 2014 High secondary aerosol contribution to particulate pollution 
during haze events in China. Nature 514, 218 DOI: 10.1038/nature13774. [PubMed: 25231863] 

Huang R, Zhai X, Ivey CE, Friberg MD, Hu X, Liu Y, Di Q, Schwartz J, Mulholland JA, Russell AG, 
2018 Air pollutant exposure field modeling using air quality model-data fusion methods and 

Li et al. Page 12

J Environ Manage. Author manuscript; available in PMC 2020 May 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



comparison with satellite AOD-derived fields: application over North Carolina, USA. Air Quality, 
Atmosphere & Health 11 (1), 11–22. DOI: 10.1007/s11869-017-0511-y.

Jung J, Lee H, Kim YJ, Liu X, Zhang Y, Gu J, Fan S, 2009 Aerosol chemistry and the effect of aerosol 
water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl 
River Delta campaign. J. Environ. Manage 90 (11), 3231–3244. DOI: 10.1016/
j.jenvman.2009.04.021. [PubMed: 19523748] 

Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F, Thomas D, Peters J, Hodis HN, 
2005 Ambient Air Pollution and Atherosclerosis in Los Angeles. Environ. Health Persp 113 (2), 
201–206. DOI: 10.1289/ehp.7523.

Kheirbek I, Haney J, Douglas S, Ito K, Caputo S, Matte T, 2014 The Public Health Benefits of 
Reducing Fine Particulate Matter through Conversion to Cleaner Heating Fuels in New York City. 
Environ. Sci. Technol 48 (23), 13573–13582. DOI: 10.1021/es503587p. [PubMed: 25365783] 

Li L, Lei Y, Pan D, Yu C, Si C, 2016 Economic evaluation of the air pollution effect on public health in 
China’s 74 cities. SpringerPlus 5, 402 DOI: 10.1186/s40064-016-2024-9. [PubMed: 27047728] 

Li Y, Chang M, Ding S, Wang S, Ni D, Hu H, 2017 Monitoring and source apportionment of trace 
elements in PM2.5: Implications for local air quality management. J. Environ. Manage 196, 16–25. 
DOI: 10.1016/j.jenvman.2017.02.059. [PubMed: 28284133] 

Lu X, Yao T, Fung JCH, Lin C, 2016 Estimation of health and economic costs of air pollution over the 
Pearl River Delta region in China. Science of The Total Environment 566–567, 134–143. 10.1016/
j.scitotenv.2016.05.060.

Lv B, Cai J, Xu B, Bai Y, 2017 Understanding the Rising Phase of the PM2.5 Concentration Evolution 
in Large China Cities. Sci. Rep 7, 46456 DOI: 10.1038/srep46456. [PubMed: 28440282] 

Lv B, Hu Y, Chang HH, Russell AG, Bai Y, 2016 Improving the Accuracy of Daily PM2.5 
Distributions Derived from the Fusion of Ground-Level Measurements with Aerosol Optical Depth 
Observations, a Case Study in North China. Environ. Sci. Technol 50 (9), 4752–4759. DOI: 
10.1021/acs.est.5b05940. [PubMed: 27043852] 

Maji KJ, Dikshit AK, Arora M, Deshpande A, 2018 Estimating premature mortality attributable to 
PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total. Environ 
612 (Supplement C), 683–693. DOI: 10.1016/j.scitotenv.2017.08.254. [PubMed: 28866396] 

Pascal M, Corso M, Chanel O, Declercq C, Badaloni C, Cesaroni G, Henschel S, Meister K, Haluza D, 
Martin-Olmedo P, Medina S, 2013 Assessing the public health impacts of urban air pollution in 25 
European cities: Results of the Aphekom project. Sci. Total. Environ 449, 390–400. DOI: 10.1016/
j.scitotenv.2013.01.077. [PubMed: 23454700] 

Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD, 2002 Lung Cancer, 
Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA : 
the journal of the American Medical Association 287 (9), 1132–1141. DOI: 10.1001/
jama.287.9.1132. [PubMed: 11879110] 

Rundel CW, Schliep EM, Gelfand AE, Holland DM, 2015 A data fusion approach for spatial analysis 
of speciated PM2.5 across time. Environmetrics 26 (8), 515–525. DOI: 10.1002/env.2369.

Sacks JD, Lloyd JM, Zhu Y, Anderton J, Jang C, Hubbell B, Fann N, 2018 The Environmental 
Benefits Mapping and Analysis Program – Community Edition (BenMAP–CE): A tool to estimate 
the health and economic benefits of reducing air pollution. Environmental Modelling & Software 
104, 118–129. DOI: 10.1016/j.envsoft.2018.02.009. [PubMed: 29962895] 

U.S.EPA, 2009 Integrated Science Assessment (ISA) for Particulate Matter. U.S. Environmental 
Protection Agency, Washington, DC, EPA/600/R-608/139F.

U.S.EPA, 2011 The Benefits and Costs of the Clean Air Act from 1990 to 2020. U.S. EPA Office of 
Air and Radiation, Retrieved from: http://epa.gov/sites/production/files/2015-2007/documents/
summaryreport.pdf (Accessed June 2017).

U.S.EPA, 2015 Bayesian Space-time Downscaling Fusion Model (downscaler) Derived Estimates of 
Air Quality for 2011. U.S. Environmental Protection Agency, Washington, DC, https://
nepis.epa.gov.

U.S.EPA 2016 Technical Information about Fused Air Quality Surface Using Downscaling Tool: 
Metadata Description. U.S. Environmental Protection Agency, Washington, DC, https://
www.epa.gov/sites/production/files/2015-2009/documents/dsmetadataair_0612_2010.pdf.

Li et al. Page 13

J Environ Manage. Author manuscript; available in PMC 2020 May 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://epa.gov/sites/production/files/2015-2007/documents/summaryreport.pdf
http://epa.gov/sites/production/files/2015-2007/documents/summaryreport.pdf
https://nepis.epa.gov
https://nepis.epa.gov
https://www.epa.gov/sites/production/files/2015-2009/documents/dsmetadataair_0612_2010.pdf
https://www.epa.gov/sites/production/files/2015-2009/documents/dsmetadataair_0612_2010.pdf


U.S.EPA, 2017 Manual and Appendices for BenMAP-CE. U.S. Environmental Protection Agency, 
Washington, DC, https://www.epa.gov/sites/production/files/2017-2004/documents/
benmap_ce_um_appendices_april_2017.pdf

van Donkelaar A, Martin RV, Brauer M, Hsu NC, Kahn RA, Levy RC, Lyapustin A, Sayer AM, 
Winker DM, 2016 Global Estimates of Fine Particulate Matter using a Combined Geophysical-
Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol 
50 (7), 3762–3772. DOI: 10.1021/acs.est.5b05833. [PubMed: 26953851] 

Voorhees AS, Fann N, Fulcher C, Dolwick P, Hubbell B, Bierwagen B, Morefield P, 2011 Climate 
Change-Related Temperature Impacts on Warm Season Heat Mortality: A Proof-of-Concept 
Methodology Using BenMAP. Environ. Sci. Technol 45 (4), 1450–1457. DOI: 10.1021/es102820y. 
[PubMed: 21247099] 

Voorhees AS, Wang J, Wang C, Zhao B, Wang S, Kan H, 2014 Public health benefits of reducing air 
pollution in Shanghai: a proof-of-concept methodology with application to BenMAP. Sci. Total. 
Environ 485–486, 396–405. DOI: 10.1016/j.scitotenv.2014.03.113.

Warren JL, Fuentes M, Herring AH, Langlois PH, 2013 Air Pollution Metric Analysis While 
Determining Susceptible Periods of Pregnancy for Low Birth Weight. ISRN Obstetrics and 
Gynecology 2013, 9 DOI: 10.1155/2013/387452.

Xie X, 2011 Health Value: Environmental Benefit Assessment Method and Urban Air Pollution 
Control Strategy. Peking Univercity (PhD thesis, in Chinese).

Xing J, Wang S, Jang C, Zhu Y, Zhao B, Ding D, Wang J, Zhao L, Xie H, Hao J, 2017 ABaCAS: An 
Overview of the Air Pollution Control Cost–Benefit and Attainment Assessment System and Its 
Application in China, Environmental Managers, A&WMA.

Xujia J, Chaopeng H, Yixuan Z, Bo Z, Dabo G, Andy G, Qiang Z, Kebin H, 2015 To what extent can 
China’s near-term air pollution control policy protect air quality and human health? A case study 
of the Pearl River Delta region. Environ. Res. Lett 10 (10), 104006.

Yin H, Pizzol M, Jacobsen JB, Xu L, 2018 Contingent valuation of health and mood impacts of PM2.5 
in Beijing, China. Science of The Total Environment 630, 1269–1282. 10.1016/
j.scitotenv.2018.02.275. [PubMed: 29554748] 

Yin H, Pizzol M, Xu L, 2017 External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis 
of multiple health impacts and costs. Environmental Pollution 226, 356–369. 10.1016/
j.envpol.2017.02.029. [PubMed: 28410806] 

Zhan Y, Luo Y, Deng X, Chen H, Grieneisen ML, Shen X, Zhu L, Zhang M, 2017 Spatiotemporal 
prediction of continuous daily PM2.5 concentrations across China using a spatially explicit 
machine learning algorithm. Atmos. Environ 155, 129–139. DOI: 10.1016/
j.atmosenv.2017.02.023.

Li et al. Page 14

J Environ Manage. Author manuscript; available in PMC 2020 May 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.epa.gov/sites/production/files/2017-2004/documents/benmap_ce_um_appendices_april_2017.pdf
https://www.epa.gov/sites/production/files/2017-2004/documents/benmap_ce_um_appendices_april_2017.pdf


Figure 1. 
Conceptual framework for model-monitor data fusion and health benefits estimate. EI: 

emission inventory.
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Figure 2. 
(a) Nested simulation domains: 27 km (d01), 9 km (d02), and 3 km (d03); (b) Inner 3-km 

domain with monitor locations
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Figure 3. 
PM2.5 emissions of industrial point sources in 2013 and 2015. Note: Black circles represent 

the monitoring sites; Regions beyond the rectangle are unmonitored suburban parts of the 

PRD.
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Figure 4. 
Spatial distribution of CMAQ, VNA, eVNA and DS, and monitoring data. Note: Circles 

represent the monitoring sites; Regions beyond the rectangle are unmonitored suburban parts 

of the PRD.
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Figure 5. 
(a) Spatial distribution of grid cell PM2.5 population-weighted reduction; (b) spatial 

distribution of aggregated population-weighted PM2.5 reduction.
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Figure 6. 
(a) PM2.5-related premature mortality of the PRD region in 2013 and 2015; (b) Aggregated 

PM2.5-related premature mortality in 2013; (c) PM2.5-related premature mortality and its 

contribution by endpoints during 2013–2015; (d) Aggregated avoidable premature deaths 

and economic benefits during 2013 to 2015
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Figure 7. 
Reduction of aggregated population-weighted PM2.5 levels and reduction of PM2.5-related 

mortality between 2013 and 2015. Note: (1) Blue columns and Green columns represent 

reductions in PM2.5 pollution and PM2.5-related mortality, respectively. Orange triangles is 

aggregated population-weighted PM2.5 concentration in 2013. The first group of columns 

and triangle is the average values of all cities in the PRD region, and the other groups 

represent values of different cities. (2) FS - Foshan, SZ - Shenzhen, ZS - Zhongshan, JM - 

Jiangmen, GZ - Guangzhou, DG - Dongguan, SD - Shunde, ZQ - Zhaoqing, HZ - Huizhou, 

ZH - Zhuhai.
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Table 1.

Comparison between monitoring data and CMAQ simulation of PM2.5 across all monitoring sites

Year obs_avg (μg/m3) model_avg (μg/m3) N*
Bias

(μg/m3)
NME (%) NMB (%) R

2013 46.7 47.7 364 1.0 22.9 2.1 0.83

2015 34.2 28.0 332 −6.2 27.8 −18.1 0.86

Note: NME and NMB is defined in Supplementary Data Section S1; obs_avg --- average observed value; model_avg --- average model value.
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Table 2.

Parameters used in evaluation of health impacts and economic benefits

Health 
endpoints α γ δ C0

Baseline 
incidence References

Health 
impacts

IHD 0.83 0.0717 0.5516 6.96 0.001212

(Burnett et al., 2014) and (Xujia et al., 2015)
Stroke 1.01 0.0174 1.1244 8.38 0.000769

COPD 29.00 0.0005938 0.6786 7.17 0.0003

LC 33.49 0.00005013 1.0128 7.24 0.000356

Method Value (thousand US dollars) References

Economic benefits WTP 247 (Xie, 2011)
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Table 3.

Comparison of model performance statistics for CMAQ, VNA, eVNA and DS using ten-fold cross validation

Performance
2013 2015

CMAQ VNA eVNA DS CMAQ VNA eVNA DS

total R2 0.63 0.90 0.86 0.89 0.70 0.86 0.82 0.83

RMSE 13.1 6.0 7.4 6.3 9.8 4.2 4.9 4.7

NMB (%) 4.8 1.4 −2.1 1.4 −18.4 0.7 −0.6 0.3

slope 0.89 0.92 0.95 0.91 1.01 0.89 0.90 0.83
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Table 4.

Comparison of health benefits derived from air quality change calculated by DS, CMAQ and nearest-site 

approach

City
Population 

(106)
Reduction of population-weighted PM2.5 

concentration (μg/m3)
Avoidable mortality Economic benefit (106 US 

dollars)

DS CMAQ Nearest-site DS CMAQ Nearest-site DS CMAQ Nearest-site

SZ 10.63 13.0 27.9 6.5 924 2149 528 307 714 175

GZ 12.93 11.2 22.5 13.4 791 1474 914 263 490 304

DG 8.32 9.9 19.0 8.8 514 1082 451 171 359 150

FS 4.80 16.5 29.0 15.2 386 610 363 128 203 121

JM 4.50 11.0 13.4 11.6 308 445 329 102 148 109

HZ 4.70 7.9 7.9 7.5 291 412 284 97 137 94

ZQ 4.02 9.5 7.6 13.8 237 253 291 79 84 97

ZS 3.17 11.5 16.5 12.7 215 344 245 72 114 82

SD 2.49 11.2 26.9 7.4 143 308 100 48 102 33

ZH 1.59 7.8 9.4 7.8 77 135 75 25 45 25

total 57.15 - - - 3886 7212 3580 1292 2396 1190

Note: SZ - Shenzhen, GZ - Guangzhou, DG - Dongguan, FS - Foshan, JM - Jiangmen, HZ - Huizhou, ZQ - Zhaoqing, ZS -Zhongshan, SD - 
Shunde, ZH - Zhuhai
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