Skip to main content
. Author manuscript; available in PMC: 2021 Apr 15.
Published in final edited form as: Stat Med. 2020 Jan 29;39(8):1167–1182. doi: 10.1002/sim.8469

Table 3:

Simulation results for the situation where there is a single change-point in a covariate of a linear, logistic or Poisson regression model for longitudinal data; θ^L, proposed estimator solving (6).

θ^L (ρ = 0.3)
θ^L (ρ = 0.7)
Model Bias ASE SD MSE CP Bias ASE SD MSE CP
Linear β0 0.001 0.016 0.016 0.000 0.951 0.001 0.022 0.022 0.000 0.951
β1 0.000 0.008 0.008 0.000 0.952 0.000 0.005 0.005 0.000 0.955
β2 0.006 0.088 0.088 0.008 0.942 0.004 0.058 0.058 0.003 0.939
τ 0.001 0.027 0.028 0.001 0.941 0.000 0.018 0.018 0.000 0.944

Logistic β0 −0.003 0.096 0.095 0.009 0.955 0.002 0.128 0.128 0.016 0.950
β1 −0.005 0.059 0.060 0.004 0.945 −0.010 0.069 0.073 0.005 0.935
β2 0.079 0.400 0.383 0.153 0.961 0.070 0.361 0.335 0.117 0.964
τ 0.004 0.125 0.125 0.016 0.933 0.001 0.113 0.116 0.013 0.925

Poisson β0 −0.002 0.027 0.027 0.001 0.944 −0.002 0.032 0.032 0.001 0.944
β1 −0.001 0.009 0.009 0.000 0.943 −0.001 0.010 0.010 0.000 0.957
β2 0.023 0.224 0.220 0.049 0.939 0.019 0.173 0.168 0.029 0.954
τ 0.002 0.074 0.074 0.005 0.938 0.003 0.058 0.058 0.003 0.946

Note: SD denotes the sample standard deviation of the estimates; ASE is the average of the estimated standard errors; MSE is mean square error; CP represents the coverage probabilities of the 95% confidence intervals.