Table 3:
Simulation results for the situation where there is a single change-point in a covariate of a linear, logistic or Poisson regression model for longitudinal data; , proposed estimator solving (6).
|
(ρ = 0.3) |
(ρ = 0.7) |
||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Model | Bias | ASE | SD | MSE | CP | Bias | ASE | SD | MSE | CP | |
| Linear | β0 | 0.001 | 0.016 | 0.016 | 0.000 | 0.951 | 0.001 | 0.022 | 0.022 | 0.000 | 0.951 |
| β1 | 0.000 | 0.008 | 0.008 | 0.000 | 0.952 | 0.000 | 0.005 | 0.005 | 0.000 | 0.955 | |
| β2 | 0.006 | 0.088 | 0.088 | 0.008 | 0.942 | 0.004 | 0.058 | 0.058 | 0.003 | 0.939 | |
| τ | 0.001 | 0.027 | 0.028 | 0.001 | 0.941 | 0.000 | 0.018 | 0.018 | 0.000 | 0.944 | |
| Logistic | β0 | −0.003 | 0.096 | 0.095 | 0.009 | 0.955 | 0.002 | 0.128 | 0.128 | 0.016 | 0.950 |
| β1 | −0.005 | 0.059 | 0.060 | 0.004 | 0.945 | −0.010 | 0.069 | 0.073 | 0.005 | 0.935 | |
| β2 | 0.079 | 0.400 | 0.383 | 0.153 | 0.961 | 0.070 | 0.361 | 0.335 | 0.117 | 0.964 | |
| τ | 0.004 | 0.125 | 0.125 | 0.016 | 0.933 | 0.001 | 0.113 | 0.116 | 0.013 | 0.925 | |
| Poisson | β0 | −0.002 | 0.027 | 0.027 | 0.001 | 0.944 | −0.002 | 0.032 | 0.032 | 0.001 | 0.944 |
| β1 | −0.001 | 0.009 | 0.009 | 0.000 | 0.943 | −0.001 | 0.010 | 0.010 | 0.000 | 0.957 | |
| β2 | 0.023 | 0.224 | 0.220 | 0.049 | 0.939 | 0.019 | 0.173 | 0.168 | 0.029 | 0.954 | |
| τ | 0.002 | 0.074 | 0.074 | 0.005 | 0.938 | 0.003 | 0.058 | 0.058 | 0.003 | 0.946 | |
Note: SD denotes the sample standard deviation of the estimates; ASE is the average of the estimated standard errors; MSE is mean square error; CP represents the coverage probabilities of the 95% confidence intervals.