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Pathogens exhibit a rich variety of life history strategies, shaped
by natural selection. An important pathogen life history character-
istic is the propensity to induce an asymptomatic yet productive
(transmissive) stage at the beginning of an infection. This charac-
teristic is subject to complex trade-offs, ranging from immunolog-
ical considerations to population-level social processes. We aim to
classify the evolutionary dynamics of such asymptomatic behavior
of pathogens (hereafter “latency”) in order to unify epidemiol-
ogy and evolution for this life history strategy. We focus on a
simple epidemiological model with two infectious stages, where
hosts in the first stage can be partially or fully asymptomatic.
Immunologically, there is a trade-off between transmission and
progression in this first stage. For arbitrary trade-offs, we derive
different conditions that guarantee either at least one evolution-
arily stable strategy (ESS) at zero, some, or maximal latency of
the first stage or, perhaps surprisingly, at least one unstable evo-
lutionarily singular strategy. In this latter case, there is bistability
between zero and nonzero (possibly maximal) latency. We then
prove the uniqueness of interior evolutionarily singular strate-
gies for power-law and exponential trade-offs: Thus, bistability is
always between zero and maximal latency. Overall, previous mul-
tistage infection models can be summarized with a single model
that includes evolutionary processes acting on latency. Since small
changes in parameter values can lead to abrupt transitions in evo-
lutionary dynamics, appropriate disease control strategies could
have a substantial impact on the evolution of first-stage latency.

evolutionary analysis | pathogen life history strategies |
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Pathogens have many different life history strategies, rang-
ing from acute, immunizing infections such as influenza A

viruses to chronic illnesses such as syphilis (1, 2). As pathogens
are constantly under selection pressures, understanding their
evolutionarily stable strategies (ESSs) may provide important
insights for disease control. These have been examined in the
context of virulence, persistence, and recovery. A number of clas-
sic studies, e.g., Anderson and May (3) and Dwyer et al. (4),
have motivated substantial theoretical and experimental devel-
opments in understanding pathogen virulence evolution (5–8).
In related work on different pathogen traits, King et al. (9)
examined pathogen evolution assuming a trade-off between per-
sistence and invasion. Alizon (10) studied pathogen evolutionary
outcomes under a trade-off between transmission and recovery
of the host with explicit immune dynamics.

In addition to virulence, persistence, and recovery, another
important life history strategy for a pathogen is its propensity
to produce fewer symptoms near the start of an infection, i.e.,
to have a period of latency. Such “hidden” infections poten-
tially convey advantages to a pathogen in many contexts. The
most obvious benefit is that disease control strategies, such as
the identification and quarantine of individuals that came into

contact with a potentially infected host (contact tracing), are sub-
stantially less likely to be successful (11). In both animals and
humans, symptoms are also sometimes a cue for avoidance of
infectious hosts by susceptible individuals (12, 13), and a hid-
den infection would decrease such evasion. Indeed, Fraser et al.
(11) concluded that the efficacies of various disease control
strategies are strongly dependent upon the number of asymp-
tomatic transmissions before the full onset of symptoms. Thus,
these less symptomatic stages of infections are critical and pose
serious epidemiological issues.

The severity of an infection often influences its transmissibil-
ity from an infectious individual to a naive host. First, symptoms
are often directly associated with increased transmission (e.g.,
coughing, sneezing, rashes) (14), and so fewer symptoms lead
to a decrease in transmission for these cases. Furthermore,
lower pathogen loads can also lead to both fewer symptoms and
decreased shedding and thus decreased transmissibility.

It is also possible that, during an infectious stage with milder
symptoms, the host immune response could be slowed and
thereby enable the pathogen to persist in this host for a longer
period. Here, we define a “latent” infection to start when a
host is first infectious and to end when the host begins showing
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symptoms. Fraser et al. (8) concluded that a higher set-point
viral load increased transmission but decreased the length of this
latent stage, thus implying a trade-off. For the case of HIV, from
an immune standpoint, it is sensible that viremia and symptoms
for the various stages of an infection covary [see Lin et al. (15)
and references therein]. Indeed, clinical data support the corre-
lation of symptomatic infection with higher viral loads for the
acute stage of HIV (16). For the milder HIV stage, Lee et al.
(17) concluded that demographic variables are most important in
determining symptom level; however, when these are controlled
for, there is some evidence that a detectable viral load leads to
more symptoms.

There may be further biological constraints on latency in the
initial infection stage, such as how long it takes viremia to build
up. Here, we take a general approach and focus on the underly-
ing immune trade-offs and their implications for the evolutionary
dynamics of pathogens with regard to latency. Thus, for our pur-
poses, each pathogen that we consider has a trade-off between
the transmission rate and the infectious period of a latent stage.

Infections with partially or fully latent stages have been stud-
ied from a variety of perspectives, ranging from eco-evolutionary
dynamics to more classic population-level epidemiology. Lin
et al. (15) examined the implications of the trade-off between
contact rate and probability of transmission per contact due to
differences in symptom severity and found that multiple different
evolutionary outcomes are possible. In related work, Martinez-
Soto (18) focused on the epidemiological and disease control
implications of a similar trade-off in the context of Ebola trans-
mission and the role of increased interactions with healthcare
workers. A series of epidemiological studies have examined
asymptomatic infections and their implications (for example,
refs. 19 and 20). Other research has focused on the formula-
tion and analyses of mathematical models for host population
epidemiological dynamics that include asymptomatic individu-
als (2, 21–24). In all these epidemiological modeling studies,
evolutionary dynamics of latency were ignored.

Taken together, these previous works imply that complex
trade-offs underlie the evolution of latency. Here, we build a
model framework to address these dynamics, focusing on the fol-
lowing question: Why do infections with certain pathogens lead
to a less symptomatic, and sometimes completely asymptomatic,
first stage, whereas others do not? To address this question,
it is necessary to move beyond purely epidemiological models.
Instead, we couple evolutionary dynamics with a general epi-
demiological model and study evolutionarily stable strategies of
latency.

Epidemiological Model Preliminaries
We formulate a model that is equivalent to a special case of the
Robinson and Stilianakis (24) model, yet the biological inter-
pretations are substantially different. Robinson and Stilianakis
(24) assumed that individuals in the first stage are fully asymp-
tomatic, whereas we make no such assumption. Our model is
also a special case of the more general n infectious stages model
considered by Melesse and Gumel (23), which includes return to
susceptibility. Finally, our model is equivalent to a special case of
the syphilis model presented by Saad-Roy et al. (2). Some mod-
els with asymptomatic infection allow for direct recovery of hosts
from the first stage. Here, our goal is to study the evolutionary
dynamics of the asymptomatic initial stage of a disease where
hosts eventually all become fully symptomatic in a second stage,
and so we focus our formulation on disease progression through
both stages.

Our model partitions the host population into four classes. We
denote by S and R the fraction of individuals that are suscepti-
ble and recovered, respectively. Since we do not consider death
due to disease, we assume that the population is at demographic
equilibrium and formulate our model in terms of fractions. We

assume that the host birth (and therefore death) rate is δ > 0
and that the rate of loss of immunity is µ≥ 0. Thus, if µ> 0,
then a host is immune on average for a duration 1

µ
. To study

the emergence of a less symptomatic initial stage of infection,
we split the infectious class into two compartments I1 and I2,
where a host that is in I1 may exhibit fewer symptoms, remains
in this class for on average 1

ν1
, transmits at rate α1. Conversely,

the infection is fully symptomatic for a host in I2, this stage lasts
for on average 1

ν2
, and transmission is at rate α2. We empha-

size that our analyses also hold if we do not consider recovered
individuals but rather formulate a model with symptomatic infec-
tious individuals in I2 dying at rate ν2 (SI Appendix, Additional
Preliminaries). We follow the flow diagram presented in Fig. 1
and formulate our epidemiological model, hereafter referred to
as the susceptible–infectious–infectious–recovered–susceptible
(SIIRS) model, as

dS
dt = δ−α1SI1−α2SI2− δS +µR,

dI1
dt =α1SI1 +α2SI2− ν1I1− δI1,

dI2
dt = ν1I1− ν2I2− δI2,

dR
dt = ν2I2−µR− δR.

[1]

Epidemiological Dynamics
Local and global stability of endemic equilibria for epidemio-
logical models have been studied extensively, as these establish
the long-term dynamics of infectious disease transmission (25,
26). The basic reproduction number R0 quantifies the num-
ber of successful transmissions that an infectious host would
have in a fully susceptible population (27) and is perhaps the
most important parameter governing epidemiological dynamics.
Often,R0 = 1 serves as a threshold, whereR0< 1 means that the
disease will die out whereasR0> 1 implies persistence. In other
cases, backward bifurcations, i.e., the existence of two equilibria
with disease (one locally stable and one unstable) in conjunction
to the disease-free equilibrium, can lead to persistence ifR0< 1,
and Hopf bifurcations can lead to oscillations; see, e.g., Liu et al.
(28, 29) and Saad-Roy et al. (30) and references therein. In our
model, finding a stable epidemiological equilibrium is required
to perform evolutionary analysis.

With no infectious individuals, the host population remains
without disease, and the SIIRS model has a biologically feasible
disease-free equilibrium P0 = (1, 0, 0, 0). Furthermore, we can
computeR0 using the next-generation matrix approach (25, 31),
and this gives

R0 =
α1

ν1 + δ
+

ν1
ν1 + δ

α2

ν2 + δ
. [2]

Here, α1
ν1+δ

and α2
ν2+δ

represent the infections arising due to the
first and second stages, respectively, and ν1

ν1+δ
is the probability

of surviving the I1 stage.

Fig. 1. Schematic of the SIIRS model. S, I1, I2, and R denote the fraction
of individuals that are susceptible, in the first stage of the infection, in the
second stage of the infection, and recovered, respectively. The parameters
are defined in Table 1.
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Table 1. Model parameters and their definitions

Parameter Definition

δ Birth (and death) rate of hosts
µ Loss of immunity rate
α1 Infectivity rate, first infectious stage
α2 Infectivity rate, second infectious stage
ν1 Rate of progression from first to second infectious stages
ν2 Recovery rate, only from second infectious stage

Previous results established epidemiological dynamics of the
SIIRS model. Local asymptotic stability of P0 if R0< 1 fol-
lows from van den Driessche and Watmough (25), and global
asymptotic stability of P0 when R0< 1 can be proved by
constructing a Lyapunov function as in Shuai and van den
Driessche (26) [e.g., by using a special case of theorem 3 in
Saad-Roy et al. (2) or by using a special case of the Lya-
punov function of Melesse and Gumel (23)]. Furthermore, if
R0> 1, there is a unique equilibrium Ê with a positive frac-

tion of infections, where Ŝ = 1
R0

, Î1 =

(
1− 1
R0

)
1+

ν1
ν2+δ

+
ν2

δ+µ
ν1

ν2+δ

, Î2 =

ν1
ν2+δ

Î1, and R̂ = ν2
δ+µ

ν1
ν2+δ

Î1. As in section 2.1 of Robinson and

Stilianakis (24), it follows that Ê is locally asymptotically stable
ifR0> 1.

Evolutionary Analysis
A first stage of disease may be asymptomatic, where transmis-
sions may occur but are rarer than in a fully symptomatic phase.
Here, we introduce the “asymptomatic behavior” or “latency”
λ, where λ= 0 denotes the case that a host is fully symptomatic
in the first stage; i.e., the I1 and I2 classes are indistinguish-
able with respect to symptoms. Conversely, λ→∞ means that
a host is fully asymptomatic in the first stage. Furthermore, since
our model considers mass-action kinetics through the use of
bilinear incidence, the asymptomatic status can represent either
population-level or individual host disease status (Fig. 2A). The
population-level interpretation implies that, for fixed positive
latency, a fraction of infectious individuals in the first stage are
fully asymptomatic whereas the others are fully symptomatic.
Conversely, the individual host-status interpretation implies that,
for the same fixed positive latency, all individuals in I1 experience
milder symptoms.

Having elucidated the epidemiological dynamics of our simple
model of disease transmission, we can perform an evolution-
ary analysis to study the advantages of a less symptomatic first
stage of infection. The epidemiological model we formulated is
an example of a pure exploitation-competition resource model.
In these models, studied by Tilman (32), a strategy of type A
can invade a resident with strategy of type B if and only if
the type A strategy would lead to a lower fraction of suscepti-
bles at equilibrium [in the broader eco-evolutionary literature,
such a minimization is often referred to as a “pessimization”
(33)]. Implicit in this analysis are the assumptions that there
are no superinfections; i.e., a host that is currently infected with
the resident pathogen cannot get coinfected with the invading
mutant, and a host who is resistant to the endemic pathogen
is also resistant to the mutant pathogen. In our model and
assuming no coinfection, minimizing the fraction of suscepti-
bles is equivalent to an adaptive dynamics approach (34–36)
as used in Gandon et al. (7), which searches for strategies
that maximize fitness (i.e., the basic reproduction number) of
a rare mutant with a different strategy. Indeed, if the resi-
dent pathogen has strategy λ̄, the basic reproduction number
of a mutant pathogen with strategy λ is Reff[λ̄,λ] =R0[λ]Ŝ [λ̄].
Therefore, since R0[λ] = 1

Ŝ [λ]
, the mutant pathogen with strat-

egy λ can invade if and only if Ŝ [λ] is less than Ŝ [λ̄]. Thus, to
perform our evolutionary analysis, we seek to find the strategy
λ which minimizes the fraction of susceptibles at epidemiolog-
ical equilibrium, i.e., Ŝ . In the remainder of this section, we
assume that R0> 1 and that the population is at the endemic
equilibrium Ê .

Less symptomatic first stages of infection can lead to longer
infectious periods due to lowered host immune responses, but
at the cost of reduced transmission. Thus, pathogens have cer-
tain trade-offs between transmission and infectious periods for
the I1 stage, with both being functions of latency λ in this stage.
We assume separation of timescales and that the epidemiological
endemic equilibrium has been reached. As a function of strategy
λ, it follows that

Ŝ [λ] =
1

α1[λ]
ν1[λ]+δ

+ ν1[λ]
ν1[λ]+δ

α2
ν2+δ

=
1

R0[λ]
, [3]

where α1[λ]
ν1[λ]+δ

and α2
ν2+δ

denote the average number of infec-
tions a host infected with a pathogen with strategy λ will give
rise to while in I1 and I2, respectively, and ν1[λ]

ν1[λ]+δ
is the prob-

ability that a host infected with the pathogen of strategy λ
survives the I1 class. With zero latency, our model is equivalent to
an susceptible–infectious–recovered–susceptible (SIRS) model

A B

C D

Fig. 2. Schematics of trade-offs. The first stage of an infection may present
as less symptomatic, leading to a longer first stage but at the cost of
reduced transmission. (A) Interpretations of latency. Since our model for-
mulation considers bilinear mass action incidence, latency can be viewed on
individual-status or population-level bases. Each circle denotes a host in the
first stage I1 of an infection, and the shading corresponds to symptoms. The
former implies mild symptoms for each host, whereas the latter implies a
fraction of hosts in I1 fully asymptomatic and the others fully symptomatic.
As a function of latency λ, we model (B) the initial stage transmission rate
α1 and (C) the rate of progression from the first infectious stage to the
second infectious stage in general terms as α1[λ] = b1(λ+ 1)−b2 +α1,∞
and ν1[λ] = c1(λ+ 1)−c2 + ν1,∞, respectively, with b1, c1, b2, c2 > 0. (D) Illus-
tration of the possible shapes of the scaled initial transmission rate as a
function of the scaled initial-stage progression rate, depending on values

of b2 and c2. Here, the scaled rates are simply
α1−α1,∞

b1
and

ν1−ν1,∞
c1

,

respectively.
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of disease transmission dynamics that has a gamma-distributed
infectious period, with the infectious stage lasting on average

1
1

ν1[0]
+ 1

ν2

. After analyzing the evolutionary dynamics under

relaxed assumptions to obtain more general insight under arbi-
trary trade-offs α1[λ] and ν1[λ], we analyze trade-offs with
specific functional forms.

General Forms of Trade-Offs. First, we explore arbitrary forms of
the trade-offs and require only the biologically realistic assump-
tions that the transmission and progression rates in the first
stage approach a fixed value as latency becomes infinite; i.e.,
lim

λ→∞
α1[λ] =α1,∞ and lim

λ→∞
ν1[λ] = ν1,∞. Denoting α1[0] =α1,0

and ν1[0] = ν1,0, if

α′1[0]>
α1,0− α2δ

ν2+δ

ν1,0 + δ
ν′1[0], [4]

then Ŝ [λ] either has at least one positive local minimum or is
a strictly decreasing function (SI Appendix, Theorem 1). If the
former, such a strategy is an ESS. If the latter, then the ESS is
at λ∗=∞ and maximal latency is favored. Interestingly, if there
is a positive ESS λ∗, then because Ŝ does not depend on µ, it
follows that the value of λ∗ also does not depend on µ. Thus,
the duration of immunity affects neither the qualitative evolu-
tionary dynamics nor the actual value of evolutionarily singular
strategies. Conversely, if

α′1[0]<
α1,0− α2δ

ν2+δ

ν1,0 + δ
ν′1[0], [5]

then Ŝ [λ] has at least one positive local maximum or is a strictly
increasing function (SI Appendix, Theorem 1). The existence of
a local maximum implies that mutants with either more or less
latency would both lead to fewer susceptibles. Thus, such a strat-
egy is an unstable evolutionarily singular strategy and leads to
bistability between a fully symptomatic first stage (λ= 0) and
some positive (possibly maximal) latency. Alternatively, if Ŝ [λ]
is a strictly increasing function, then the globally stable ESS is
at zero latency. To rule out a unique globally stable extremum
ESS, we derive conditions to ensure that Ŝ [λ] is neither strictly
increasing nor strictly decreasing. We define R(0)

0 =
α1,0

ν1,0+δ
+

ν1,0
ν1,0+δ

α2
ν2+δ

and R(∞)
0 =

α1,∞
ν1,∞+δ

+
ν1,∞

ν1,∞+δ
α2

ν2+δ
. Strict inequal-

ities on these extremal basic reproduction numbers suffice to
guarantee the existence of interior evolutionarily singular strate-
gies. If Eq. 4 holds andR(0)

0 >R(∞)
0 , then there exists a positive

ESS of latency (SI Appendix, Theorem 2). Similarly, if Eq. 5 holds
and R(0)

0 <R(∞)
0 , then there exists at least one unstable evolu-

tionarily singular strategy, which leads to bistability (SI Appendix,
Theorem 2).

Thus, we find that latency can arise naturally from evolu-
tionary dynamics given arbitrary trade-offs and that bistability
between maximal symptoms and some latency can occur. Bista-
bility implies that, for the same set of parameters, different evo-
lutionary outcomes are possible for different initial conditions.
Furthermore, suppose that the system is in a bistable regime at
one of the local ESSs. Then, certain changes in parameters can
induce a change in regime, leading to a new ESS. Subsequent
reversal back to the initial parameter values, and thus back to
the bistable case, could lead to an alternative ESS since the initial
condition has now changed. However, this analysis gives condi-
tions only for the existence of at least one evolutionarily singular
strategy and does not rule out the existence of other singular
strategies.

Specific Trade-Offs.
Power-law and exponential trade-offs. Since we have analyzed
arbitrary trade-offs, we now focus our analyses on definite func-
tional forms. While the specifics of these trade-offs can be further
tailored and could vary, our next analyses are motivated by situ-
ations where transmission is accelerating; i.e., the rate of change
of transmission is increasing, as latency decreases. For exam-
ple, this would occur if the additional symptoms that arise as
latency is decreased facilitate transmission successively better.
Another possible mechanism for accelerating transmission with
decreased latency is if the additional symptoms due to a decrease
in latency have a synergistic effect that further increases trans-
mission. For this formulation of trade-offs, we also assume that
the progression rate accelerates as latency is decreased, moti-
vated by underlying within-host mechanisms that would give rise
to trade-offs of the same functional form for transmission and
progression. The first specific trade-offs we consider require only
the following functional forms, assuming that b1, c1, b2, c2> 0
and α1,∞≥ 0, ν1,∞≥ 0,

α1 =α1[λ]= b1(λ+ 1)−b2 +α1,∞,

ν1 = ν1[λ] = c1(λ+ 1)−c2 + ν1,∞,
[6]

and we present the shapes of these trade-offs in Fig. 2 B and
C. Note that these trade-offs imply a relation between values of
α1 and ν1, and this relation could be equivalently parameterized

by any monotonic function of λ, m[λ], by setting (
ν1−ν1,∞

c1
)

1
c2 =

m[λ] = (
α1−α1,∞

b1
)

1
b2 . For different values of b2 and c2, we show

in Fig. 2D the possible scaled transmission rate values as a func-
tion of the scaled progression rate in this initial infectious stage.
Note that, while we present scaled values in Fig. 2D, it will soon
become apparent that the actual values of ν1,∞ and especially
α1,∞ can be important to determine qualitative evolutionary
dynamics. Similar power-law relationships for transmission and
recovery as functions of virulence were assumed by Gandon et
al. (7), with transmission increasing with virulence. Alternatively,
we also consider exponential trade-offs formulated as

α1 =α1[λ] = b1e
−λb2 +α1,∞,

ν1 = ν1[λ] = c1e
−λc2 + ν1,∞.

[7]

Indeed, our mathematical analysis generalizes to trade-offs of
the form

α1=α1[λ] = b1(F [λ])−b2 +α1,∞,

ν1 = ν1[λ]= c1(F [λ])−c2 + ν1,∞,
[8]

where F [λ] is a function with F ′[λ]> 0, F [0] = 1 and
lim

λ→∞
F [λ] =∞.

Evolutionarily singular strategies are local extrema of Ŝ [λ]. As
in the more general analyses with arbitrary trade-offs, we find
multiple different evolutionary outcomes. An important distinc-
tion is that, in contrast to the general cases where we proved
the existence of at least one stable or unstable strategy, the
evolutionarily stable strategies with these definite trade-offs are
either unique or bistable, with the latter arising from a single
unstable evolutionarily singular strategy. First, suppose that the
number of new infections arising from individuals in the second
stage, i.e., α2

ν2+δ
, is greater than or equal to the maximally latent

transmission rate times the average host lifespan, i.e., α1,∞
δ

. If

b1b2
c1c2

<
α1,0− α2δ

ν2+δ

ν1,0 + δ
, [9]

then there is a unique positive ESS. Conversely, if Eq. 9 does not
hold, then Ŝ [λ] is strictly increasing and the ESS is at zero latency
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(SI Appendix, Theorem 3). On the other hand, if α2
ν2+δ

<
α1,∞

δ
,

then the evolutionary outcomes depend upon whether the trans-
mission rate (b2) or the progression rate (c2) in the first stage
decays faster.

Case 1: Transmission decays slower than progression. If the
transmission rate decays more slowly than the progression rate of
the first stage, i.e., c2> b2, then the outcome depends on whether
Eq. 9 is satisfied and is identical to the case when α2

ν2+δ
≥ α1,∞

δ

(SI Appendix, Theorem 3). Thus, either there exists a unique
positive ESS or the ESS is at zero latency since Ŝ [λ] is strictly
increasing.

Case 2: Transmission decays faster than progression. Now
suppose the initial stage’s transmission rate decays faster than
its progression rate; i.e., b2> c2. If Eq. 9 holds, then Ŝ [λ] is
strictly decreasing and so the globally stable ESS is at maximal

latency. Otherwise, if b1b2
c1c2

>
α1,0−

α2δ
ν2+δ

ν1,0+δ
, then Ŝ [λ] has a unique

critical point which is a maximum. As before, such a maximum
is an unstable evolutionarily singular strategy. Since there are no
other interior evolutionarily singular strategies, this implies that
the local minima of Ŝ [λ] are at zero and maximal latency and that
these are bistable ESSs (SI Appendix, Theorem 3).

Furthermore, all ESSs in our model are locally stable to
invasion by neighboring types (SI Appendix, Theorem 4).

Fig. 3 illustrates the four different possible evolutionary out-
comes in terms of the equilibrium of the fraction of individuals
that are susceptible. In Fig. 3A, there is a single strategy that
maximizes the susceptible fraction and is thus an unstable evolu-
tionarily singular strategy. In this case, the boundary strategies,
at zero and maximal latency, are each locally stable since they
locally minimize the susceptible fraction, and so this case is
bistable. Fig. 3B illustrates an opposing case: There is a sin-
gle strategy of latency that minimizes the susceptible fraction.
Thus, this strategy is the evolutionarily stable strategy, favor-

ing nonzero latency in the first infectious stage. Fig. 3 C and
D presents schematics for the remaining two outcomes: a min-
imal fraction of susceptibles at either infinite or zero latency,
respectively.

If both extrema strategies are present, the question of fur-
ther persistence between two competing pathogens at the limits
of the latency spectrum depends upon their relative fitnesses
in addition to cross-immunity, i.e., immunity against one strain
as a result of infection-induced immunity to the other. Under
perfect cross-immunity, i.e., if a host is immune to one strain,
then the host is fully immune to the other, and if both strate-
gies are somehow present, then whichever strategy results in the
lowest fraction of susceptible individuals will persist. In these
conditions, this means that if α1,0

ν1,0+δ
+

ν1,0
ν1,0+δ

α2
ν2+δ

>
α1,∞

ν1,∞+δ
+

ν1,∞
ν1,∞+δ

α2
ν2+δ

, then the strategy with zero latency would persist,
whereas the strategy at maximal latency would be successful
otherwise.

If individuals that are fully asymptomatic do not transmit, i.e.,
α1,∞= 0, then unstable evolutionarily singular strategies do not
occur nor is there an ESS at maximal latency, and Eq. 9 is a sharp
threshold. That is, if it is satisfied, then there is a unique positive
ESS; otherwise the ESS is at zero latency.

Under the definite trade-offs, we visualize the resulting evolu-
tionary dynamics of latency in Fig. 4 and focus on the α1,∞

δ
− b2

plane. The parameter α1,∞
δ

is the transmission rate of a fully
latent host in the first stage, divided by the host death (equiv-
alently, birth) rate, and b2 is the exponent governing the decay
as a function of latency of the first-stage force of infection.
Depending on parameter values, the evolutionary outcomes for
the primary infection stage can be 1) zero latency (blue), 2)
unique positive ESS with nonzero latency (yellow), 3) full latency
(green), or 4) bistability with zero and full latency (red). Note
that in this schematic, we assumed that b1>α2

δ
ν2+δ

. (For details

A B

DC

Fig. 3. Schematics of possible evolutionary outcomes for latency λ. (A) The equilibrium susceptible fraction Ŝ has a single maximum that is an unstable
evolutionarily singular strategy. In this case, there are two local stable minima of susceptible fractions at λ* = 0 and λ*→∞. Thus, this system exhibits
bistability. (B) The evolutionary outcome in this case is nonzero latency, as there exists a value that minimizes the susceptible fraction, and so it is an
evolutionarily stable strategy. As nearby mutants cannot invade, this is a continuously stable strategy. (C) The susceptible fraction at equilibrium is a strictly
decreasing function of λ, and so the evolutionarily stable (and also continuously stable) strategy is λ*→∞. (D) The susceptible fraction is a strictly increasing
function of latency, and so the evolutionarily stable (and continuously stable) strategy is at zero latency (λ* = 0).
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Fig. 4. Illustrative schematic of qualitative “phase diagram” on the
α1,∞

δ -
b2 plane with all other parameters fixed, representing the different evo-
lutionary outcomes depending on these parameter values, based on SI
Appendix, Theorem 3. The

α1,∞
δ axis is the force of infection in the first

stage at maximal latency, times the average lifespan of a host. The b2 axis
is the exponent of the power law (or of the exponential) for the force of
infection trade-off. The colors are simply used to denote regions with dif-
ferent qualitative behavior. (Inset) Evolutionary dynamics for small values of
α1,∞

δ . In the schematic and its Inset, the positively sloped line is the thresh-

old b1b2
c1c2
− α1,0−kδ

ν1,0+δ = 0. This can be rearranged to give b2 as a function of
α1,∞

δ . Simple analyses show that at
α1,∞

δ =
α2

ν2+δ , the b2 function defined

by this threshold is smaller than c2, and this is reflected in this schematic. Fur-
thermore, at

α1,∞
δ = 0, b2 > 0 if and only if b1 >α2

δ
ν2+δ . In this schematic,

we assumed that the b2 function rearranged from the threshold is positive
at

α1,∞
δ = 0. Different diseases are approximately placed on this illustrative

schematic, and placements depend on different biological and social pro-
cesses, such as quarantine. Fully asymptomatic HIV, influenza, and norovirus
are likely to transmit (11, 37–39), whereas fully asymptomatic measles, small-
pox, and SARS usually do not (11, 40–42). Note that the specific values of the
other parameters will determine the shape of the positively sloped line, and
hence this line will be different for different pathogens. Here, we simply
show an illustrative schematic to present the results of SI Appendix, Theo-
rem 3 in a visual fashion. Note also that for positioning different diseases,
the x axis is used for relative ordering (see Specific Viral Diseases).

about the specifics of boundaries where the evolutionary dynam-
ics transition from one regime to another, see Fig. 4 legend.)
Basically, for diseases where early transmission is possible while
a host is still asymptomatic, evolution can lead to nonzero latency
as a stable strategy. Otherwise, if such transmission is not possi-
ble during the initial stage due to biological constraints on the
pathogen, then there will be no evolutionary pressure toward a
longer period of reduced symptoms.

Specific Viral Diseases. We can approximately situate various dis-
eases on this plane and include possible variation due to infection
setting and disease control strategies. For example, measles,
smallpox, and severe acute respiratory syndrome (SARS) all
have very little asymptomatic transmission, whereas asymp-
tomatic hosts infected with HIV, influenza, and norovirus are
thought to transmit (11, 37–42). Indeed, measles is a respi-
ratory contact infection, but there is almost no possibility of
asymptomatic transmission. Furthermore, for successful small-
pox transmission, the virus has to emerge from the skin of an
infected host, so by that point the host is already symptomatic
with the characteristic smallpox rash (40). Thus, for measles
and smallpox, the biological constraints on these viruses restrain

evolutionary dynamics on latency to parameter regions where
the ESS is fully asymptomatic or at relatively low latency (e.g.,
measles). Alternatively, other biological processes aid in asymp-
tomatic transmission, which can lead to an ESS at nonzero or
maximal latency. Influenza viruses are shed as they are proliferat-
ing within recently infected hosts, which increases the possibility
of asymptomatic transmission. HIV is a blood-borne and bod-
ily fluid-borne disease, so there can be more transmission while
the virus is reproducing and before immune damage eventually
causes disease. Thus, it follows that α1,∞

δ
≈ 0 for measles, small-

pox, and SARS, whereas α1,∞
δ

> α2
ν2+δ

for influenza, norovirus,
and HIV. Furthermore, we also assume that asymptomatic trans-
mission is greatest for HIV, followed by norovirus, and finally
by influenza. Such a ranking is biologically reasonable, as HIV
viral load in the blood can be large enough for substantial
transmission through sexual contacts to occur while hosts are
asymptomatic, whereas transmission of norovirus and influenza
while a host has no symptoms is more moderate.

Note that the asymptomatic HIV stage is actually preceded by
an initial acute stage. In Fig. 4, we use the simplification adopted
by Fraser et al. (11) for the course of an HIV infection; i.e., the
initial stage is the asymptomatic stage before symptomatic AIDS.
However, the inclusion of an acute phase at the beginning of
an infection does not alter our evolutionary analysis, as we later
show in detail. Maintenance of higher transmission rates (lower
b2 values) can be driven by increases in contact rates for less
symptomatic individuals, such as the case of infections in health-
care settings or sexually transmitted diseases like HIV. Finally,
while it is useful to see possible parameter regions for these dis-
eases, it should be noted that these placements are all coarse and
tentative.

Our SIIRS model is a general epidemiological model, where µ
denotes the rate of loss of immunity. Examining both extreme
cases of immunity, µ→∞ and µ= 0, further emphasizes that
we recover multiple canonical epidemiological models as the
result of including evolutionary processes acting on latency
in a simple epidemiological framework. If µ→∞, then hosts
become immediately susceptible again upon recovery and the
SIIRS model reduces to an susceptible–infectious–infectious–
susceptible (SIIS) epidemiological model with two infectious
stages. This class of models applies to diseases that con-
fer no immunity, such as gonorrhea and syphilis. Conversely,
if µ= 0, i.e., infection confers lifelong immunity, then the
SIIRS model reduces to an susceptible–infectious–infectious–
recovered (SIIR) model with two infection stages. For example,
such models represent infection by certain viral diseases, e.g.,
varicella and mumps. For both the SIIS and SIIR models, our
evolutionary analyses hold and the different threshold condi-
tions remain identical as they do not depend on the value of µ.
Furthermore, we have assumed that the R class denotes “recov-
ered” individuals, but ν2 could instead represent death due to
disease, thus adding in the complexity of diseases that are deadly.
Analogous analyses hold with a similar model that includes the
interpretation of ν2 as the rate of disease death (SI Appendix,
Additional Preliminaries).
Trade-offs formulated as sums of logistic-like functions. With
power-law or exponential trade-offs, we have assumed that the
rate of increase of transmission is itself increasing as latency
decreases. However, it is also possible that symptoms that more
strongly increase the rate of change of transmission (as a func-
tion of decreasing latency) arise when a host is subsymptomatic,
i.e., at certain positive latency values. Furthermore, such symp-
toms could occur at a unique value of latency or at multiple
different values. Thus, this implies that the rate of change of
transmission with respect to latency is not necessarily monoton-
ically increasing as latency decreases. For these scenarios, we
model the transmission rate in the first infectious stage as a
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logistic-like function or a sum of logistic-like functions. For sim-
plicity, and as assumed previously for power-law and exponential
trade-offs, we assume that the mechanisms that lead to these bio-
logical processes would result in a similar functional form for the
progression rate as a function of latency. Thus, for any positive
integer n , these trade-offs take the form of

α1[λ] =

n∑
i=1

b1,i

1 + e−b2,i (b3,i−λ)
+α1,∞,

ν1[λ] =

n∑
i=1

c1,i

1 + e−c2,i (c3,i−λ)
+ ν1,∞.

[10]

Under these formulations, multiple evolutionarily singular
strategies can emerge, which illustrates that it is possible for
more complex evolutionary phenomena to arise with more com-
plicated trade-offs. Numerically, we have examined the case of
one (n = 1) to four (n = 4) logistic-like functions (SI Appendix,
Figs. S1–S4, respectively). Among various possible behaviors,
we find that even with just one logistic-like function two inte-
rior evolutionarily singular strategies can be present, one stable
and one unstable (SI Appendix, Fig. S5). Thus, such an unsta-
ble strategy leads to bistability between a boundary strategy and
an interior strategy. We then examined the emergence of new
strategies under the same “latency threshold” for both trans-
mission and progression; i.e., b3,i = c3,i for each i . For each
added logistic-like function with a different latency threshold, it
is possible that two new interior evolutionarily singular strategies
emerge, one stable and one unstable. Thus, we have checked that
with trade-offs formulated as the sum of n logistic-like functions
for n = 1, 2, 3, 4, it is possible for the system to exhibit 2n inte-
rior evolutionarily singular strategies (SI Appendix, Fig. S6). This
leads to a total of n + 1 locally stable states, since an extremum
strategy also locally minimizes the susceptible fraction at equi-
librium and is thus a local ESS. We further conjecture that this
observation also holds for larger values of n . Finally, changes
in parameter values (i.e., b2,1 or b3,1, with all other parame-
ters fixed) can cause complex evolutionary transitions with these
trade-offs (SI Appendix, SI Results and Figs. S7 and S8).

Other Biological Extensions. Our analyses so far relied upon a very
simple epidemiological model with two infectious stages. Here,
we briefly present how different biological assumptions affect our
evolutionary analyses and subsequent interpretations.
Biological constraints for maximal latency. If biological details
of hosts or pathogens give other constraints that imply some
upper limit, it is simple to include a maximum latency λmax in
our modeling framework. First, consider the case that the ESS
of latency is greater than 0; i.e., λ∗> 0. Then, if λ∗<λmax, the
ESS of latency remains λ∗. If, on the other hand, λ∗>λmax, then
on the range λ∗ ∈ [0,λmax], Ŝ [λ] is a monotonically decreasing
function of λ. Thus, the biologically feasible ESS is λmax, and
this additional constraint of λmax gives some direct evolutionary
implications. Furthermore, in the case of a single maximum of
Ŝ [λ], adding in λmax can alter dynamics. If λmax is smaller than
the maximum, then the ESS is zero latency, as Ŝ [λ] is strictly
increasing from 0 to λmax. Conversely, if λmax is larger than the
value of the singular strategy, then bistability occurs and the two
strategies that are local minima of Ŝ [λ] are λ∗= 0 and λ∗=λmax.
Inclusion of more infectious stages. Certain pathogens may give
rise to infections with more than two infectious stages. For exam-
ple, HIV infections can lead to acute HIV, then chronic HIV,
and finally symptomatic AIDS. A broader interpretation, sim-
ilarly considered by Fraser et al. (11), with the initial acute
stage omitted fits into our original SIIRS model. To incorpo-
rate even more biological detail of HIV infections, we extend
our current two-stage model to include an initial infectious I0

stage with force of infection α0 and average time in the stage
1
ν0

. For strategy λ, equivalent calculations show that this gives

an epidemiological equilibrium fraction of susceptibles Ŝ [2][λ] =
1

R[2]
0 [λ]

, where the basic reproduction numberR[2]
0 [λ] is

R[2]
0 [λ] =

α0

ν0 + δ
+

ν0
ν0 + δ

(
α1[λ]

ν1[λ] + δ
+

ν1[λ]

ν1[λ] + δ

α2

ν2 + δ

)
,

[11]

and soR[2]
0 [λ] =C1 +C2R0[λ]. Note that we assume permanent

immunity here and below, so that the respective unique endemic
equilibriums are asymptotically stable when they exist (43). Since
R[2]

0 [λ] is a linear transformation ofR0[λ], the qualitative behav-
ior of R[2]

0 [λ] and hence of Ŝ [2][λ] is the same as that of R0[λ]

and Ŝ [λ]. Thus, SI Appendix, Theorems 1–4 apply in this case as
well, and the evolutionary outcomes in I1 translate across to this
new framework with the incorporation of an I0 stage.

This analysis with HIV illustrates that adding compartments
before the two infectious stages considered in our model does not
change the mathematical results or their interpretations. Thus,
if there is a lag between exposure and infectiousness, adding
in the biologically realistic (and very short) exposed (E ) com-
partment, i.e., the stage when a host is initially infected but not
infectious, does not alter evolutionary dynamics of latency in the
initial infectious stage.

Likewise, the addition of infectious stages after the two stages
we modeled does not alter qualitative evolutionary dynamics of
asymptomatic infection in the first stage. As an illustration, con-
sider the addition of an I3 class, with force of infection α3 and
recovery rate ν3. Then, the equilibrium fraction of susceptible
hosts Ŝ [3][λ] with strategy λ becomes Ŝ [3][λ] = 1

R[3]
0 [λ]

, where

R[3]
0 [λ] =

α1[λ]

ν1[λ] + δ
+

ν1[λ]

ν1[λ] + δ

(
α2

ν2 + δ
+

ν2
ν2 + δ

α3

ν3 + δ

)
.

[12]

Defining α̃2
ν̃2+δ

= α2
ν2+δ

+ ν2
ν2+δ

α3
ν3+δ

where α̃2 =α2 + ν2α3
ν3+δ

and

ν̃2 = ν2, it follows that R[3]
0 [λ] = α1[λ]

ν1[λ]+δ
+ ν1[λ]

ν1[λ]+δ
α̃2

ν̃2+δ
, and so

SI Appendix, Theorems 1–4 apply here as well, with α2→ α̃2 and
ν2→ ν̃2.

Here, we implicitly assume that these additional stages are
independent of the evolution of latency in the first stage. If this
were not the case, then these additional stages would have their
own evolutionary dynamics that depend on the latency of the first
stage. As a result of multiple paths to achieve similar outcomes,
it is possible that multistable ESSs would naturally arise from this
process, a point that should be investigated further.

Discussion and Conclusion
Certain pathogens exhibit a mildly symptomatic, or even fully
asymptomatic, infection stage before full symptoms appear. Such
a phase is important for pathogen control, as the resulting
“occult” transmissions are harder to curb. Notably, Fraser et al.
(11) examined general asymptomatic (before symptomatic
stages) transmissions in terms of disease control and concluded
that control strategies fare differently for pathogens with differ-
ing latency. Furthermore, multiple epidemiological studies have
examined the effect of asymptomatic infection on control for par-
ticular pathogens, e.g., Simmons et al. (19) and Lopman et al.
(20) for norovirus transmission.

In this paper, we examined the evolutionary dynamics of
subsymptomatic infections at the start of a host’s infectious
period. In the first stage of an infection, there can exist
trade-offs between the progression and transmission rates: Less
symptomatic disease can occur, and, with a reduced immune
response, this stage may last longer at the cost of decreased host

Saad-Roy et al. PNAS | May 26, 2020 | vol. 117 | no. 21 | 11547

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920761117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920761117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920761117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920761117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920761117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920761117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920761117/-/DCSupplemental


transmission. We formulated a general model of disease trans-
mission with two stages of an infection and summarized the
well-known result in epidemiological dynamics that if the basic
reproduction number is less than one, then the disease dies out;
otherwise the pathogen persists and reaches a unique endemic
equilibrium.

Once the pathogen has attained this endemic equilibrium,
what are the evolutionary outcomes of an emerging mutant
with a different strategy of latency and what are the resulting
long-term dynamics? Assuming that the population is at epi-
demiological equilibrium, we then used an evolutionary game
theoretic approach to study ESSs of latency. A simple analy-
sis shows that if such an ESS exists, it is locally stable, and so
it is a continuously stable strategy. We proved that for some
parameter values, the ESS is to have nonzero latency. If this
ESS is at infinite latency, then the first stage will be fully asymp-
tomatic (Fig. 5, Bottom). On the other hand, if the nonzero
ESS is finite, then the host population will be subsymptomatic
in the first stage (Fig. 5, Middle). Conversely, for other param-
eter values, the ESS is to have zero latency; i.e., the first stage
is identical to the second infectious stage in terms of symp-
toms (Fig. 5, Top). Most interestingly, under certain trade-off
formulations and for other parameter values, there exists a
single interior evolutionarily singular strategy that is unstable,
leading to bistability between local ESSs at zero and maximal
latency (Fig. 5). In this case, the same pathogen could evolve
to be either fully asymptomatic or fully symptomatic in the first
stage, and this will depend on initial conditions. Thus, due to
a change in initial conditions in the bistable regime, it is pos-
sible that different local ESSs will be reached if parameter
values change and then revert. We also numerically extended this
work to include trade-offs shaped as sums of logistic-like func-
tions and found that multistability with multiple local ESSs is
possible.

The cases with multiple local ESSs that are bistable or mul-
tistable might be hard to immediately recognize among existing
pathogens, and an initial approach would be to examine closely
related strains. For instance, the two coexisting strains of HIV

Fig. 5. Summary of epidemiological outcomes depending on the ESS of
latency. If λ* = 0, then the ESS is to have zero latency, and the model reduces
to an SIRS epidemiological model (with a gamma-distributed infectious
period). If∞>λ*> 0, then all hosts have milder symptoms in I1 (individual-
level interpretation), or a fraction of hosts in I1 are fully asymptomatic
(population-level interpretation). Finally, if λ*→∞, then the first stage of
the infection can be considered fully asymptomatic. A single unstable inte-
rior evolutionarily singular strategy can also exist, giving rise to bistability
with λ* = 0 and λ*→∞ (green arrow).

(HIV-1 and HIV-2) are related viruses with similar transmission
mechanisms (44), yet patients in the chronic stage of HIV-1 are
more likely to exhibit symptoms than those infected with HIV-2
(45). Specific immune and viral mechanisms have been studied
to determine the cause of this difference (46), and our work
provides further context from a broader evolutionary epidemi-
ological perspective. To determine whether there exists more
than one local ESS of latency for these pathogens, it would be
crucial to characterize the shapes of the underlying trade-offs in
addition to quantifying possible parameter regimes. This knowl-
edge could additionally give insight into underlying biological
mechanisms.

In our evolutionary analyses with specific trade-off formula-
tions, we modeled the transmission rate and the progression rate
of the first stage as exponential or power-law functions of latency.
We find that the key model parameters are the fully asymp-
tomatic transmission rate and the transmission decay exponent.
If the fully asymptomatic transmission rate is high enough, then
nonzero latency in the first stage is a local, perhaps even global,
ESS. If, in addition to a high asymptomatic transmission rate,
the transmission decay exponent is greater than the progression
decay exponent, then this ESS is at maximal latency. Conversely,
if the asymptomatic transmission rate is small, then either the
unique ESS is at zero latency or it is at nonzero (and finite)
latency. The case where the transmission decay exponent is less
than the progression decay exponent, i.e., b2< c2, corresponds
to the case where the scaled transmission is a decelerating func-
tion of the scaled progression (Fig. 2D). This is related to the
transmission–recovery trade-off examined by Alizon (10), where
an interior ESS is found if transmission is a decelerating increas-
ing function of recovery. In our work examining progression
and transmission, an interior ESS can exist if b2< c2, albeit this
condition is both necessary and sufficient only if α1,∞

δ
> α2

ν2+δ
.

Otherwise, an additional condition is required to guarantee the
existence of the interior ESS.

The magnitude of the fully asymptomatic transmission rate
depends on whether transmission can start early for a given
pathogen. Numerous factors influence this, especially the com-
partmentalization within the body of a host. Thus, the location
of pathogen reproduction can have a substantial impact on early
transmission. Furthermore, there may also be biological con-
straints imposed upon pathogens replicating in a newly infected
host, and these are tied to the immune response of the host.

We also briefly examined the resulting dynamics if biologi-
cal constraints limit the extent of latency or if biological details
require more compartments in the underlying epidemiological
model, and we showed that the results are qualitatively sim-
ilar in these cases. Taken together, the evolutionary analyses
reveal that life history strategies that correspond to different epi-
demiological models emerge from simple trade-offs based on
latency.

Our work illustrates that different qualitative evolutionary
outcomes in latency are possible for different parameter values.
These changes in parameters, especially for the progression and
transmission decay exponents, can imply contrasts in the underly-
ing trade-off shapes. In theoretical models of evolving traits, the
qualitative properties of the functions describing trade-offs usu-
ally have a substantial role in the evolutionary outcomes. Indeed,
to illustrate this, there have been general methods developed to
give geometrical underpinnings to evolutionary dynamics under
arbitrary trade-offs (47, 48).

Further Biological Refinements. More generically, certain acute
infections can cause secondary infections that are less trans-
missible. This was recently modeled by Morris et al. (49), and
analogous evolutionary analyses to ours on that model would
likely give qualitatively similar results. Another possible refine-
ment is the inclusion of stochasticity and the characterization
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of postepidemic troughs. Indeed, in a deterministic setting, if
multiple strains are interacting and share immunity, then the
strain with the higher growth rate dominates. However, the
corresponding trough after a larger epidemic will usually be
lower, and stochastic events would favor disease extinction over
a smaller epidemic (50). Thus, from an evolutionary perspective,
it is possible that an initially latent stage with slightly lower trans-
mission would also be advantageous to modulate the depth of
postepidemic troughs.

Currently in our framework, the explicit tie between pathogen
shedding and transmission is unspecified. This is in contrast to
the studies by King et al. (9) and Alizon (10), which considered
explicit within-host formulations and tied these to between-host
interactions. Rather, we explored population-level behavior that
emerges due to trade-offs based on latency and showed that a
variety of epidemiological models emerge as the product of con-
sidering evolutionary dynamics in a “first” infection stage for
a simple two-stage model. A natural extension of our models
would be to include within-host kinetics and explicit pathogen
shedding levels, similar to the different formulations considered
by King et al. (9), but tying these with latency.

While we do not directly model social processes such as fear
of symptoms, these invariably affect the shape of the transmis-
sion trade-off, thus possibly changing evolutionary dynamics of
latency. The interplay of fear and infectious disease dynamics has
been examined through a series of modeling approaches, e.g.,
refs. 51–53. Including social processes in our modeling frame-
work would more accurately illustrate the effect they could have
on the evolution of latency.

Implications for Disease Control. The implications herein are tied
to pathogen evolution in different settings and under the influ-
ence of different social processes. In hospital settings, infections
pose significant threats to patients and caretakers alike. Often-
times, infections that are detected are asymptomatic but may
actually be important for disease persistence, e.g., refs. 54–58.
Here, we propose that latency in nosocomial infections could
arise for (at least) two reasons. First, latency is favored when the
transmission rate remains high despite a lack of symptoms (i.e.,
small transmission decay exponent b2), which could be facilitated
by high contact rates between patients or healthcare workers in

hospital settings. Conversely, it is also possible that transmission
still decays faster than progression as a function of latency, but
the fully asymptomatic transmission rate α1,∞ is large enough so
that bistability of extrema strategies could occur. Furthermore, if
the latent transmission rate α1,∞ is large enough, then perhaps
the ESS is at maximal latency. For example, Barnes et al. (55)
proposed that asymptomatic infections may be responsible for
persistence of rotavirus.

In contrast, certain disease control strategies aim to decrease
contacts (and thus transmission) between infectious and suscep-
tible hosts, such as quarantine, and thus increase the value of
b2 and decrease the value of α1,∞. Biologically, if the asymp-
tomatic transmission rate is small enough, our results indicate
that pathogens subject to such control measures may evolve to
decrease latency in the first stage of infection. Otherwise, these
control measures may lead to bistability with fully asymptomatic
or fully symptomatic first stages of infection. The case of a fully
asymptomatic first stage of infection is particularly problematic
in light of the study by Fraser et al. (11), which illustrated the
burden caused by asymptomatic transmission. More accurate
surveillance data for different pathogens will enable the specifics
of trade-offs to be determined. With detailed datasets for spe-
cific pathogens, our model could be parameterized accurately,
and these pathogens could be characterized based on their life
history strategies of latency. With this in hand, particular pub-
lic health recommendations could be generated to successfully
reduce latency as an evolutionary outcome and thus diminish the
overall disease burden.

Data Availability. All data are available within this paper.
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