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Auditory experience drives neural circuit refinement during win-
dows of heightened brain plasticity, but little is known about the
genetic regulation of this developmental process. The primary
auditory cortex (A1) of mice exhibits a critical period for thalamo-
cortical connectivity between postnatal days P12 and P15, during
which tone exposure alters the tonotopic topography of A1. We
hypothesized that a coordinated, multicellular transcriptional
program governs this window for patterning of the auditory
cortex. To generate a robust multicellular map of gene expression,
we performed droplet-based, single-nucleus RNA sequencing
(snRNA-seq) of A1 across three developmental time points (P10,
P15, and P20) spanning the tonotopic critical period. We also tone-
reared mice (7 kHz pips) during the 3-d critical period and collected
A1 at P15 and P20. We identified and profiled both neuronal (glu-
tamatergic and GABAergic) and nonneuronal (oligodendrocytes,
microglia, astrocytes, and endothelial) cell types. By comparing
normal- and tone-reared mice, we found hundreds of genes across
cell types showing altered expression as a result of sensory ma-
nipulation during the critical period. Functional voltage-sensitive
dye imaging confirmed GABA circuit function determines critical
period onset, while Nogo receptor signaling is required for its
closure. We further uncovered previously unknown effects of de-
velopmental tone exposure on trajectories of gene expression in
interneurons, as well as candidate genes that might execute tono-
topic plasticity. Our single-nucleus transcriptomic resource of de-
veloping auditory cortex is thus a powerful discovery platform
with which to identify mediators of tonotopic plasticity.
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Activity-dependent plasticity shapes neural circuits in re-
sponse to sensory experience during distinct developmental

windows, termed “critical periods.” Heightened plasticity at
these times refines the anatomic and functional architecture
across brain regions (1). Decades of work in the primary visual
cortex (V1) have defined how activity drives molecular and cel-
lular events to open and close critical periods (2–4). Far less
detail is known in other sensory systems, such as the primary
auditory cortex (A1), where biased early-life acoustic exposures
lead to robust alterations in the spatial organization of a topo-
graphic map of sound frequency, called tonotopy (5). Exposure
to particular tones (tone-rearing) or language-specific pho-
nemes early in life can shift auditory tuning curves and per-
ception in favor of the experienced acoustic environment at
the expense of spectrally neighboring frequencies or speech
sound contrasts (6, 7).
Molecular mechanisms underlying critical period plasticity

have been most extensively studied for visual acuity (8). In
contrast, tonotopic plasticity occurs earlier and for a shorter
period of time as compared to the V1 critical period for ocular
dominance (9–11). Nevertheless, both critical periods share
several features in common. Both auditory and visual cortical
plasticity are accompanied by morphological remodeling of

dendritic spines (9, 12). Plasticity in A1 emerges earlier than in
V1 in close register with accelerated maturation of parvalbumin-
positive (PV) cells, shown to be pivotal for critical period onset
in V1 (4, 13). Closure of the auditory critical period can be
delayed or reopened in adulthood by exposure to continuous
broadband noise (0.8 to 30 kHz), which induces several changes
in A1 associated with a more plastic state similar to that found in
dark-reared V1 (14, 15). Specifically, extended A1 plasticity is
associated with decreased PV and BDNF expression, as well as
fewer GABAA α1 and β2/3 subunits (16, 17).
However, compared to the visual system (15, 18), relatively

little is known about transcriptional changes occurring during
auditory plasticity. The contributions of cell type-specific tran-
scriptional programs to network-level plasticity are poorly un-
derstood in A1. For example, it remains unknown to what extent
perineuronal nets (PNNs) enwrapping mature PV cells or myelin
signaling contribute to the closure of tonotopic plasticity as they
do for ocular dominance (19, 20). With the advancement of
single-cell RNA sequencing techniques, studies of cortical plas-
ticity are further primed to uncover genetic programs with pre-
viously unexplored depth across entire circuits without bias to
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cell type (21, 22). Therefore, we utilized single-nucleus RNA-
sequencing (snRNA-seq) in A1 across developmental time
points spanning the tonotopic critical period in mice (postnatal
days P10, P15, and P20) (9) with normal or altered acoustic
experience in order to build a model for gene network changes
based on single-cell transcriptomics (23).

Results
Application of snRNA-Seq to the Developing Mouse Auditory Cortex.
We performed snRNA-seq to generate a multicellular map of
gene expression in A1 at P10, P15, and P20 (Fig. 1A). A1 tissue
was freshly dissected and flash-frozen, bilateral hemispheres
were combined, and nuclei were isolated (Fig. 1B and Materials
and Methods) and then captured, and their mRNA was barcoded
using the inDrops platform (21). After initial quality filtering
(>500 genes detected per nucleus), the dataset of developmental
samples contained 31,293 nuclei, detecting on average 1,913
transcripts (unique molecular identifiers [UMIs]) and 1,244 genes
per nucleus (see SI Appendix, Fig. S1, for quality control metrics).
Unsupervised clustering analysis identified 29 clusters with

distinct transcriptional profiles (22). We used canonical marker
genes to classify nuclei into eight main cell types: excitatory
neurons (Slc17a7+), inhibitory neurons (Gad1+), oligodendro-
cytes (Olig1+), astrocytes (Aqp4+), endothelial cells (Cldn5+),
and microglia (Cx3cr1+) (Fig. 1C). We performed differential
gene expression analysis within cell types to explore develop-
mental patterns of transcription across the tonotopic critical
period. Genes with a false discovery rate (FDR) <5% were
considered statistically significant. In total, we identified hundreds
of genes that were dynamically regulated across the auditory
tonotopic critical period in all major cortical cell types (Fig. 1D).
We used gene ontology analysis to broadly classify functional
modules of genes that are significantly regulated across this de-
velopmental window (Fig. 1E). In excitatory neurons, we found
that genes associated with vocal learning were enriched for dy-
namic gene expression across the tonotopic critical period, while
genes associated with dendritic transport and GABAergic synaptic
transmission were enriched for dynamic gene expression in in-
hibitory neurons across the same time frame.
To uncover molecular diversity within major cell types, we

performed a subclustering analysis, whereby cells classified
within one of the main cell types were subjected to principal
component analysis to delineate cellular subpopulations. De-
velopmental stage strongly influenced clustering, as excitatory
neurons at P10 (precritical period) clustered distinctly from ex-
citatory neurons at P15 and P20 (postcritical period) (SI Ap-
pendix, Fig. S1D). We also found distinct cortical layer-specific
clusters, including those belonging to cortical layer V (Bcl6 and
Kcnn2+) and layer VI (Foxp2 and Ctgf+) (SI Appendix, Fig.
S1E). We detected a small excitatory neuron cluster that was
selectively positive for Synpr and Nr4a2—genes known to mark
the claustrum (SI Appendix, Fig. S1F) (24). Strikingly, we found
that there was a marked increase in immediate early genes, in-
cluding c-fos and nr4a1, in the P15/P20 clusters compared to P10
(Fig. 1F). This suggests that sensory exposure between P10 and
P15/P20 may drive activity-dependent gene expression in the
auditory cortex.
Similarly, analysis of interneurons across the P10 to P20 time

course revealed clustering predominantly by developmental stage
(SI Appendix, Fig. S2A). Distinct cell populations corresponding to
interneuron subtypes were identified, including Sst+, Pvalb+,
Vip+, and Npy+ cells. We identified a small population of in-
terneurons expressing the serotonin receptor gene Htr3a. Our
recent work suggests that 5-HT3AR+ interneurons in cortical
layer 1 mediate descending thalamocortical disinhibition and that
silencing of these interneurons impairs tonotopic plasticity (25).
Differential expression analysis between inhibitory cell clusters
identified genes enriched within specific interneuron subsets. For

example, the neuropeptide gene Crh (corticotropin releasing
hormone), shown to regulate activity-dependent network plasticity
via the integration of new neurons, was expressed predominantly
in Vip+ interneurons (26).
We performed gene expression analysis within interneurons

across early auditory development and found that expression of
Parvalbumin (Pvalb) in interneurons dramatically increased from
P10 to P20 (Fig. 1G). The maturation of PV-positive, fast-spiking
interneurons tightly controls the initiation and termination of
critical periods in V1 (27–32). Additionally, we found that genes
encoding the Kv3 family of potassium channels that mediate
delayed-rectifier currents subserving the high spike rate of fast-
spiking interneurons (Kcnc1 and Kcnc2) increased over the same
developmental window (SI Appendix, Fig. S2B) (33–38). The
mature GABAA receptor α1 subunit essential for critical period
plasticity in V1 was increased in A1 interneurons from P10 to
P15/20 (27). This subunit is enriched at reciprocal, PV–PV,
short-range synapses (39). The rise in α1 was matched by a de-
crease in α5 and α3, a previously characterized developmental
subunit switch (39–41). These changes in GABAA receptor ex-
pression mirror those observed in V1 across the critical period
for ocular dominance plasticity (42).

Mapping Cell Type-Specific Transcriptional Responses to Tone
Rearing. Distorted sensory experience during critical periods
has long-lasting effects on circuit development. Repeated tone
exposure from P12 to P15 has previously been shown to shift the
tonotopic organization of A1 (9, 10) and in other comparable
windows across mammals (6). Thus, we sought to identify the
transcriptional patterns that underlie this map plasticity by per-
forming snRNA-seq (as above) in A1 of mice that were tone-
reared from P12 to P15 and harvested on postnatal days 15 and
20. The dataset for analysis of tone-rearing (including normally
reared P15 and P20 samples) included 22,870 nuclei with 1,978
UMIs and 1,391 genes on average per nucleus. Unsupervised
clustering analysis identified 19 clusters, representing all major
cell types (Fig. 2A). We identified hundreds of genes with altered
expression (FDR < 5%) in the tone-reared condition in major
cell types (Fig. 2B). Within each, we found examples of enriched
ontologies for genes with expected cell type-specific functions
(Fig. 2C).
In contrast to the normal developmental trajectory, tone-

reared animals displayed altered gene expression patterns in
interneurons. For example, Kcnc1 (Kv3.1) exhibited an increase
in expression specifically in interneurons immediately follow-
ing tone-rearing (SI Appendix, Fig. S2B). Kv3.1 is a voltage-gated
potassium channel subunit that is responsible for high-frequency
action potentials and has been previously shown to be responsive
to auditory experience in the brainstem (43). Activity-dependent
changes in potassium channel proteins likely contribute to
plasticity in the setting of changes in the acoustic environment,
such as tone-rearing. In addition to Kcnc1, we found that Nrgn
(neurogranin) and Calm1 (calmodulin 1) expression increased
significantly in tone-reared interneurons (SI Appendix, Fig.
S2B). In neurons, neurogranin is localized to dendritic spines,
where it associates with calmodulin (44). Neurogranin over-
expression is associated with increased plasticity and long-
term potentiation (45). Together, these expression changes
in interneurons suggest that tone-rearing drives activity pat-
terns that delay or distort the maturational trajectory of in-
hibition within A1.
To understand the relationship of GABA signaling to critical

period closure, we examined the expression of brake-like factors
following altered acoustic experience. We found that the ex-
pression of myelin-associated genes (e.g., Mbp) was significantly
and specifically decreased in tone-reared A1 oligodendrocytes at
P15 (Fig. 2D). Some genes encoding PNN core proteins (Bcan in
inhibitory cells) and proteases (Mme in inhibitory cells) reversed
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their expression pattern in tone-reared animals (Fig. 2E). Abun-
dant gene expression changes exhibited by oligodendrocytes sug-
gest they could be key mediators of transiently enhanced map
plasticity and delayed critical period closure (19, 20).
One strength of single-nuclear sequencing is the ability to gain

novel insight into nonneuronal populations that may have been
previously underappreciated. This is particularly important given
the growing recognition of the role of nonneuronal cells in circuit
development, synapse refinement, and plasticity. However, the

role of astrocytes and microglia in the regulation of A1 critical
period remains unexplored. In V1, dark-rearing impairs the
maturation of astrocytes (46), and the microglial P2Y12 purinergic
receptor is required for ocular dominance plasticity (47). Here
we found that glia exhibited a distinct transcriptional response
to tone-rearing during the tonotopic critical period. Compared
to controls, astrocytes from tone-reared animals demonstrated
significantly higher expression of immediate-early genes, in-
cluding Fos, Junb, and Nr4a1, as well as up-regulation of the

Fig. 1. Single nucleus sequencing of A1 across the tonotopic critical period. (A) Schematic of experimental design and time points for tissue collection. (B)
Diagram of dissection approach used for auditory cortex tissue collection. (C) t-SNE plot of cells collected at P10, P15, and P20 under normally reared con-
dition. Colors indicate different cell types. (D) Volcano plots depicting differentially expressed genes between P10 and P20 under normally reared conditions
in excitatory neurons, inhibitory neurons, and oligodendrocytes. Blue indicates statistically significant genes (FDR < 5%). (E) Gene ontology (GO) categories
enriched in cell type-specific differentially expressed genes across A1 development. (F) t-SNE plots depicting c-fos and nr4a1 expression in P10, P15, and P20
normally reared cells. There is an enrichment of c-fos and nr4a1 positive cells at P20. (G) Box plots of the trajectory of average gene expression for Gad1, Gad2,
and Pvalb in inhibitory cells from P10 to P20 under conditions of normal development and tone rearing from P12 to P15. Box ranges represent the 25th and
75th percentiles, while the box whiskers indicate the 95% confidence interval. Mean normalized gene expression is indicated. Pairwise gene expression
change significance is indicated by asterisks (*FDR < 0.05, ***FDR < 0.001).
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Fig. 2. Cell type-specific effects of tone rearing during the tonotopic critical period. (A) t-SNE plots of cells from normally reared and tone reared mice at P15
and P20. (B) Volcano plots depicting differentially expressed genes normally reared and tone reared conditions at P15 in excitatory neurons, inhibitory
neurons, and oligodendrocytes. Blue indicates statistically significant genes (FDR < 5%). (C) Gene ontology (GO) categories enriched in cell type-specific
differentially expressed genes at P15 between normally reared and tone reared conditions. (D) Boxplot of the trajectory of average gene expression for Mbp
from P10 to P20 under conditions of normal development and tone rearing from P12 to P15. Box ranges represent the 25th and 75th percentiles, while the
box whiskers indicate the 95% confidence interval. Mean normalized gene expression is indicated. Pairwise gene expression change significance is indicated
by asterisks (**FDR < 0.01, ***FDR < 0.001). (E) Boxplot of the trajectory of average gene expression for Mme and Bcan from P10 to P20 under conditions of
normal development and tone rearing from P12 to P15. Box ranges represent the 25th and 75th percentiles, while the box whiskers indicate the 95%
confidence interval. Mean normalized gene expression is indicated. Pairwise gene expression change significance is indicated by asterisks (*FDR < 0.05,
***FDR < 0.001).
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Notch1 target Hes5. Notch signaling is thought to be important
for neural activity-driven astrocyte maturation and morphological
response to stimuli (48, 49).
The excitatory amino acid transporter Slc1a3, as well as the

Kcnn2 small conductance calcium-activated channel, were both
down-regulated in tone-reared astrocytes, perhaps as a result of
an activity-dependent compensatory mechanism. Analysis of
gene expression in microglia was limited by small cell numbers,
but those from tone-reared mice demonstrated a nearly fourfold
reduction in complement gene C1qb and Fc-receptor–like mol-
ecule Fcrls, both of which are typically down-regulated upon
microglial activation (50, 51). Additional studies are needed to
define the functional significance of specific glial populations to
auditory development and plasticity.

Functional Implications of Inhibitory Maturation. Extensive work in
V1 has shown the functional maturation of GABAergic in-
nervation is an important driver of critical period progression
(52). In the absence of GAD65, a key GABA biosynthetic enzyme,
a permanent precritical period state persists in V1 (53). Plasticity
can be rescued by administration of Diazepam, a benzodiazepine
agonist which enhances particular GABAA receptor currents such
that residual GABA levels in the absence of GAD65 drive suffi-
cient inhibitory transmission. For example, while GAD65 knock-
out mice do not exhibit a shift in ocular dominance following brief
monocular deprivation, these mice can exhibit plasticity at any age
when treated with Diazepam (54).
Our data showed that expression of Gad1 and Gad2, encoding

the two GABA synthetic enzymes GAD67 and GAD65, re-
spectively, increased over development in A1 interneurons
(Fig. 1G). One further theme that emerged from our A1 snRNA-
seq data was the dynamic nature of inhibitory receptors across
the tonotopic critical period. This suggests that the maturation of
inhibitory tone may also be important for critical period timing in
the developing auditory cortex. We, therefore, examined how
broad manipulation of inhibitory transmission might affect A1
topography and plasticity using voltage-sensitive dye imaging (9).
Functional thalamocortical connectivity can be measured in an

acute slice preparation, where focal stimulation to single sites in
auditory thalamus (ventral medial geniculate body [MGBv])
elicits topographic responses in A1 (Fig. 3A). Our previous work
revealed that prior to the critical period at P10, focal electrical
stimulation of medial MGBv sites (which receive high auditory
frequency input in vivo) is more effective at driving A1 responses
than lateral, low-auditory frequency sites (9). This bias is grad-
ually lost over critical period development, with stimulation at all
sites in MGBv eliciting similar maximal responses at topographic
locations across A1. In GAD65 knockout animals, this matura-
tion failed to occur, and rostral sites continued to show greater
activation beyond the normal developmental window (Fig. 3B).
Furthermore, in wild-type (WT) mice over early development,
stimulation to single sites in MGBv typically yielded pro-
gressively shorter latency responses, translocating from layer VI
to layer IV (Fig. 3 C and D). In GAD65 knockout mice, the site
of shortest latency remained in deeper layer VI despite an
overall shortening of response latencies comparable to WT
animals (Fig. 3D).
To test whether GAD65 is essential for the onset of the

tonotopic critical period, knockout mice were reared under re-
peated 7-kHz tones between P12 and P15, which typically yields
a shift in the tonotopic map and thalamocortical functional
connectivity in control mice (Fig. 4 A and B) (9). The relation-
ship between the stimulus site in MGBv and the site of maximal
response in A1 is defined as the topographic slope and is equal to
1 in control animals but drops in animals tone-reared during the
critical period (Fig. 4 B and C) (9). Mice lacking GAD65 failed
to shift their topographic functional connectivity (Fig. 4 B and C)
unless pretreated with Diazepam (Fig. 4D), consistent with the

hypothesis that their critical period onset is delayed (Fig. 3D).
Tone exposure during a more extended time frame—from P8 to
P20—also did not alter the tonotopic map in GAD65 null mice
(Fig. 4C). In WT animals, administration of Diazepam given
prior to the natural critical period was also effective at driving
plasticity (Fig. 4E), shifting plasticity earlier and preventing it
during the expected window (Fig. 4F). These results collectively
demonstrate that the development of inhibitory tone is necessary
for the onset of critical period plasticity in A1, as it is in V1.

Molecular Brakes on Auditory Plasticity. In order to solidify changes
made to sensory maps during the critical period, molecular
brakes turn on to actively close the window and prevent further
circuit refinements (55). Brakes are endogenous factors that halt
or restrict plasticity, such as the maturation of the extracellular
matrix as a structural barrier to circuit rewiring. We found that
the expression of PNN-related genes, including proteoglycans
and proteases, were dynamically regulated across A1 develop-
ment and in response to tone exposure (Fig. 2E). Notably,
chondroitin sulfate proteoglycans (CSPGs) tightly enwrap PV
basket cells in the form of PNNs (19, 56). PNN intensity, as
revealed by Wisteria Floribunda Agglutinin (WFA) labeling, in-
creased in A1 from P10 to P20 (Fig. 5 A and D, Left).
Another example of a molecular brake is the increased mye-

lination of axons in cortex, which limits axon regrowth potential
and synaptic plasticity (57). Myelin-related gene expression and
intracortical myelin basic protein (MBP) staining in WT mice
increased dramatically across this 10-d window (Fig. 5 A and C,
Left). The GAD65 knockout animals displayed lower gray matter
staining intensity for both WFA and myelin (Fig. 5 C and D,
Right), consistent with the shortest latency thalamocortical re-
sponses remaining in layer VI (Fig. 3D). Diazepam treatment,
which enabled normal tonotopic plasticity (Fig. 4F), did not fully
rescue PNN intensity by P20 (Fig. 5D) but returned myelin sig-
nals to WT levels (Fig. 5C). Thus, myelination may serve as an
earlier signal for map consolidation.
Much of the myelin-related brakes on plasticity have been

attributed to signaling through the Nogo receptor, NgR (58).
The neurite outgrowth inhibitor Nogo-A (Rtn4), which signals
through NgR, was up-regulated by oligodendrocytes at P20 (SI
Appendix, Fig. S2C) but down-regulated in Tubb3+ neurons (59)
after the critical period, which was prevented by tone-rearing
(Fig. 5 E and F). This suggests a dynamic interplay between
neuronal and glial populations to regulate both the level and
timing of plasticity within cortical circuits.
Conveniently, the NgR is a key mediator of the downstream

response to several brake-like factors, including CSPGs, myelin
factors, and Nogo-A (Fig. 5G) (60). We thus examined whether
the degree or timing of map plasticity in A1 might be altered by
loss of this receptor. We found that NgR knockout animals were
plastic during both the normal critical period and beyond
(Fig. 5H). Thus, myelin/CSPG-mediated signaling via the NgR is
necessary to restrict plasticity at the end of the tonotopic critical
period in A1. A permissive environment for structural changes in
the absence of NgR would allow a prolonged window for ana-
tomical consolidation of functional refinements.

Discussion
Early postnatal acoustic experience shapes the structural and
functional organization of the auditory system (7). Neural ac-
tivity during narrowly defined critical periods drives frequency
selectivity and tonotopic organization. Our study sought to
characterize the cell type-specific transcriptional underpinnings
of this carefully orchestrated multicellular collaboration. We
observed gene expression changes in all major cell types across
early A1 development, during which these sensory-driven circuit
refinements occur. In addition to the vast transcriptomic re-
source created in this study, we also extend findings from the

11748 | www.pnas.org/cgi/doi/10.1073/pnas.1920433117 Kalish et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920433117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920433117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1920433117


visual system to the auditory cortex. Specifically, we demonstrate
that GAD65, a key synthetic enzyme for GABA, and the Nogo
receptor, a mediator of myelin/CSPG signaling, are both neces-
sary for proper critical period onset and offset, respectively (20,

53). These results underscore conserved mechanisms for the
regulation of cortical plasticity.
Our study further reveals an activity-dependent mobilization

of molecular machinery enabling plasticity. Thus, tone-rearing

 WT 
 GAD65-/-

1.0

0.0

P
ea

k 
ΔF

/F
 (n

or
m

)

P8-P12

1.0

0.0
P13-P15

**

MGBv stimulus site

** **
1.0

0.0

**

P16-P20

*

654321

B

0.5 0.5 0.5

654321 654321

L4 locations1
10 18

1

6

lat

caud

LGB
2
3
4
5

Hippocampus

A

MGBv

Stimulus sites

ΔF
/F

Stim
site 1

Stim
site 5

I

II

IV

III

V

VI

0

200

400

600

800

0

200

400

600

800

1000
0.0 0.5 1.0 8 16 24

Latency (ms)Norm. ΔF/F

D
is

ta
nc

e 
fro

m
 p

ia
 (μ

m
) P8-P12

P13-P15
P16-P20

0

200

400

600

800

0

200

400

600

800

0.0 0.5 1.0 8 16 24
Latency (ms)Norm. ΔF/F

WILD TYPE GAD65-/-C D
MGBv stimulus site MGBv stimulus site

D
is

ta
nc

e 
fro

m
 p

ia
 (μ

m
)

**
*

*
*
*

*

1000

Fig. 3. Delayed thalamocortical maturation in GAD65-deficient mice. (A) Schematic of the six MGBv stimulus sites (colored arrows) and 18 L4 locations
analyzed. Sample voltage-sensitive dye imaging (VSDI) traces of maximum change in fluorescence (ΔF/F) at two different L4 locations (locations 8 and 13) as a
function of time following a single, 1-ms stimulus pulse to MGBv site 1 (blue) or 5 (yellow) in a P12 WT mouse. LGB, lateral geniculate body. (Scale bars, 100 ms
and 0.1% ΔF/F.) (B) Normalized peak ΔF/F as a function of stimulus site for WT (black) and GAD65−/− (red), respectively, for three age groups (P8 to P12, n = 13, 7;
P13 to P15, n = 16, 9; and P16 to P20, n = 16, 13). (C) Nissl stain of a P20 thalamocortical slice for columnar analysis (red square). Black arrows denote approximate
borders between layers LI/II, LIV/V, and LVI/white matter. Normalized ΔF/F with distance from pia for WT and GAD65−/− mice at three age groups (red, P8 to P12,
n = 13, 8; gray, P13 to P15, n = 15, 9; and black, P16 to P20, n = 11, 13). (Scale bar, 125 μm.) (D) Normalized ΔF/F with latency from pia for the same groups. Red
and black arrows denote location of shortest latency in P8 to P12 and P16 to P20 mice, respectively. Note the shift of shortest latency from LVI to LIV inWTmice is
not seen in GAD65−/− mice across this age range. *P < 0.05; **P < 0.01, two-way ANOVA with post hoc Bonferroni correction; mean ± SEM.

A 2

1

0

To
po

gr
ap

hi
c 

sl
op

e

non-
exp

7kHz
P12-15

non-
exp

GAD65-/-
7kHz

P12-15
7kHz
P8-20

P12-P15

P8-P20

Recording
7 kHz exposure

8          12          16         20

Postnatal day

normal 
CP 

in WT

*

WT

**
*

2

1

0
no DZ DZ P16-19

2

1

0
no DZ DZ P8-11

2

1

0
no DZ DZ P8-11

*

To
po

gr
ap

hi
c 

sl
op

e

To
po

gr
ap

hi
c 

sl
op

e

To
po

gr
ap

hi
c 

sl
op

e

D GAD65-/- mouse
7 kHz exp P16-19

E FWT mouse
7 kHz exp P8-11

WT mouse
7kHz exp P12-15

WT
GAD65-/-

14

6
654321

10

L4
 lo

ca
tio

n 
of

pe
ak

 Δ
F/

F 

1

no exp
P12-15
P8-20

MGBv stimulus site

B C

Fig. 4. Critical period onset reflects excitatory–inhibitory balance in A1. (A) Schedule for tone exposure window and recording (arrows). (B) Location of L4
peak ΔF/F in response to different MGBv stimulus sites for mice nonexposed (n = 9 for WT, 12 for GAD65−/−) or exposed to 7 kHz between P12 and P15 (n = 8
for WT, 12 for GAD65−/−) or P8 and P20 (n = 6 for GAD65−/−). (C) Corresponding topographic slopes (slopes of the curves in C). (D–F) Topographic slopes for
(D) GAD65−/− mice exposed to 7 kHz between P16 and P19 with (DZ P16 to 19, n = 8) or without (no DZ, n = 9) DZ injection between P16 and P19, (E) WT mice
exposed to 7 kHz between P8 and P11 with (DZ P8 and P11, n = 8) or without (no DZ, n = 8) DZ injection between P8 and P11, and (F) WT mice exposed to 7
kHz between P12 and P15 with (DZ P8 and P11, n = 8) or without (no DZ, n = 9) DZ injection between P8 and P11. *P < 0.05; **P < 0.01; t test; mean ± SEM.

Kalish et al. PNAS | May 26, 2020 | vol. 117 | no. 21 | 11749

N
EU

RO
SC

IE
N
CE



BA
8                  10                 12                 14                 16                 18                  20

Postnatal day

normal  CP in WT

0

200

400

600

800

1000
0.8 1.4 2.0

Norm. MBP staining intensity

**

***

P10
P13
P16
P20

**

***
***

E

D
is

ta
nc

e 
fro

m
 p

ia
 (μ

m
)

0

200

400

600

800

1000
0.8 1.4 2.0

Norm. PNN staining intensity

P10
P13
P16

D

D
is

ta
nc

e 
fro

m
 p

ia
 (μ

m
)

P20

CP in WT
8          12                16                       20

Postnatal day

7 kHz exp
Recording

7 kHz exp
Recording

2

1

0
P11 NgR-/-
7kHz P8-11

To
po

gr
ap

hi
c 

sl
op

e

**

P15 NgR-/-
7kHz P12-15

P19 NgR-/-
7kHz P16-19

7 kHz exp
Recording

**

0

200

400

600

800

10 25 40
MBP staining Intensity

F

8       12       16        20

Postnatal day

Staining

DZ 
injection

WT
GAD65-/-
GAD65-/-+DZ

0

200

400

600

800

1000
20 35 50

PNN staining Intensity

HG

WT
GAD65-/-
GAD65-/-+DZ

***
***

***

**

4nt
R

D
A

P
I

Tu
bb

3

P20
naive

P20
tone

m
er

ge

P10

25
00

50
00

75
00

10
00

0

P10 P20

Age

m
ea

n 
in

te
ns

ity
 in

 n
uc

le
us

Condition
naive
tone

Rtn4
in Tubb3+ nuclei

C

Myelin membrane

Neuronal membrane

NgR

Nogo-66

OMgp MAG

CSPG

***

***

Fig. 5. Critical period closure in A1 signaled by myelin/PNN formation and NgR. (A) Schedule for staining (arrows) with reference to typical A1 critical period
in WT mice. (B) Schedule for staining (arrows) with reference to Diazepam or vehicle treatment in GAD65−/− mice. (C and D) (Left) Quantification of relative
MBP (C) and WFA (D) staining intensity in P10 (n = 5, 4), P13 (n = 5, 4), P16 (n = 4, 4), and P20 (n = 4, 4) WT mice. **P < 0.01 ***P < 0.001, two-way ANOVA
with post hoc Bonferroni correction; mean ± SEM. (Right) Quantification of MBP (C) and PNN (D) staining in P20 WT nonexposed (black, n = 4, 4), GAD65−/−

(red, n = 5, 3) and GAD65−/− injected with DZ between P12-P15 (blue dashed, n = 5, 4). *P < 0.05; **P < 0.01, two-way ANOVA with post hoc Bonferroni
correction; mean ± SEM. (E) Fluorescent in situ hybridization (FISH) in A1 labeling cellular nuclei (DAPI), Nogo-A (Rtn4), neuronal marker (Tubb3), and their
merged images across ages and tone-rearing. Representative images are from Layer V/VI. Red outlines are QuPath (67) segmented nuclei and an expanded
estimated cell border. (Scale bar, 10 μm.) (F) Quantification of mean FISH signal intensity in Tubb3+ nuclei (Materials and Methods) at P10, P20, and P20 after
tone-rearing during the critical period (P12 to P15). Quantification was averaged across all layers. ***P < 0.001, Kruskal–Wallis rank sum test with post hoc
Dunn test; horizontal lines in violin plot indicate quantiles 0.25, 0.50, and 0.75. (G) Schematic of putative NgR ligands in myelin membrane (Nogo-66, OMgp,
and MAG) and the extracellular matrix (CSPG). (H) Schedule for sound exposure and VSDI recordings (arrows). Topographic slopes for NgR−/− mice exposed
to 7 kHz between P8 and P11 (P11, white, n = 5), between P12 and P15 (P15, white, n = 8) or between P16 and P19 (P19, red, n = 4). **P < 0.01, t test;
mean ± SEM.

11750 | www.pnas.org/cgi/doi/10.1073/pnas.1920433117 Kalish et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1920433117


per se altered normal developmental trajectories of both
GABAergic circuits and structural barriers to plasticity such as
myelination and PNNs. The idea that abnormal acoustic expe-
rience during the critical period alters maturation trajectories
has been suggested by other studies. For example, GABAB-
mediated inhibitory long-term depression (iLTD) is triggered by
prepost pairing of action potentials at PV-to-principal cell syn-
apses during the A1 critical period, which is thought to underlie a
disinhibitory mechanism permissive for plasticity (61). This iLTD
switches to potentiation (iLTP) as development proceeds.
After tone-rearing, the number of cells responsive to the

rearing frequency increases in a topographic zone of A1, and
they exhibit a premature switch to iLTP (61). Instead, our data
from A1 biopsies show that the gene encoding GABAB subunit 2
normally decreases over early development but increases in tone-
reared animals, which should mediate continued iLTD. One
possibility is that tone-rearing drives both iLTP and iLTD in a
topographic manner to mediate map expansion to the rearing
frequency and compensatory retraction in others. In addition,
presynaptic GABAB receptors have been shown to regulate the
experience-dependent switch from depression to facilitation in
inhibitory plasticity (62).
The auditory system is a tractable model of experience-

dependent plasticity due, in part, to its topographic organiza-
tion. The use of snRNA-seq allows for the dissection of layer-
specific excitatory cell types and classes of inhibitory neurons, as
well as nonneuronal cells. However, this approach homogenizes
the tonotopic organization of cells in A1. It is not clear whether
distortion of inhibitory maturation or molecular brake onset
occurs within the tone-responsive areas of cortex in response to
overstimulation or if the neighboring part of the tonotopic map is
silenced in a competitive manner. Future studies could use
multiplexed fluorescence in situ hybridization to visualize spa-
tially restricted cell type-specific transcriptional changes to
address these questions.
Our data represent a significant advance over existing re-

sources as this study profiles transcription with cell type speci-
ficity across time and with critical period perturbation. However,
the use of snRNA-seq also has several limitations. First, this
approach has low capture efficiency, such that a small proportion
of a cell’s total transcriptome is represented in the final se-
quenced library. This challenge makes it difficult to distinguish
between biologic variability and technical noise for low-
abundance transcripts, such as the nicotinic acetylcholine brake
Lynx1 (25).
The low amount of input material also leads to high levels of

technical noise, again making it difficult to observe biologic
variation. Owing to low capture efficiency and stochastic gene
expression, gene dropout (where gene expression is zero in a
given cell) is quite common, leading to zero-inflated expres-
sion data. Other potential sources of bias include the tissue

dissociation method, as enzymatic treatments may affect cell
viability, as well as the low number of animals from which nuclei
were collected. The relative merits of single-cell sequencing, as
opposed to bulk RNA sequencing, depend on many factors, in-
cluding the specific scientific question, cell type abundance, and
gene-of-interest expression level.
Despite these limitations, snRNA-seq is an important discov-

ery tool with which to obtain previously impossible degrees of
cellular resolution. For example, we found that Nrgn is up-
regulated in tone-reared interneurons (SI Appendix, Fig. S2B),
while this gene is restricted to principal cells in the mature cortex
across species (63). There is precedent that Nrgn can be tran-
siently expressed in GABAergic interneurons in a developmen-
tally restricted fashion (64) and in subsets of GABAergic
neurons in other contexts (65). Similarly, Kv3.1 may be tran-
siently expressed in oligodendrocyte precursor cells at even
earlier ages (66). This highlights the importance of unbiased
examination of longitudinal trajectories of dynamic gene ex-
pression across cell types. Overall, our results are consistent with
a pivotal role for PV+ circuits in regulating critical period pro-
files across brain regions (32). The transcriptomic data obtained
in the present study provide insights into critical period regula-
tion and a resource for future investigation into cell type-specific
regulatory mechanisms in auditory cortex development.

Materials and Methods
All experiments using animals were performed according to protocols ap-
proved by the Harvard University Institutional Animal Care and Use Com-
mittee. Tone rearing was performed between postnatal days 12 to 15, and
litters were moved back to standard housing on postnatal day 16. The au-
ditory cortex was dissected and flash frozen; a nuclear suspension was
subsequently prepared using gradient centrifugation. Single nuclei were
captured, barcoded, and sequenced according to the inDrops technique as
previously described (21). All sequencing data are available in the Gene
Expression Omnibus (GSE140883). Voltage-sensitive dye imaging of C57BL/
6J, GAD65−/−, or NgR−/− mice was performed on acutely prepared auditory
thalamocortical slices, as described previously (5, 9). Additional details are
contained in SI Appendix, Extended Experimental Procedures.
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