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a b s t r a c t 

The COVID-19 pandemic has world-widely motivated numerous attempts to properly adjust classical epi- 

demiological models, namely those of the SEIR-type, to the spreading characteristics of the novel Corona 

virus. In this context, the fundamental structure of the differential equations making up the SEIR models 

has remained largely unaltered—presuming that COVID-19 may be just “another epidemic”. We here take 

an alternative approach, by investigating the relevance of one key ingredient of the SEIR models, namely 

the death kinetics law. The latter is compared to an alternative approach, which we call infection-to- 

death delay rule. For that purpose, we check how well these two mathematical formulations are able 

to represent the publicly available country-specific data on recorded fatalities, across a selection of 57 

different nations. Thereby, we consider that the model-governing parameters—namely, the death trans- 

mission coefficient for the death kinetics model, as well as the apparent fatality-to-case fraction and the 

characteristic fatal illness period for the infection-to-death delay rule—are time-invariant. For 55 out of 

the 57 countries, the infection-to-death delay rule turns out to represent the actual situation significantly 

more precisely than the classical death kinetics rule. We regard this as an important step towards making 

SEIR-approaches more fit for the COVID-19 spreading prediction challenge. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

It is generally agreed on that mathematical models, and in par-

icular agent-based epidemic simulation models, may help in com-

ating COVID-19. Such models have underlined the importance of

uarantining infected individuals and their family members, work-

lace distancing, closing of educational institutions and effective

ase management; as practically proven very successful in Singa-

ore [1] . 

As concerns predictions of infection and death kinetics, the SEIR

odel type (taking into account populations of Susceptible, Ex-

osed, Infectious, and Removed individuals; with removal being as-

ociated to recovery or death) enjoys particular popularity [2–5] .

owever, reliable SEIR-supported mid- to long-term prognoses re-

ain a formidable, largely unsolved challenge: E.g., SEIR-predicted

umbers from March 11, 2020, such as a peak of 26,0 0 0 infected

eople in Italy foreseen for March 21, 2020 [6] , did not match

he reality seen a few weeks later. In fact, this peak was actu-

lly recorded in Italy only on April 19, 2020, when Italy reported

ore than 108,0 0 0 active infections, and around 24,0 0 0 fatalities
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7] . On the one hand, these large deviations between model predic-

ions and the actually recorded numbers stem from the uncertainty

f the underlying SEIR model parameters: they may not be suffi-

iently well known for the novel COVID-19 pandemic yet. On the

ther hand, one may ask to which extent the standard SEIR mod-

ls are actually applicable to the COVID-19 pandemic, or more pre-

isely, if the structure of the involved differential equations might

eed some adaptations, so as to convincingly and reliably predict

he future spreading of COVID-19 as well as the related fatalities,

or different boundary conditions arising from social behavior and

mprovements in the health care system. 

In this paper, we address this open, and highly relevant ques-

ion. To that end, we consider, for 57 countries, the recordings

f total (cumulated) COVID-19 infections, active COVID-19 infec-

ions, and COVID-19-related fatalities (described in Section 2.1 ).

n this basis, we assess both the traditional death kinetics law

see Section 2.2 ), and a new infection-to-death delay rule (see

ection 2.3 ). A comprehensive comparison of the two methods is

resented in Section 3 , as to their capabilities to predict the fa-

ality trends recorded in each of the considered countries based

n the respectively recorded infections. The paper is concluded by

 discussion on the potential implications of the revealed results,
ee Section 4 . 

https://doi.org/10.1016/j.chaos.2020.109891
http://www.ScienceDirect.com
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Nomenclature 

C recorded number of total (cumulated) infections 

�C recorded number of change in total (cumulated) in- 

fections per time step 

E F 
del 

absolute error between recorded fatalities and fa- 

talities predicted by infection-to-death delay rule 

based on arbitrary values of f F and T F 
〈 E F 

del 
〉 time-averaged absolute error between recorded fa- 

talities and fatalities predicted by infection-to-death 

delay rule based on arbitrary values of f F and T F 
〈 E F 

del 
〉 est 

time-averaged absolute error between recorded fa- 

talities and fatalities predicted by infection-to-death 

delay rule based on optimized estimates for f F and 

T F 
E F 

kin 
absolute error between recorded fatalities and fatal- 

ities predicted by death kinetics model based on ar- 

bitrary values of βF 

〈 E F 
kin 

〉 est 
time-averaged absolute error between recorded fa- 

talities and fatalities predicted by death kinetics 

model based on optimized estimates for βF 

E �F 
kin 

absolute error between recorded fatality changes 

and fatality changes predicted by death kinetics 

model based on arbitrary values of βF 

〈 E �F 
del 

〉 time-averaged absolute error between recorded fa- 

tality changes and fatality changes predicted by 

death kinetics model based on arbitrary values of βF 

〈 E �F 
kin 

〉 est 
time-averaged absolute error between recorded fa- 

tality changes and fatality changes predicted by 

death kinetics model based on optimized estimate 

for βF 

�E relative change of prediction error between death 

kinetics model and infection-to-death delay rule 

f F apparent fatality-to-case ratio 

f est 
F 

optimized estimate for the apparent fatality-to-case 

ratio 

F recorded number of fatalities 

�F recorded number of changes in fatalities per time 

step 

F del fatalities predicted by infection-to-death delay rule 

F kin fatalities predicted by death kinetics model 

I recorded number of infected people 

�I recorded number of change in infected people per 

time step 

N t number of time points considered in a specific 

country 

R recorded number of recoveries 

�R change per time, of recorded recoveries 

R 

F , est 
del 

relative time-averaged absolute error between 

recorded fatalities and fatalities predicted by 

infection-to-death delay rule based on the opti- 

mized estimates for f F and T F 
R 

F , est 
kin 

relative time-averaged absolute error between 

recorded fatalities and fatalities predicted by death 

kinetics model based on the optimized estimate for 

βF 

t time since first recording 

�t time step 

T F characteristic infection-to-death period 

T est 
F 

optimized estimate for the characteristic infection- 

to-death period 

βF death transmission coefficient 

βest 
F 

optimized estimate for death transmission coeffi- 

cient 

m  
. Data and methods 

.1. Data base 

We use the data provided on the reference website Worldome-

er [7] , namely the developments over time, of the country-specific

otal numbers of cases of people infected with COVID-19 (being the

umulated numbers of people infected until the respective dates),

f the active cases of infected people (being the numbers of peo-

le currently infected at the respective dates), as well as of the to-

al deaths related to COVID-19 (being the cumulated numbers of

eceased people until the respective dates). Importantly, our fo-

us is on countries where the reported numbers of fatalities are

tatistically relevant, and where the related death kinetics follow

ore or less smooth trends. As of April 26, 2020, this applies to

he following 57 countries (given in alphabetical order): Algeria,

rgentina, Australia, Austria, Bangladesh, Belgium, Brazil, Canada,

hile, China, Colombia, Croatia, Czech Republic, Denmark, Domini-

an Republic, Ecuador, Egypt, Finland, France, Germany, Greece,

ungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy,

apan, Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New

ealand, Norway, Pakistan, Panama, Peru, Philippines, Poland, Por-

ugal, Romania, Russia, Saudi Arabia, Serbia, South Africa, South

orea, Spain, Sweden, Switzerland, Turkey, Ukraine, United King-

om, and the United States of America. 

Since the data available on [7] are, from time to time, slightly

orrected, all raw data used in the present study (up to date on

pril 26, 2020) are explicitly documented in this paper. For the

ake of demonstration, the data recorded in Austria are shown in

able 1 , while the data for all other countries are provided in the

upplementary Material. Thereby, it is noted that the total (cumu-

ated) numbers of confirmed cases, C , the numbers of active in-

ections, I , and the total (cumulated) numbers of fatalities, F, are

irectly extracted from [7] . All other quantities given in Table 1 ,

amely the total (cumulated) number of recoveries, R , as well as

he daily changes �C , �I , �F , and �R can be straightforwardly

omputed. 

.2. Traditional approach: death kinetics law 

The death kinetics law usually used in SEIR models reads as

8,9] 

d F kin ( t ) 

d t 
= βF I ( t ) , (1)

ith F kin as the death kinetics law-predicted number of fatalities,

 as the number of (actively, or currently) infected people, t being

he time variable, and βF denoting the death transmission coeffi-

ient (also referred to as death rate or mortality rate). Clearly, the

dea expressed mathematically by Eq. (1) is that the increase of fa-

alities at time instant t is proportional to the number of people

nfected at time instant t . 

Next, we aim at finding, country-specifically, the optimal value

f βF , such that the model-predicted fatality changes according to

q. (1) agree as well as possible with the recorded data; i.e., with

F , as seen for Austria in the seventh column of Table 1 . For that

urpose, it is necessary to discretize Eq. (1) , yielding 

F kin ( t i ) = F kin ( t i ) − F kin ( t i −1 ) = βF I ( t i −1 ) . (2)

ence, time is now split into intervals �t = t i − t i −1 , with the in-

erval limits indicated by index i , i = 1 , . . . , N t , N t standing for the

umber of time points considered. Furthermore, �F kin denotes the

ncrease of fatalities per time interval. As for Table 1 , the time in-

erval amounts to �t = 1 d, and the number of time steps amounts

o N t = 56 . For a specific value of βF , the absolute error between

odel-predicted and recorded fatality steps associated with time
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Table 1 

Date-specific COVID-19 data recorded in Austria, according to [7] , namely the num- 

bers of confirmed cases of infected people, C , the numbers of active infections, I , 

the numbers of fatalities, F , and the numbers of recovered individuals, R ; as well as 

the corresponding changes per day, i.e., �C , �I , �F , and �R . 

Date C �C I �I F �F R �R 

Feb 25 2 2 2 2 0 0 0 0 

Feb 26 2 0 2 0 0 0 0 0 

Feb 27 5 3 5 3 0 0 0 0 

Feb 28 7 2 7 2 0 0 0 0 

Feb 29 10 3 10 3 0 0 0 0 

Mar 1 14 4 14 4 0 0 0 0 

Mar 2 18 4 18 4 0 0 0 0 

Mar 3 24 6 24 6 0 0 0 0 

Mar 4 29 5 29 5 0 0 0 0 

Mar 5 43 14 41 12 0 0 2 2 

Mar 6 66 23 64 23 0 0 2 0 

Mar 7 81 15 79 15 0 0 2 0 

Mar 8 104 23 102 23 0 0 2 0 

Mar 9 131 27 129 27 0 0 2 0 

Mar 10 182 51 178 49 0 0 4 2 

Mar 11 246 64 242 64 0 0 4 0 

Mar 12 361 115 356 114 1 1 4 0 

Mar 13 504 143 497 141 1 0 6 2 

Mar 14 655 151 648 151 1 0 6 0 

Mar 15 860 205 853 205 1 0 6 0 

Mar 16 1018 158 1007 154 3 2 8 2 

Mar 17 1332 314 1319 312 4 1 9 1 

Mar 18 1646 314 1633 314 4 0 9 0 

Mar 19 2179 533 2164 531 6 2 9 0 

Mar 20 2649 470 2634 470 6 0 9 0 

Mar 21 2992 343 2975 341 8 2 9 0 

Mar 22 3582 590 3557 582 16 8 9 0 

Mar 23 4474 892 4444 887 21 5 9 0 

Mar 24 5283 809 5246 802 28 7 9 0 

Mar 25 5588 305 5548 302 31 3 9 0 

Mar 26 6909 1321 6748 1200 49 18 112 103 

Mar 27 7697 788 7414 666 58 9 225 113 

Mar 28 8271 574 7978 564 68 10 225 0 

Mar 29 8788 517 8223 245 86 18 479 254 

Mar 30 9618 830 8874 651 108 22 636 157 

Mar 31 10,180 562 8957 83 128 20 1095 459 

Apr 1 10,711 531 9129 172 146 18 1436 341 

Apr 2 11,129 418 9222 93 158 12 1749 313 

Apr 3 11,524 395 9334 112 168 10 2022 273 

Apr 4 11,781 257 9088 −246 186 18 2507 485 

Apr 5 12,051 270 8849 −239 204 18 2998 491 

Apr 6 12,297 246 8614 −235 220 16 3463 465 

Apr 7 12,639 342 8350 −264 243 23 4046 583 

Apr 8 12,942 303 8157 −193 273 30 4512 466 

Apr 9 13,244 302 7709 −448 295 22 5240 728 

Apr 10 13,560 316 7177 −532 319 24 6064 824 

Apr 11 13,806 246 6865 −312 337 18 6604 540 

Apr 12 13,945 139 6608 −257 350 13 6987 383 

Apr 13 14,041 96 6330 −278 368 18 7343 356 

Apr 14 14,226 185 6209 −121 384 16 7633 290 

Apr 15 14,350 124 5859 −350 393 9 8098 465 

Apr 16 14,476 126 5080 −779 410 17 8986 888 

Apr 17 14,595 119 4460 −620 431 21 9704 718 

Apr 18 14,671 76 4014 −446 443 12 10,214 510 

Apr 19 14,749 78 3796 −218 452 9 10,501 287 

Apr 20 14,795 46 3694 −102 470 18 10,631 130 

Apr 21 14,873 78 3411 −283 491 21 10,971 340 

Apr 22 14,925 52 3087 −324 510 19 11,328 357 

Apr 23 15,002 77 2786 −301 522 12 11,694 366 

Apr 24 15,071 69 2669 −117 530 8 11,872 178 

Apr 25 15,148 77 2509 −160 536 6 12,103 231 

Apr 26 15,225 77 2401 −108 542 6 12,282 179 

i

E

 

r

〈  

M  

m

∀  

T  

b  

t  

v  

i  

w  

n  

β  

f  

l  

[

2

 

s  

a  

w  

c

F

w  

p  

b  

t

 

o  

t  

f

F

A  

c  

p

E

T  

a

〈  

M  

t  

a

∀

I  

0  

a  

0  

m  

r  

s  

f

2

 

t  

s  
nstant t i is given by 

 

�F 
kin ( βF ; t i ) = | �F kin ( βF ; t i ) − �F ( t i ) | . (3) 

The corresponding average over the entire recording period

eads as 

 E �F 
kin 〉 ( βF ) = 

1 

N t 

N t ∑ 

i 

E �F 
kin ( βF ; t i ) . (4)
inimizing 〈 E �F 
kin 

〉 (βF ) yields the country-specific, optimized esti-

ate for the death transmission coefficient, βest 
F 

; hence 

 βF ∈ 

[
βF,low 

, βF,up 

]
: 〈 E �F 

kin 〉 ( βF ) ≥ 〈 E �F 
kin 〉 

(
βest 

F 

)
= 〈 E �F 

kin 〉 est 
. (5)

he optimization task described by Eqs. (2) –(5) was implemented

y numerically scanning the relevant range of values for βF , given

hrough βF,low 

= 0 and βF,up = 3 × 10 −2 d 

−1 
, considering thereby a

ariation step size of �βF = 1 × 10 −6 d 

−1 . Notably, for all stud-

ed data sets, a distinct minimum of 〈 E �F 
kin 

〉 (βF ) could be found

ithin the above-defined parameter rang. This minimum is de-

oted by 〈 E �F 
kin 

〉 est 
and associated with the optimized estimate for

F , β
est 
F 

, see Eq. (5) . Furthermore, the optimization was performed

or �t = 0 . 1 d, with �F (t i ) being computed from linear interpo-

ation of the total fatality numbers F ( t i ) (which are available on

7] with �t = 1 d, see Table 1 ). 

.3. Alternative approach: infection-to-death delay rule 

As an alternative to Eq. (1) , we adopt a more “microscopic” de-

cription, which takes into account the actual course of the disease

t the patient level. There, after some time of illness, it turns out

hether an infected person recovers or dies. Mathematically, this

an be expressed as follows: 

 del ( t ) = f F C ( t − T F ) , (6) 

here F del is the delay rule-predicted fatality number, f F is the ap-

arent fatality-to-case fraction, and C is the total (cumulated) num-

er of recorded cases of infections at time point (t − T F ) , T F being

he characteristic time of fatal illness. 

Again, we introduce a discretized version of Eq. (6) , for the sake

f finding the parameters yielding the best-possible agreement be-

ween the model-predicted and the country-specifically recorded

atalities, reading as 

 del ( t i ) = f F C ( t i − T F ) . (7) 

ssigning specific values to f F and T F and evaluating Eq. (6) ac-

ordingly allows for computing the absolute error between model-

redicted and recorded fatalities, reading as 

 

F 
del ( f F , T F ; t i ) = | F del ( t i ) − F ( t i ) | . (8) 

he corresponding average over the entire recording period reads

s 

 E F del 〉 ( f F , T F ) = 

1 

N t 

N t ∑ 

i 

E F del ( f F , T F ; t i ) . (9)

inimizing 〈 E F 
del 

〉 ( f F , T F ) yields the country-specific, optimized es-

imates for the apparent fatality-to-case fraction and of the char-

cteristic time of fatal illness, f est 
F 

and T est 
F 

; hence 

 f F ∈ 

[
f F,low 

, f F,up 

]
∧ ∀ T F ∈ 

[
T F,low 

; T F,up 

]
: 

〈 E F del 〉 ( f F , T F ) ≥ 〈 E F del 〉 
(

f est 
F , T est 

F 

)
= 〈 E F del 〉 est 

. (10) 

n more detail, we considered parameter ranges defined by f F,low 

=
 and f F,up = 0 . 6 , with a variation step size of � f F = 0 . 001 , as well

s by T F,low 

= 0 and f F,up = 30 d, with a variation step size of �T f =
 . 1 d. These parameter ranges allowed for finding unique error

inima for all studied countries. Analogously to the optimization

outine described in Section 2.2 , a time step of �t = 0 . 1 d was con-

idered, requiring respective linear interpolation of the recorded

atality numbers. 

.4. Comparison of models 

In order to quantitatively compare the alternative approach in-

roduced in Section 2.3 to the classical death kinetics model de-

cribed in Section 2.2 , an additional error measure is required for
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Fig. 1. COVID-19 pandemic data and model predictions for Italy, comprising (a) time courses of total infections C , currently infected people I , recovered people R , and 

fatalities F , according to [7] ; (b) inverse of the time average over the delay rule-related prediction error; (c) the absolute errors between model-predicted fatalities and the 

recorded fatalities, based on the death kinetics model, E F 
kin 

, and based on the infection-to-death delay model, E F 
del 

, considering the optimized estimates of parameters βF , f F , 

and T F , as well as their temporal averages; and (d) model-predicted versus recorded fatality trends. 
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the quantification of the predictive capability of the death kinetics

approach. Thus, analogously to Eq. (8) , we introduce the absolute

error between the total number of fatalities predicted by the death

kinetics model when considering the optimized estimate for the

death transmission coefficient, and the total number of recorded

fatalities. Mathematically, it reads as 

E F kin 

(
βest 

F ; t i 
)

= 

∣∣F kin 

(
βest 

F ; t i 
)

− F ( t i ) 
∣∣. (11)

The corresponding average over the entire recording period reads

as 

〈 E F kin 〉 est = 

1 

N t 

N t ∑ 

i 

E F kin 

(
βest 

F ; t i 
)
. (12)

Based on this error measure, we assess the predictive capabil-

ity of the alternative, delay-based approach with respect to the

predictive capability of the traditional death kinetics approach. To

that end, we compute the relative change in the time-averaged ab-

solute errors, denoted by �E , and defined through 

�E = 

〈 E F 
del 

〉 est − 〈 E F 
kin 

〉 est 

〈 E F 
kin 

〉 est 
. (13)

If, for a particular country, �E < 0 , then the new infection-to-

death delay rule describes the fatality trend of this country better

than the death kinetics model. If, in turn, �E > 0 , then the death
 p
inetics model describes the fatality trend of this country better

han the new infection-to-death delay rule. 

. Results 

The analyses described in Sections 2.2 –2.4 were applied to the

ata recorded in all 57 countries mentioned in Section 2.1 , see

lso the Supplementary Material for detailed, country-specific lists.

he results of those analyses, namely the optimized estimates for

he parameter governing the death kinetics model, βest 
F 

, as well as

f the parameters governing the infection-to-death delay rule, f est 
F 

nd T est 
F 

, are listed in Table 2 . 

This table also contains the average absolute errors associated

ith optimized model parameters of the death kinetics law and

he infection-to-death delay rule, 〈 E F 
kin 

〉 est 
and 〈 E F 

del 
〉 est 

, as well as

he relative change of the error �E. In order to allow for bet-

er comparability between the countries, Table 2 also features the

umber of maximum fatalities per country (that is the number of

atalities on April 26, 2020), termed F max , and the ratios R 

F, est 
kin 

=
 E F 

kin 
〉 est 

/F max and R 

F, est 
del 

= 〈 E F 
del 

〉 est 
/F max , to be interpreted as char-

cteristic relative errors associated with the kinetics law and with

he delay rule, respectively. Furthermore, the results are also elab-

rated visually, with three distinct examples being included in this

aper: 
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Table 2 

Country-specific optimized estimates for the death transmission coefficient, βest 
F 

, for the apparent fatality-to-case fraction, f est 
F 

, and for the characteristic time of fatal illness 

T est 
F 

; together with corresponding absolute error measures 〈 E F 
kin 

〉 est 
and 〈 E F 

del 
〉 est 

, the maximum number of fatalities, F max , the relative error measures R 

F , est 
kin 

and R 

F , est 
del 

, as well 

as relative error change associated to the comparison of the death kinetics model with the infection-to-death delay rule, �E. 

Country 

βest 
F 

[ 10 −3 d −1 ] 

f est 
F 

[ −] 

T est 
F 

[d] 

〈 E F 
kin 

〉 est 

[ −] 

〈 E F 
del 

〉 est 

[ −] 

F max 

[ −] 

R 

F, est 
kin 

[ −] 

R 

F, est 
del 

[ −] 

�E 

[ −] 

Algeria 10.633 0.164 3.5 42.34 11.44 425 0.0996 0.0269 −0.73 

Argentina 3.765 0.062 6.9 6.11 2.57 192 0.0318 0.0134 −0.58 

Australia 0.631 0.011 8.3 3.52 2.96 83 0.0424 0.0357 −0.16 

Austria 2.242 0.035 10.9 25.60 13.63 542 0.0472 0.0251 −0.47 

Bangladesh 2.900 0.032 0.0 17.65 6.22 145 0.1217 0.0429 −0.65 

Belgium 11.507 0.207 9.0 216.58 71.00 7094 0.0305 0.0100 −0.67 

Brazil 8.695 0.112 7.2 100.49 20.47 4271 0.0235 0.0048 −0.80 

Canada 5.541 0.094 12.8 104.43 24.52 2560 0.0408 0.0096 −0.77 

Chile 1.385 0.021 9.2 5.76 1.28 189 0.0305 0.0068 −0.78 

China 1.858 0.040 5.9 489.99 245.85 4632 0.1058 0.0531 −0.50 

Colombia 3.086 0.071 8.6 13.59 3.71 244 0.0557 0.0152 −0.73 

Croatia 1.091 0.032 11.6 3.55 1.39 55 0.0646 0.0252 −0.61 

Czech Republic 1.411 0.035 10.1 9.93 2.89 220 0.0452 0.0131 −0.71 

Denmark 3.438 0.054 4.7 22.56 12.57 422 0.0535 0.0298 −0.44 

Dominican Republic 2.263 0.049 0.2 42.81 4.83 278 0.1540 0.0174 −0.89 

Ecuador 2.481 0.056 2.9 72.11 14.83 576 0.1252 0.0258 −0.79 

Egypt 6.039 0.086 2.7 17.33 3.46 317 0.0547 0.0109 −0.80 

Finland 2.131 0.061 16.6 9.55 4.59 190 0.0503 0.0242 −0.52 

France 8.283 0.151 5.3 1779.10 254.42 22,856 0.0778 0.0111 −0.86 

Germany 2.705 0.042 11.2 209.64 56.03 5976 0.0351 0.0094 −0.73 

Greece 2.216 0.055 6.3 12.24 2.59 134 0.0913 0.0193 −0.79 

Hungary 8.383 0.161 9.4 4.57 5.49 272 0.0168 0.0202 0.20 

Iceland 0.000 0.006 10.6 3.59 0.39 10 0.3589 0.0393 −0.89 

India 2.875 0.032 0.1 44.14 6.16 881 0.0501 0.0070 −0.86 

Indonesia 5.449 0.087 0.1 84.27 6.71 743 0.1134 0.0090 −0.92 

Iran 4.788 0.063 0.3 791.26 103.75 5710 0.1386 0.0182 −0.87 

Iraq 2.336 0.056 0.0 24.85 4.58 87 0.2856 0.0527 −0.82 

Ireland 3.473 0.083 9.6 25.01 11.44 1087 0.0230 0.0105 −0.54 

Israel 0.740 0.016 9.1 6.05 2.67 201 0.0301 0.0133 −0.56 

Italy 5.829 0.143 4.0 3782.04 69.12 26,644 0.1419 0.0026 −0.98 

Japan 1.612 0.034 6.4 18.06 7.27 372 0.0485 0.0196 −0.60 

Luxembourg 0.778 0.023 7.4 11.85 2.96 88 0.1346 0.0336 −0.75 

Malaysia 0.974 0.018 3.6 10.14 2.04 98 0.1035 0.0208 −0.80 

Mexico 14.165 0.293 13.4 41.13 8.19 1305 0.0315 0.0063 −0.80 

Morocco 1.658 0.051 0.0 40.19 10.87 161 0.2496 0.0675 −0.73 

Netherlands 5.544 0.134 4.8 471.05 40.25 4475 0.1053 0.0090 −0.91 

New Zealand 0.000 0.015 17.5 3.25 0.51 18 0.1806 0.0281 −0.84 

Norway 0.895 0.031 14.6 9.21 3.44 201 0.0458 0.0171 −0.63 

Pakistan 1.508 0.041 10.6 9.73 5.14 281 0.0346 0.0183 −0.47 

Panama 1.636 0.031 2.6 15.58 1.92 159 0.0980 0.0121 −0.88 

Peru 4.082 0.027 0.0 24.63 12.84 728 0.0338 0.0176 −0.48 

Philippines 2.956 0.072 2.9 54.15 10.05 501 0.1081 0.0201 −0.81 

Poland 3.051 0.060 8.1 10.34 6.53 535 0.0193 0.0122 −0.37 

Portugal 1.743 0.041 5.2 82.84 9.21 903 0.0917 0.0102 −0.89 

Romania 3.889 0.062 3.9 35.15 5.18 619 0.0568 0.0084 −0.85 

Russia 1.087 0.011 2.1 13.09 2.31 747 0.0175 0.0031 −0.82 

Saudi Arabia 0.675 0.034 11.6 15.84 5.33 139 0.1139 0.0383 −0.66 

Serbia 1.010 0.019 0.0 25.41 4.38 156 0.1629 0.0281 −0.83 

South Africa 0.986 0.035 15.3 5.56 4.57 87 0.0639 0.0526 −0.18 

South Korea 0.845 0.023 18.0 10.26 21.33 242 0.0424 0.0881 1.08 

Spain 6.308 0.109 2.3 2845.25 109.89 23,190 0.1227 0.0047 −0.96 

Sweden 8.092 0.212 13.1 47.64 35.49 2194 0.0217 0.0162 −0.26 

Switzerland 3.837 0.058 9.5 37.77 17.95 1610 0.0235 0.0112 −0.52 

Turkey 1.808 0.026 2.0 219.69 20.92 2805 0.0783 0.0075 −0.90 

Ukraine 1.959 0.026 0.0 19.34 3.01 209 0.0925 0.0144 −0.84 

United Kingdom 9.216 0.155 3.4 1090.41 176.30 20,732 0.0526 0.0085 −0.84 

United States 3.802 0.069 5.9 1817.13 168.43 55,413 0.0328 0.0030 −0.91 
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• Italy, which was the first heavily hit European country, exhibit-

ing the peak in active infections on April 19, 2020, see Fig. 1 ; 

• Austria, which has exhibited, already by April 26, 2020, an ex-

tended period of decreasing active infections (with the respec-

tive peak observed on April 3, 2020), see Fig. 2 ; and 

• Belgium, which has been experiencing, as of April 26, 2020, a

still increasing number of active infections, see Fig. 3 . 

The corresponding recorded data can be found in Table 1 (for

ustria) as well as in the Supplementary Material (for Italy and
elgium). Furthermore, the Supplementary Material contains the

ecorded data and the diagrams analogous to Figs. 1 –3 for all other

4 investigated countries. We emphasize that the surface plots

hown in Figs. 1 (b), 2 (b), and 3 (b) show the inverses of the time-

veraged delay rule-related absolute errors, rather than their actual

alues, as functions of the apparent fatality-to-case fraction and of

he characteristic period of fatal illness. These surface plots tes-

ify to the uniqueness of the optimized parameter estimates within

he studied parameter ranges. While Figs. 1 (d), 2 (d), and 3 (d)

narguably illustrate how much better the infection-to-death rule
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Fig. 2. COVID-19 pandemic data and model predictions for Austria, comprising (a) time courses of total infections C , currently infected people I , recovered people R , and 

fatalities F , according to [7] ; (b) inverse of the time average over the delay rule-related prediction error; (c) the absolute errors between model-predicted fatalities and the 

recorded fatalities, based on the death kinetics model, E F 
kin 

, and based on the infection-to-death delay model, E F 
del 

, considering the optimized estimates of parameters βF , f F , 

and T F , as well as their temporal averages; and (d) model-predicted versus recorded fatality trends. 
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a  
represents the fatality trends recorded in these three countries

than the death kinetics model, it is also clearly visible that the

agreement between infection-to-death rule-predicted and recorded

fatalities is not quite as convincing for Austria as it is for Italy and

Belgium. This is probably caused by the fact that Austria has al-

ready entered a second phase of the pandemic, similar to South

Korea, where this effect is much more pronounced, as discussed in

more detail below and in Section 4 . 

For the large majority of all investigated country-specific data

sets, namely for 55 out of 57 (i.e., for all countries except for Hun-

gary and South Korea), the infection-to-death delay rule proposed

in this paper represents the actually recorded fatality trends sig-

nificantly better than the traditional death kinetics model known

from the widely used SEIR-approaches. This improvement is un-

derlined by relative error changes ranging from −16% to −98% ,

whereby the latter dramatic improvement relates to one of the

countries which were hit very early and very hard: Italy, see also

Fig. 1 . Substantial modeling improvements thanks to the infection-

to-death delay rule are also seen for other European countries with

pronounced excess mortality due to the COVID-19 pandemic ac-

cording to [10] , such as Spain ( −96% ), the Netherlands ( −91% ),

France ( −86% ), the United Kingdom ( −84% ), Sweden ( −26% ), or

Belgium ( −67% ); for the latter, see Fig. 3 . However, the significance

of the infection-to-death delay rule is not restricted to countries

exhibiting a particularly high death toll. In fact, this rule works
qually well for countries such as Greece ( −79% ), the Domini-

an Republic ( −89% ), Iceland ( −89% ), the United States of America

 −91% ), or Germany ( −73% ). When taking the mean error change

ver all 55 countries where the infection-to-death delay rule out-

erformed the death kinetics law, we still arrive at an impressive

E = −68% . It should be mentioned that, for the above-defined

5 countries, the infection-to-death delay rule allows for remark-

ble modeling precisions, quantified by relative average errors of

nly a few percent, see the ninth column of Table 2 . In particu-

ar, across those 55 countries, the mean value of R 

F, est 
del 

amounts

o R 

F, est 
del 

= 1 . 88% , whereas the mean value of R 

F, est 
kin 

amounts to

 

F, est 
kin 

= 8 . 15% . 

Keeping this in mind, we turn to the only two investigated

ountries where the traditional death kinetics law yields better

epresentations of the recorded fatality trends than the here pro-

osed infection-to-death delay rule, namely South Korea and Hun-

ary. As for Hungary, we observe that the prediction errors of both

he death kinetics law and the infection-to-death delay rule are

ow, amounting to ≈ 2%. Hence, a particularly important role of

he traditional approach cannot be argued in that case. The situa-

ion is different for South Korea. There, the data reflects a period

f a significant fatality trend lasting for more than two months

which is much longer than, in some cases even about twice

s long as reported for most of the other countries). Still, when
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Fig. 3. COVID-19 pandemic data and model predictions for Belgium, comprising (a) time courses of total infections C , currently infected people I , recovered people R , and 

fatalities F , according to [7] ; (b) inverse of the time average over the delay rule-related prediction error; (c) the absolute errors between model-predicted fatalities and the 

recorded fatalities, based on the death kinetics model, E F 
kin 

, and based on the infection-to-death delay model, E F 
del 

, considering the optimized estimates of parameters βF , f F , 

and T F , as well as their temporal averages; and (d) model-predicted versus recorded fatality trends. 
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pplying the analysis described in Sections 2.2 –2.4 to the first 35

ays of the recorded fatality trend, the infection-to-death delay

ule again outperforms the classical death kinetics model. In par-

icular, for this reduced analysis period, the South Korea data yield

he following error values: 〈 E F 
kin 

〉 est = 12 . 17 and 〈 E F 
del 

〉 est = 4 . 49 ;

ence, �E = −63% . A discussion on the possible reasons for these

esults is given in Section 4 of this paper. 

The peculiarities observed for Hungary and South Korea do not

pply to any other of the investigated countries, including those

t the lower end of the spectrum of values estimated for f F ,

uch as Iceland ( f F = 0 . 006 ), Australia ( f F = 0 . 011 ), New Zealand

 f F = 0 . 015 ), Croatia ( f F = 0 . 032 ), the Czech Republic ( f F = 0 . 035 ),

r Austria ( f F = 0 . 035 ); for the latter, see Fig. 2 . 

. Discussion 

By quantifying the extent of contact reduction necessary to

ring down the COVID-19 reproduction number to values below

ne, stochastic transmission models [11] have proven as valuable

athematical tools for mitigating risks associated with COVID-19.

y comparison, the prospects that classical SEIR-models can be

uccessfully applied for combating the COVID-19 pandemic are less

lear, as model calibration is usually an extremely challenging task,
ue to the potential non-identifiability of key model parameters

12] . 

The present contribution aims at elucidating the role of SEIR-

odels in a quantitative fashion, by comparing one of the key as-

umptions of the SEIR-models, namely the death kinetics law, to a

omehow obvious alternative, taking into account the course of the

isease, where the patient either recovers or dies after some char-

cteristic time. Interestingly, the corresponding infection-to-death

elay rule considering invariant, country-specific model parame-

ers (i.e., the apparent fatality-to-case fraction and the character-

stic fatal illness period) captures the data recorded in 55 out of

he 57 studied countries significantly better than the traditional

eath kinetics law considering also an invariant, country-specific

odel parameter (i.e., the death transmission coefficient). As for

he two remaining countries, the two models perform more or less

qually well for Hungary, whereas South Korea deserves particu-

ar mention. There, it is instructive to closely examine the respec-

ive developments of infections and fatalities over time, as they re-

eal that in South Korea at least two distinct kinetics regimes have

overned the fatality trend, see Figure 50(d) of the Supplementary

aterial. As stressed in Section 3 , it turns out that the death ki-

etics of the first month can be satisfactorily described by means

f the infection-to-death delay rule, whereas the entire period

f roughly two months is better described by the death kinetics
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model. However, it should be emphasized that the related errors

of both methods significantly increase with time. This may suggest

that over time, more than one characteristic time of fatal illness

governs the death kinetics; in the sense that one and the same

infection wave may lead to two or more fatality waves. This is

indicated by the prediction curve first underestimating and then

overestimating the actually confirmed fatality numbers, see Fig-

ure 50(d) of the Supplementary Material. Interestingly, a very sim-

ilar behavior, albeit in a much less pronounced fashion is seen for

Austria, see Fig. 2 (d) of this paper. This potential effect of two fa-

tality waves seems to be consistent with the unusually high viral

shedding period associated with COVID-19-affected patients, last-

ing up to 37 days in survivors [13] . Given the still limited knowl-

edge on the various intricacies of the COVID-19 virus, this last

proposition should be regarded as nothing more than a specula-

tion; its verification, most likely requiring some sort of combina-

tion of more than just one infection-to-death delay term, goes be-

yond the scope of this paper. 
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