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Down syndrome (DS) is the most common form of intellectual
disability. The cognitive alterations in DS are thought to depend
on brain regions critical for learning and memory such as the
prefrontal cortex (PFC) and the hippocampus (HPC). Neuroimaging
studies suggest that increased brain connectivity correlates with
lower intelligence quotients (IQ) in individuals with DS; however,
its contribution to cognitive impairment is unresolved. We
recorded neural activity in the PFC and HPC of the trisomic Ts65Dn
mouse model of DS during quiet wakefulness, natural sleep, and
the performance of a memory test. During rest, trisomic mice
showed increased theta oscillations and cross-frequency coupling
in the PFC and HPC while prefrontal–hippocampal synchronization
was strengthened, suggesting hypersynchronous local and cross-
regional processing. During sleep, slow waves were reduced, and
gamma oscillations amplified in Ts65Dn mice, likely reflecting pro-
longed light sleep. Moreover, hippocampal sharp-wave ripples
were disrupted, which may have further contributed to deficient
memory consolidation. Memory performance in euploid mice cor-
related strongly with functional connectivity measures that indicated a
hippocampal control over memory acquisition and retrieval at theta
and gamma frequencies, respectively. By contrast, trisomicmice exhibited
poor memory abilities and disordered prefrontal–hippocampal func-
tional connectivity. Memory performance and key neurophysiological
alterations were rescued after 1 month of chronic administration of a
green tea extract containing epigallocatequin-3-gallate (EGCG), which
improves executive function in young adults with DS and Ts65Dn mice.
Our findings suggest that abnormal prefrontal–hippocampal circuit dy-
namics are candidate neural mechanisms for memory impairment in DS.
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Down syndrome (DS, trisomy 21) results from genetic im-
balances caused by a triplication of human chromosome 21

(HSA21). DS is characterized by intellectual disability that in-
volves poor learning and memory (1). Animal models of DS have
provided insight into plausible cellular and molecular substrates
underlying cognitive phenotypes in DS. The Ts65Dn partial tri-
somic mouse model, where 90 genes orthologous to HSA21
genes are triplicated (2), has provided invaluable insight re-
garding abnormalities in the cognitive, structural, and cellular
domains (3–5). Overall, overexpression of specific HSA21 genes
causes dendritic anomalies and disrupted synaptic plasticity in
Ts65Dn mice along with excitation–inhibition imbalances that
lead to a general overinhibition (6, 7). However, the neuro-
physiological consequences of these alterations on mesoscopic
network connectivity and their impact on cognitive function are
poorly understood. Relevant for cognitive performance, DS in-
dividuals and Ts65Dn mice suffer from sleep perturbations, in-
cluding insomnia (8–10). This is important because cortical slow

waves and hippocampal ripples during sleep are involved in
memory consolidation, and there is a transfer of memories from
subcortical to cortical structures (11–13).
Recent neuroimaging studies suggest that brain connectivity is

abnormal in individuals with DS, whereby higher regional con-
nectivity correlates with lower intelligence quotients (IQs) (14,
15). This is relevant given that episodic memories depend on a
dialogue between the prefrontal cortex (PFC) and the hippo-
campus (HPC), but it is unclear how such findings directly relate
to cognitive dysfunction in DS. Abnormal prefrontal–hippocampal
(PFC-HPC) functional connectivity has been postulated as a
pathophysiological mechanism for cognitive impairment and sleep
disturbances in several brain disorders (16, 17). It is particularly
associated with schizophrenia (18, 19) but also contributes to
neurodevelopmental and neurodegenerative disorders such as
autism, Parkinson’s disease, and Alzheimer’s disease (20–23).
The present study investigates to what extent functional con-

nectivity disturbances can be linked to memory deficiencies and
whether they can be reversed. Although there are currently no
therapies for intellectual disability, recent work has demonstrated
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that treatment with green tea extracts containing epigallocatechin-
3-gallate (EGCG), a flavonoid found in green tea leaves, improves
cognitive symptoms in DS. Oral administration of EGCG for
several weeks in combination with cognitive training ameliorated
recognition memory, inhibitory control, and adaptive behavior in
young adults with DS (24). This was accompanied by normaliza-
tion of increased brain functional connectivity in the frontal, so-
matosensory, and occipitotemporal cortices and of excessive
cortical excitability. EGCG also rescues learning and memory
deficits in Ts65Dn mice (25). Here we take advantage of the
Ts65Dn DS mouse model to unravel the neurophysiological cor-
relates of memory impairment and the possible mechanisms un-
derlying EGCG-induced memory amelioration. We recorded

neural activity simultaneously from the PFC and HPC of Ts65Dn
mice and their wild-type nontrisomic littermates during quiet
wakefulness and natural sleep. We later investigated neural ac-
tivity signatures of memory impairment in the novel object rec-
ognition task (NOR), which is profoundly impaired in Ts65Dn
mice, and examined PFC-HPC network activity recovery after
1 month of oral EGCG.

Results
Ts65Dn Mice Exhibit Prefrontal–Hippocampal Hypersynchronization
during Quiet Wakefulness and Sleep. We recorded neural activi-
ties in the prelimbic medial PFC and the CA1 region of the HPC
of Ts65Dn (TS) mice and their wild-type (WT) littermates (TS
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Fig. 1. Ts65Dn mice exhibit prefrontal–hippocampal hypersynchronization during quiet wakefulness. (A, Left) Experimental timeline and brain states used.
Mice were implanted with electrodes in the PFC and HPC at the beginning of the experiment. After a recovery period, behavioral and neurophysiological
assessment was carried out during quiet wakefulness, natural sleep, and memory performance in the NOR task. Later, EGCG was administered for 1 month,
after which memory performance and neurophysiological activity were investigated again. (Middle) Electrode placements within the PFC and HPC and
corresponding references (three recording sites each) and ground (GND). (Right) Representative example of histological validation. Note the small lesions
caused by low-intensity electrical stimulations, which were used to mark the tips of the electrodes after the last recording session in all animals. (B) General
activity (variance of the acceleration module, Acc) was not different in alert WT (n = 10) and Ts65Dn mice (n = 12) while animals were in the recording box,
where they could move but not walk. (C) Mean firing rate of individual neurons in PFC and HPC. (D) Power spectra of signals in PFC and HPC. Insets depict
quantification of theta power. (E, Left) Comodulation maps of cross-frequency coupling in the PFC and HPC. The color scale indicates the modulation index
(MI). (Right) Delta (3 to 5 Hz) to high gamma (80 to 120 Hz) MI in PFC and theta to high-frequency oscillation (HFO, 100 to 200 Hz) MI in HPC. Note the
different scales between the PFC and HPC. (F) Phase synchronization (wPLI) between the PFC and the HPC in both genotypes. The quantification of all neural
signals recorded during quiet wakefulness in WT and TS mice is summarized in SI Appendix, Table S2. Data are represented as mean ± SEM. *P ≤ 0.05.
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n = 12, WT n = 10 mice) during quiet wake, natural sleep, and
memory performance (Fig. 1A). Since TS mice typically display
higher locomotion rates than WT mice (26), recordings during
quiet wakefulness were performed in a small box that allowed
mice to move while locomotion was prevented. In this scenario,
the two genotypes showed comparable activity as measured by
accelerometer rates (Acc, unpaired t test, P = 0.2), although the
TS group showed more variability (Fig. 1B). We found that
single-unit firing rates of neurons were increased in TS mice in
both areas (PFC: WT 8.6 ± 2 spikes/s, n = 61 neurons vs. TS 10.9 ±
2, n = 65 neurons, P = 0.021; HPC: WT 8.5 ± 2 spikes/s, n = 50
neurons vs. TS 13.4 ±5, n = 56 neurons, P = 0.014) (Fig. 1C), from
which 60% were putative pyramidal neurons (SI Appendix, Fig. S1
and Table S1) (27). TS mice also showed increased power of theta
oscillations (8 to 12 Hz) in both structures (P = 0.04; Fig. 1D).
Amplified theta in PFC and HPC did not correlate with animals’
activity (n = 22 mice; PFC: R = 0.17, P = 0.44; HPC: R = 0.25, P =
0.24) and also occurred during resting states when mice explored an
open field (SI Appendix, Fig. S2), indicating that the increased theta
was not simply due to hyperactivity of TS animals or their increased
susceptibility to stress when confined in the box. TS mice showed
normal power and functional connectivity of other oscillations in
both regions (SI Appendix, Table S2).
Previous studies have shown that gamma amplitude is strongly

modulated by the theta phase (28) and, in fact, hippocampal
theta–gamma coupling may be key for associative memory (29). We
compared local phase–amplitude cross-frequency coupling be-
tween genotypes. TS mice exhibited stronger prefrontal delta to
high gamma (3–5 to 80–120 Hz) coupling and hippocampal theta
to high frequency (6 to 12 to 100 to 200 Hz) coupling compared to
WT mice (unpaired t test, P = 0.04 and 0.03, respectively)
(Fig. 1E), suggesting aberrant local hypersynchronization in PFC
and HPC. In addition, TS mice displayed increased PFC-HPC
long-range functional connectivity (phase synchronization mea-
sured via the weighted phase lag index, wPLI) at delta (P = 0.03),
theta (P = 0.01), and beta (P = 0.03) frequencies (Fig. 1F and SI
Appendix, Table S2).
We also recorded neural activity during natural sleep follow-

ing the familiarization phase of the memory task to better cap-
ture neural signals related to memory consolidation. Nonrapid
eye movement (NREM) sleep was characterized by prominent
PFC slow oscillations (<4 Hz) (Fig. 2A) and brief HPC high-
frequency oscillations (∼100 ms, 100 to 250 Hz), referred to as
sharp wave ripples. Relevant to this study, cortical slow waves
and hippocampal ripples may be critical for offline information
processing, including memory consolidation (30). TS mice
showed reduced slow oscillations and increased low gamma ac-
tivity in PFC (WT n = 9 vs. TS n = 11 mice; unpaired t test; P =
0.03 and P = 0.01, respectively; Fig. 2B), whereas no differences
were observed in HPC oscillatory activities. Moreover, cross-
frequency coupling was normal in TS mice during NREM
sleep (SI Appendix, Table S2). Furthermore, WT and TS mice
exhibited similar occurrences of ripple events (41.7 ± 11.9 and
43.2 ± 9.7 ripples per minute, respectively; P = 0.63); however,
ripples in TS mice were of lower frequency (P = 0.03) and larger
amplitude (P = 0.04) than in WT mice (Fig. 2C). Additionally,
PFC-HPC theta phase synchronization (wPLI) was exaggerated
in TS mice (P = 0.034) (Fig. 2D), while no differences were
detected at other frequencies (SI Appendix, Table S2). Memory
processing during sleep can also occur during rapid eye move-
ment (REM) episodes, a faster brain state characterized by
prominent theta oscillations in the HPC along with cortical
gamma activity (31, 32) (Fig. 2A). During REM episodes, PFC
theta and beta oscillations were increased in TS mice (WT n = 8
vs. TS n = 11 mice; Mann–Whitney U test, P = 0.006 and 0.01),
while PFC-HPC synchronization was strengthened at low gamma
ranges (unpaired t test, P = 0.009) (Fig. 2E). HPC power was not

different across genotypes during REM sleep (SI Appendix,
Table S2).

Prefrontal–Hippocampal Theta and Gamma Functional Connectivity
Contribute to Memory Acquisition, Object Familiarization, and
Retrieval in Euploid Mice. We assessed memory abilities with the
NOR task, a well-validated memory test in mice that depends on
the PFC and HPC (33) and is profoundly impaired in Ts65Dn
mice (25, 26, 34–36). The NOR task leverages on the innate
motivation of mice to explore novel items in the environment.
We used a T-maze adapted for electrophysiological recordings.
The task consisted of three sessions of 10 min each: habituation
to an empty maze, familiarization of two identical objects placed
at the end of the lateral arms, and a memory test 24 h after fa-
miliarization when one of the objects was replaced with a novel
item (Fig. 3A). We recorded electrophysiological activities in the
PFC and HPC continuously during the familiarization and
memory tests. We first investigated the neural substrates of
memory acquisition and object familiarization in the familiar-
ization phase (early vs. late explorations, respectively). We note
that memory acquisition cannot be disentangled from novelty
seeking; thus, we consider the early visits to the objects the
“memory acquisition/novelty” phase and the late visits the “ob-
ject familiarization” phase. Second, we investigated the neural
substrates of “memory retrieval” by comparing neural signals
during the visits to the familiar object with those with the novel
object during the 24 h test (familiar vs. novel object explorations;
Fig. 3B). The animals’ interactions with the objects were tem-
porally aligned to the electrophysiological recordings by pressing
a right or left button on a joystick. This allowed us to investigate
the duration and dynamics of object explorations (Fig. 3C).
Consistent with the literature (1, 34, 37), WT mice explored

more novel objects than familiar objects in the 24 h memory test,
and thus, discrimination indexes (DIs) for the novel object were
positive (Fig. 3 D, Left). Positive DIs were not due to differences
in the number of explorations of novel and familiar items. Animals
performed around 20 to 25 explorations per session (Fig. 3 D,
Middle) with an even number of visits per object (novel vs. familiar
object, 14 ± 3 and 11 ± 3, respectively; paired t test, P = 0.11).
Positive DIs resulted from longer explorations of novel than fa-
miliar objects (P = 0.04; Fig. 3 D, Right). During the familiariza-
tion phase, the total number of exploratory events was also 20 to
25, on average, with similar numbers of visits to the two identical
objects (left vs. right object, 14 ± 2 vs. 11 ± 1, P = 0.2).
We first aimed to understand the neural mechanisms un-

derlying memory acquisition, object familiarization, and memory
retrieval in WT mice. Individual explorations were analyzed in
1 s nonoverlapping windows starting from the button presses,
and only windows over 600 ms were included. To investigate
memory acquisition and object familiarization, we compared
neural activities during the first 5 s with those during the last 5 s of
exploration within the familiarization session. For memory re-
trieval, we examined differences in neural activity between visits to
the familiar object and the novel object (all visits included) during
the 24 h session. We analyzed local (power), circuit synchroniza-
tion (wPLI), and the directionality of prefrontal–hippocampal
communication (phase slope index, PSI; SI Appendix, Table S3).
During the early visits to the objects (memory acquisition/

novelty) PFC and HPC theta activities were amplified compared
to the late visits (P = 0.02; Fig. 3E and SI Appendix, Table S3). As
mice became familiar with the object, PFC-HPC synchronization
(wPLI) strengthened at low gamma frequencies (P = 0.003).
Concurrently, functional connectivity analyses indicated a flow of
information from the HPC to the PFC at theta frequencies (HPC
to PFC PSI, HPC leads) during the early visits that reversed
during the late visits (PFC to HPC PSI, PFC leads; P = 0.002;
Fig. 3E). This is consistent with hippocampal control over object
memory acquisition/novelty and prefrontal control over object
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familiarization selectively at theta frequencies (Fig. 3G). During
the 24 h memory test, HPC low gamma power and PFC-HPC
high gamma synchronization (wPLI) decreased during the visits

to the familiar object (P = 0.005 and 0.01, respectively; Fig. 3F
and SI Appendix, Table S3). Furthermore, the direction of in-
formation flow traveled from the HPC to the PFC at low gamma
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frequencies (HPC to PFC PSI, HPC leads) that reversed when
mice explored the novel object, consistent with hippocampal
control over object memory retrieval at low gamma (Fig. 3F).
Altogether, functional connectivity measures suggested that
neural signals in the PFC and the HPC coordinate at theta and
low gamma frequencies during memory acquisition and retrieval,
respectively, with the HPC playing a leading role (Fig. 3G).
These connectivity fluctuations were frequency specific and did
not occur at other frequencies (SI Appendix, Table S3).

Ts65Dn Mice Exhibit Poor Object Recognition Memory and Abnormal
Prefrontal–Hippocampal Neurodynamics. Discrimination indexes
were smaller in TS mice with respect to WT mice (WT n = 10 vs.
TS n = 11 mice; unpaired t test; P < 0.00005) (Fig. 3 D, Left), an
indication of poor recognition memory. Again, the smaller DIs
were not due to differences in the number of explorations but in
their duration. Although the mean number of explorations per
session was slightly higher than in WT mice (Fig. 3 D, Middle),
TS mice explored novel and familiar objects evenly (15.2 ± 3.6
vs. 18.2 ± 4.1 times, respectively; paired t test, P = 0.31). Note-
worthily, the duration of individual explorations was shorter than
in WT mice (unpaired t test, P < 0.00005), particularly for novel
objects (P = 0.04). Consequently, visits to novel and familiar
objects lasted equally in TS mice (paired t test, P = 0.63)
(Fig. 3 D, Right). A repeated measures ANOVA with duration of
novel and familiar explorations as within factor and genotype as
between factor showed a significant novelty × genotype in-
teraction (F1,18 = 5,38; P = 0.032), indicating that the relative
duration of novel and familiar explorations was unequal across
genotypes. Smaller DIs could also result from behavioral dif-
ferences during the familiarization phase. During familiarization,
TS mice made more visits to the objects than WT mice (TS =
33.5 ± 7.2 vs. WT = 20.8 ± 3.75, P = 0.14), but these were shorter
(TS = 0.54 ± 0.02 vs. WT = 0.8 ± 0.05 s, P = 0.0004). Impor-
tantly, the total exploration time was comparable across geno-
types (TS = 18.6 ± 3.37 vs. WT = 20.17 ± 4.55 s, P = 0.79); thus,
both groups of mice had similar time to acquire information
about the objects.
The neurophysiological signatures associated with memory

acquisition, object familiarization, and memory retrieval in WT
mice were abnormal in TS mice (Fig. 3 E and F and SI Appendix,
Table S4). HPC to PFC theta directionality (PSI) and PFC-HPC
low gamma synchronization (wPLI) were not different during
early and late explorations (paired t test, P = 0.92 and 0.4, re-
spectively). An ANOVA with time (early or late explorations) as
within factor and genotype as between factor showed a signifi-
cant time × genotype interaction for both measures (F1,15 = 5.11,
P = 0.03; F1,14 = 6,08, P = 0.02, respectively), indicating that
early to late transitions were different across genotypes. In ad-
dition, PFC and HPC theta oscillations were not amplified
during early visits (paired t test, P = 0.13 and 0.11, respectively;
Fig. 3E). During the 24 h memory test, HPC to PFC low gamma
directionality (PSI), PFC-HPC high gamma synchronization
(wPLI), and HPC low gamma power were not different when
exploring familiar and novel objects (P = 0.67, 0.48, and 0.34,
respectively) (Fig. 3F). Accordingly, an ANOVA showed a sig-
nificant time × genotype interaction for the three parameters
(F1,16 = 5.11, P = 0.04; F1,16 = 6.34, P = 0.023; F1,17 = 7,81, P =
0.012), revealing that familiar vs. novel interactions were dif-
ferent across genotypes. We further detected exaggerated wPLI
and HPC power at gamma in TS mice compared to WT mice
during visits to familiar objects (WT n = 10 vs. TS n = 9 mice;
unpaired t test, P = 0.04 and 0.05, respectively).
We further examined whether increased neuroinflammatory

response to craniotomies or abnormal myelination in TS mice
could explain the neurophysiological differences from WT mice.
We quantified microglia and myelin (via Iba1+ and MBP+

immunostaining, respectively) and found no differences across
genotypes (SI Appendix, Figs. S3 and S4).

Chronic Oral EGCG Rescues Memory Impairment in Ts65Dn Mice and
Partially Normalizes Prefrontal–Hippocampal Abnormal Neurodynamics.
We used the procognitive compound EGCG to validate the neural
signatures of memory impairment identified above. EGCG is a
flavonoid found in green tea leaves that ameliorates executive
function in individuals with Down syndrome and in mouse models
(25, 38). TS mice were administered EGCG in their drinking water
for 1 month following procedures reported previously (25), and
neural activity was later recorded as in pre-EGCG epochs (Fig. 1A).
Two TS animals that only received water served as controls (black
dots in Fig. 4). EGCG rescued memory abilities in TS mice (DIs
before vs. after EGCG, TS n = 8 mice; paired t test, P = 0.02;
Fig. 4A). We classified TS mice as responders and nonresponders
based on the change of DI (DI post-EGCG − DI pre-EGCG) and
found that six TS mice (the responders) showed robust increases of
DI (+0.5 ± 0.21), indicating better memory after EGCG. The two
other animals performed more poorly after EGCG (−0.12 and
−0.18) and were classified as nonresponders (orange dots in Fig. 4).
Responder mice extended the duration of their explorations, par-
ticularly the visits to novel objects that were now longer than to
familiar objects (pre- vs. post-EGCG; P = 0.02 and 0.024, re-
spectively; Fig. 4A). These behavioral changes remained in the
EGCG-treated group even when including the nonresponders (DI:
P = 0.02; time of explorations: P = 0.02). When comparing WT
baseline and TS post-EGCG to determine the possible rescue of the
trisomic phenotype to WT levels, an ANOVA with duration of
novel and familiar explorations as within factor and genotype as
between factor did not show a significant novelty × genotype in-
teraction (F1,12 = 1.31, P = 0.27) but a significant effect of novelty
(F1,12 = 8.89, P = 0.01), indicating different duration of novel and
familiar visits in both genotypes.
In addition, EGCG normalized several neural activities in TS

mice across brain states. During quiet wakefulness EGCG re-
duced excessive power of PFC theta oscillations to WT levels
only in responder mice (theta power before vs. after EGCG in six
responder mice; paired t test, P = 0.03; theta power in seven WT
mice during baseline vs. six EGCG-treated responder mice, un-
paired t test, P = 0.9) (Fig. 4B). However, during NREM sleep
the power of ripple events was corrected in all treated mice
(seven TS mice [one responder mouse lost the implant]; paired
t test, P = 0.04; five responder mice, P = 0.04; seven WT mice
during baseline vs. seven EGCG-treated TS mice, unpaired t test,
P = 0.43) (Fig. 4C). EGCG also normalized some neural activ-
ities associated with memory acquisition, object familiarization,
and memory retrieval (SI Appendix, Table S4). EGCG rescued
theta power fluctuations during the familiarization phase in the
PFC and HPC (theta power during early vs. late visits in PFC and
HPC; all TS n = 7 vs. WT n = 10 mice during baseline, ANOVA
F1,15 = 17.91 and 37.03, P = 0.001 and 0.0005, respectively; 5
responder TS vs. 10 WT mice, F1,13 = 15.02 and 26.48, P = 0.002
and 0.0005, respectively). Also, a consistent HPC to PFC flow of
information at theta emerged during the early visits as in WT
mice (all treated vs. WT mice; ANOVA F1,14 = 25.73, P =
0.0005; responders vs. WT mice, F1,12 = 36.53, P = 0.0004)
(Fig. 4D). Moreover, EGCG rescued the main PFC-HPC con-
nectivity alterations detected during the memory test (disordered
PSI low gamma and PLI high gamma during familiar vs. novel
visits; all treated mice vs. WT mice; ANOVA F1,14 = 33.79 and
12.51, P = 0.0005 and 0.003, respectively; responders vs. WT
mice, F1,12 = 26.13 and 21.08, P = 0.0005 and 0.001, respectively)
(SI Appendix, Table S4). We note that EGCG corrected some
neural activities in the two nonresponder mice, an effect not
observed in the two controls with water (orange vs. black dots in
Fig. 4).
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We also investigated the temporal effects of EGCG by
assessing memory abilities in TS mice 1 month after the treat-
ment had subsided. TS mice performed worse after EGCG had
washed out (DIs of five TS mice during baseline, EGCG, and
washout; ANOVA F2,6 = 16.21, P = 0.004) (SI Appendix, Fig.
S6), pointing to transient effects of EGCG. Finally, because TS
mice may regulate body temperature more poorly that WT mice
(39), we examined whether an effect of EGCG on temperature
regulation could explain the behavioral and neurophysiological
rescue. We found that body temperature regulation was similar
across genotypes before, during, and after a 10 d treatment with
EGCG (F1,4 = 0.41, P = 0.55) (SI Appendix, Fig. S6).

Prefrontal–Hippocampal Neurodynamics Predict Memory Performance
in Euploid and Ts65Dn Mice. The results presented above raised the
possibility of an association between PFC-HPC disordered

neurodynamics and deficient memory in Ts65Dn mice. To in-
vestigate this further, we examined correlations between neural
activities and memory performance (DIs in the 24 h memory test) in
WT and TS mice. We found that the power of PFC theta oscilla-
tions during quiet wakefulness correlated negatively with DIs when
including both genotypes (Pearson’s correlation; n = 20 mice, 10
WT and 10 TS; R = −0.61; P = 0.004). That is, large-amplitude
theta oscillations predicted poor memory performance. Notably,
DIs showed strong dependence on PFC theta power in TS mice but
not in WT mice (WT: R = −0.28, P = 0.43; TS: R = −0.69, P =
0.02). This PFC theta dependence subsided with EGCG in the five
responders (R = 0.25, P = 0.62), but not when the two nonre-
sponders were included (all treated: R = −0.64, P = 0.08) (Fig. 5A).
Furthermore, PFC to HPC theta connectivity (PSI) present

during the late visits to objects correlated negatively with DIs in
WT mice (R = −0.78; P = 0.01), underscoring that a flow of
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information from PFC to HPC at theta frequencies may be
necessary for proper object familiarization. In TS mice this re-
lationship only emerged after EGCG treatment (eight treated
TS mice; baseline: R = 0.22, P = 0.58; EGCG: R = −0.85, P =
0.01) (Fig. 5B). Conversely, HPC to PFC low gamma PSI during
familiar object explorations in the memory test correlated posi-
tively with memory performance (R = 0.7, P = 0.036), with those
animals with robust HPC to PFC low gamma PSI being the best
performers. Again, in TS mice this association only started to
emerge after EGCG (baseline: R = 0.11, P = 0.76; EGCG: R =
0.69, P = 0.08) (Fig. 5B). Other abnormal neural activities de-
tected during memory acquisition, familiarization, and retrieval
did not correlate with memory performance.
Multiple regression analyses provided further support to the

significance of these correlations. Multiple regression models
predicted DIs with high accuracy when combining PFC theta
power during rest, PFC-HPC theta directionality (PSI) during
object familiarization, and PFC-HPC low gamma directionality
(PSI) during memory retrieval in WT mice (F3,4 = 27.44, P =
0.004, R2 = 0.95). All three variables contributed significantly to
the prediction (SI Appendix, Table S5). By contrast, they were
not able to predict memory performance in TS mice (F3,4 =
0.082, P = 0.96, R2 = 0.052), with marginal contribution of the
three variables. In the five responder TS mice multiple re-
gression models predicted post-EGCG DIs with high accuracy
(F3,4 = 1809, P = 0.01, R2 = 1).

Discussion
In this study we demonstrate that Ts65Dn mice, a well-established
model of DS, exhibit hypersynchronized neural activity in pre-
frontal–hippocampal circuits during distinct brain states, including
quiet wakefulness, sleep, and memory performance. TS mice
also show disordered PFC-HPC communication during mem-
ory acquisition, object familiarization, and retrieval. Some of
these abnormal neural activities could contribute to intellectual
disability in DS as they correlate strongly with memory im-
pairment. This is also supported by the fact that chronic EGCG
ameliorates memory performance and normalizes these neural
activities.
During quiet wakefulness, spiking activity and theta power in

the PFC and HPC were increased in TS mice. Cortical theta
oscillations are associated with working memory and cognitive
flexibility (40–42) and are augmented in adults with DS (43).
These large prefrontal theta oscillations predicted poor memory
performance in TS mice and were reduced by EGCG. Thus,
amplified prefrontal theta in DS may be pathological and reflect
cortical hypersynchronization of neural networks in resting
states. Excessive theta was not an artifact of animal motion since
we took care to mitigate the effects of hyperlocomotion of TS
animals and strong theta–DI correlations persisted even though
they were measured on different days. Hippocampal theta os-
cillations are also involved in several cognitive processes such as
spatial and memory processing (44), but they did not correlate
with memory performance in either genotype.
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Fig. 5. Key prefrontal–hippocampal neurophysiological biomarkers predict memory performance. (A) PFC theta power recorded during quiet wakefulness
correlated with DIs assessed during the 24 h memory test (on a different day) in Ts65Dn mice (red asterisks and correlation coefficient); i.e., large-amplitude
theta oscillations predicted poor memory performance. This dependence subsided after EGCG in the six EGCG responders (green asterisks and correlation
coefficient) and in one of the two nonresponders (orange). Correlation coefficients of all EGCG-treated TS mice are shown in black. Corresponding measures
for WT mice (blue asterisks and correlation coefficient) obtained during baseline periods are shown for reference. In WT mice PFC theta power did not
correlate with DIs. (B) PFC to HPC theta PSI that emerged during the late visits to objects correlated negatively with DIs in WT mice; i.e., animals with more
consistent PFC to HPC theta communication performed better. This relationship only emerged in the five responding TS mice after EGCG (note the distinct
scales for both the DIs and the PSIs between the two plots). During the 24 h test, HPC to PFC low gamma PSI correlated positively with DIs in WT mice;
i.e., animals with more consistent HPC to PFC low gamma performed better. This relationship only emerged in the five responding TS mice after EGCG.
*P ≤ 0.05.

Alemany-González et al. PNAS | May 26, 2020 | vol. 117 | no. 21 | 11795

N
EU

RO
SC

IE
N
CE

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921314117/-/DCSupplemental


Cross-frequency coupling was also stronger in TS mice in both
structures, another sign of excessive neural synchronization. Hip-
pocampal theta–gamma coupling has been linked to associative
memory (29), and cortical theta–gamma coupling is enhanced in a
mouse model of epilepsy that concurs with memory impairment
(45). Therefore, excessive cortical coupling in TS mice is consis-
tent with the increased prevalence of epilepsy in DS (46). TS mice
also exhibited increased PFC-HPC theta phase synchronization, as
if the PFC-HPC circuit was locked to theta oscillatory regimes
with increased local theta power and cross-regional theta syn-
chronization. Appropriate PFC-HPC synchrony is key for diverse
behavioral and cognitive functions, and its disruption contributes
to psychiatric and neurological disorders. Our results are consis-
tent with increased synchrony of brain networks in DS subjects
that inversely correlates with intelligence quotients (IQ) (14, 15).
This hypersynchronization was also observed in TS mice dur-

ing natural sleep. During REM sleep, the “wake like” sleep, PFC
theta oscillations were amplified in TS mice as in quiet alertness.
Frontal EEG theta is increased in Ts65Dn mice during REM
sleep, which is associated with sleep disturbances (8) similar to
those observed in DS subjects (9). During NREM sleep, cortical
slow waves were shallower in TS mice while low gamma oscilla-
tions were amplified, further reflecting prolonged episodes of light
sleep. In addition, NREM PFC-HPC theta phase synchronization
was augmented compared to WTs, in concordance with previous
EEG studies (43). Our observations of increased cortical activity
and cross-regional synchronization during sleep in Ts65Dn mice
may explain insomnia in DS, as recently suggested by studies in
human subjects (47). We also recorded HPC sharp-wave ripples
after the familiarization phase to capture events relevant for
memory consolidation (48). We hypothesized that abnormal rip-
ples could contribute to memory impairment in Ts65Dn mice as
observed in Dp16 trisomic mice (49). Ripples were remarkably
slow and enlarged in TS mice. EGCG normalized ripple ampli-
tude, providing further evidence that ripple alterations may have
contributed to poor memory performance by preventing a correct
consolidation of familiar objects into memory.
Elevated spiking rates of pyramidal neurons in Ts65Dn mice

may have been reflected in larger theta and gamma oscillations
in the PFC and HPC (32). Increased excitability of pyramidal
neurons has been associated with premature aging in Ts65Dn
mice (50, 51), as these mice show early-onset Alzheimer’s disease
after 6 months of age. Here we discard premature aging as a
main factor because the quantification of firing rates was per-
formed in 3-month-old TS mice. In addition, excessive G
protein-coupled inward-rectifying potassium channels (GIRK2)
in Ts65Dn mice could also result in the pathological theta
reported here (52, 53).
DS individuals show deficits in declarative memory that could

arise from deficient memory consolidation and also from poor
memory acquisition, retrieval, and learning abilities (54). In
Ts65Dn mice declarative memory is also faulty, as revealed by
poor spatial navigation and recognition memory (1, 5, 34, 35, 37).
Here the DIs of TS mice were smaller than those of WT mice
because individual explorations were shorter, despite TS mice
tending to visit the objects on more occasions, possibly reflecting
hyperlocomotion and attentional deficits (26, 54, 55). After
EGCG, visits to novel objects were as long as in WT mice; thus,
TS mice showed the ability to discriminate between new and
familiar items for the first time. This indicates that EGCG
ameliorated memory processing, but we cannot exclude a ben-
eficial effect on attention.
We further explored neural activities of PFC-HPC circuits as

candidate cellular mechanisms for memory acquisition, famil-
iarization, and retrieval. A robust consensus exists on the key
role of the HPC in recognition memory based on previous
damage and lesion studies in humans and monkeys (56), while a
contribution of the PFC is also acknowledged (57). Our study

strongly suggests the participation of both structures in memory
acquisition, familiarization, and retrieval and points to PFC-
HPC cross-regional communication as a key element. More
specifically, two complementary neural mechanisms may be in-
volved. Memory acquisition depends on HPC to PFC flow of
information at theta frequencies that switches direction as ob-
jects become familiar. Memory retrieval also depends on HPC to
PFC flow of information but at low gamma frequencies. The fact
that TS mice exhibited disordered information flow during poor
memory performance that was rescued by EGCG provides fur-
ther support for this hypothesis. Moreover, our findings strongly
imply that TS mice show faulty neural mechanisms for memory
acquisition, familiarization, and retrieval.
Chronic treatment with EGCG alleviates DS symptoms and

improves cognitive performance both in DS subjects and Ts65Dn
mice (24, 25). Moreover, EGCG normalizes excessive intra-
cortical facilitation in DS subjects, suggesting that it might im-
prove cognitive abilities via the normalization of an overexcited
cerebral cortex (24). Here EGCG normalizes pathological theta
activity across brain states (quiet wake, sleep, and memory per-
formance), amplified sleep ripples, and PFC-HPC directionality
associated with memory impairment in Ts65Dn mice. The pro-
cognitive effects of EGCG have not been fully elucidated, but it
likely has multiple mechanisms of action. EGCG exerts broad
effects on several nonneuronal targets, including myelination
(57) and microbiota (58). Several studies have demonstrated that
EGCG crosses the blood–brain barrier in rodents after oral ad-
ministration (59–61), including in TgDyrk1A transgenic mice,
another genetic model of Down syndrome (62). In fact, EGCG
has been detected in rat frontal cortex and hippocampus (60), so
the effects observed in our study could be, indeed, mediated by
direct action of EGCG on these structures. Recently, Gu et al.
demonstrated that EGCG inhibits DYRK1A activity in
TgDyrk1A transgenic mice (62), a kinase encoded by the tripli-
cated Dyrk1A gene that has been associated with multiple cog-
nitive functions (63, 64). Since the exact mechanisms of action of
EGCG may involve multiple targets, it is plausible that it affects
behavior through mechanisms beyond oscillatory synchrony.
Multiple linear regression analyses allowed the investigation of
the relationships between memory performance and neural ac-
tivities and revealed that a combination of PFC theta activity
during rest, PFC to HPC theta PSI, and HPC to PFC low gamma
PSI during memory performance accounted for 95% of the
variance in the discrimination indices. Remarkably, these three
measures, which were recorded on three separate days, were
normalized by EGCG.
In closing, we identified neural signatures of disrupted PFC-

HPC circuits in Ts65Dn mice across distinct brain states that may
be relevant for understanding sleep disturbances and memory
impairment in DS. Selective neural activities associated with
memory processing were corrected by EGCG, suggesting that
EGCG may be a promising treatment for cognitive symptoms in
DS. Our results may help elucidate the neural substrates of in-
tellectual disability and sleep disturbances in DS and other
cognitive disorders, shedding light onto the understanding of
these pathologies and the development of novel therapeutic
strategies.

Summary of Methods
The full methods can be found in the SI Appendix.

Animals. Ts65Dn male mice (TS, n = 12) and their wild-type littermates (WT,
n = 10) were obtained by breeding B6EiC4Sn.BLiA-Ts(1716)65Dn/DnJ females
with C57BL/6 × 6JOlaHsd (B6C3F1/OlaHsd) hybrid males. Mice were geno-
typed, and ∼25% of the offspring presented trisomy. Mice were housed on a
conventional 12:12 light cycle, and behavioral testing and recordings were
conducted during the light phase. All procedures had authorization from
the Barcelona Biomedical Research Park Animal Research Ethics Committee
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(PRBB-CEEA) and the local government (Generalitat de Catalunya) and were
conducted according to the European Directive 2010/63/EU and Spanish
regulations RD 53/2013.

Experimental Design. Mice were implanted with microelectrodes at 2 to
3 months of age. After a postsurgical recovery period, neural activity was
recorded during several brain states (quiet wakefulness, REM and NREM
sleep, recognition memory). Then, EGCG (Life Extension, 45%, 2 to 3 mg per
day) was administered for 1 month in the drinking water. Afterward, a
behavioral and neurophysiological characterization was performed as in pre-
EGCG epochs. Finally, mice were killed, and electrode placements were
confirmed histologically (Fig. 1A).

Behavioral and Neurophysiological Characterization. Three tungsten elec-
trodes (25 μm) were implanted in the prelimbic medial PFC, and three more
were implanted in the CA1 area of the HPC. We recorded single-unit activity
(SUA) and local field potentials (LFPs) with the Open Ephys system with a
sampling rate of 30 kHz. We used the accelerometer’s signals to monitor
general mobility of mice (65). SUA was estimated by referencing the signal,
filtering between 450 and 6,000 Hz and sorting the spikes with Offline
Sorter. To obtain LFPs, signals were down-sampled to 1 kHz, detrended, and
notch filtered with custom-written scripts in Python. Signals were then im-
ported into MATLAB. The frequency bands considered for the band-specific
analyses included delta (1 to 4 Hz), theta (8 to 12 Hz), beta (18 to 25 Hz), low
gamma (30 to 50 Hz), and high gamma (50 to 80 Hz).
Quiet wakefulness and NREM and REM sleep. Recordings during quiet wake-
fulness were performed in a small box that allowed mice to move but not to
walk. Recordings during natural sleep were implemented following the fa-
miliarization phase of the NOR task to capture neural signals related to
memory consolidation. NREM sleep was defined as animal immobility (low
variations of the accelerometer) and large-amplitude slow oscillations (1 to 4
Hz) in the PFC and HPC. REM sleep epochs were defined as animal immo-
bility and prominent hippocampal theta rhythms (Fig. 2A). Analyses of LFPs
signals during quiet wakefulness and natural sleep were performed by av-
eraging neural signals over one continuous epoch per experiment (quiet
wakefulness: 3 min; NREM sleep: 1 min; REM sleep: 10 s).
The novel object recognition task. We tested recognition memory using a well-
established task that relies on the innate instinct of mice to explore novel
objects in the environment (66). The test was implemented in three phases
of 10 min each: habituation, familiarization, and memory test 24 h after
familiarization. During familiarization, mice could explore two identical
objects located at the end of the two lateral arms. During the test phase,
mice were presented with one familiar and one novel object. Object

recognition memory was defined by the discrimination index (DI) for the
novel object: DI = [novel object exploration time − familiar object explora-
tion time]/total exploration time (64). Memory acquisition was investigated
during the familiarization phase. We ordered the explorations of the two
objects in time and compared neural activity during the first 5 s and the last
5 s of exploration (in 1 s windows). Memory retrieval was investigated
during the 24 h memory test by comparing neural signals during explora-
tions of familiar versus novel objects.

Data and Statistical Analyses. All analyses were carried out with custom scripts
programmed in Python (data preprocessing, Acc) and MATLAB (power, cross-
frequency modulation index, ripples, wPLI, PSI). A summary of all of the
functions used with links to the original sources can be found in the SI Ap-
pendix. The complete dataset with statistical results can be found in the SI
Appendix. All data are represented as the mean ± SEM. We used paired and
unpaired t tests and repeated measures ANOVAs to compare measures
across genotypes and to assess the effects of EGCG. To identify significant
correlations between LFP measures and DIs, Pearson and Spearman corre-
lations were used for parametric and nonparametric distributions, re-
spectively. Multiple regression models were used to estimate the relative
contribution of LFP measures to memory performance.

All quantified data files have been deposited in the Mendeley Data
repository (https://data.mendeley.com/datasets/wg4zm32gsb/1).
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