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There is growing interest in the potential translational

applications of omics data. This applies to, e.g. metabolo-

mics, an area in which the Journal published a themed is-

sue in 2016 with an accompanying editorial titled

‘Metabolic profiling—multitude of technologies with great

research potential, but (when) will translation emerge?’1

Despite two decades of extensive investigations with opti-

mistic statements of potential translational applications,

there is no metabolomics-derived biomarker (of either an

individual metabolite in isolation or multiple metabolites

in combination) that has yet to mature into clinical utility.

On appraising the recent activity in polygenic risk scores

(PRSs) and disease prediction, we notice parallel themes to

the decades-old search for conventional (non-genetic) pre-

dictive biomarkers. An overwhelming sense of hype and a

rush to translate dominates the field of genetic research of

disease prediction using genetic risk scores (GRSs).

A PRS is a combination of single nucleotide polymor-

phisms (SNPs) that associate with the outcome of interest.2

There are multiple approaches to constructing PRSs,

ranging from inclusion of SNPs surpassing stringent

genome-wide significance thresholds (typically called a

GRS) to use of millions of SNPs including those that indi-

vidually only very weakly associate with the phenotype of

interest (a PRS). From a statistical standpoint, a GRS or

PRS can be considered as a single biomarker similar to an

individual (e.g. metabolic) biomarker (or a biomarker

score). Thus, we can evaluate the predictive performance

of a PRS with the same metrics that have been developed

and applied over recent decades. A plethora of literature

on the statistical basis of predictive modelling subverts the

recent optimism placed in PRSs to predict common com-

plex diseases,3 the key concepts being that moderate rela-

tive risks (achievable by individual SNPs or biomarkers, or

their combination into a polygenic or metabolic risk score),

struggle to translate into clinically relevant prediction

models.4 These epidemiological principles of disease pre-

diction are robust to ‘genetic exceptionalism’.

Several recent high-profile papers have presented inter-

pretations that PRSs convey potential for remarkable
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opportunities of improved (clinically relevant) predictions

of complex diseases, e.g. coronary heart disease (CHD).5–7

Parallel themes are well-recognised in biomarker-focused

omics research where (as with genome-wide data) techno-

logical advances have facilitated the discovery of multiple

biomarkers independently associated with disease.8 How

ever, although such discoveries may provide important

aetiological insights into disease, such associations may not

necessarily reflect utility in disease prediction.1,3,4,9

This is particularly the case for common (polygenic

complex) diseases, in other words, for quantitative traits or

as put even more succinctly by Plomin et al.: ‘what we call

common disorders are, in fact, the quantitative extremes of

continuous distributions of genetic risk’.10 This continuity

of polygenic traits for common complex diseases is super-

imposed on non-static environmental contributions11 and

stochastic (patho)physiological processes.12 The oversight

in considering these issues, together with unrealistic

expectations for ‘precision medicine’, are likely drivers for

the predictive misconceptions.4,9,13 The ability to reliably

categorize individuals into ‘healthy’ and ‘diseased’ using

biomarkers that are normally distributed under typical

physiological settings in the general population—which

includes variation in common genetic polymorphisms com-

bined into a PRS, and phenotypic traits, such as low-

density lipoprotein (LDL) cholesterol and systolic blood

pressure—is likely to remain an unattainable goal.14 For

example, with a 5% false-positive rate, the recently

published PRSs by Khera et al.6 and Inouye et al.7 would

give a disease detection rate of 15% and 13%. In both

these cases, the vast majority (�85%) of individuals that

eventually develop disease would be missed when using

such PRSs for disease prediction.4

Complex diseases can be considered as the end product

of the dynamic interplay between multiple genetic and en-

vironmental risk factors. Notably, some of the PRS associ-

ations with a disease (or trait) are very likely to be picking

up environmental contributions—which may have implica-

tions for the temporal performance of a PRS. Unlike ge-

netic variants, environmental risk factors change over the

lifespan of individuals and between generations. For exam-

ple, population characteristics have changed dramatically

since the early days of cholesterol and atherosclerosis re-

search. In modern society, individuals have spurious and

energy-dense eating patterns, with most individuals living

in a non-fasting state. In addition to many general clinical

conditions such as obesity, hypertension, insulin resistance

and type 2 diabetes, the average population lipid profiles

have changed substantially. The metabolic consequences of

this relate to the ‘contemporary’ risk factors of CHD and

to a certain extent also to the definition and estimation of

PRSs.

An individual’s genome is inherited randomly and is not

generally modifiable, and these characteristics form the ba-

sis for the role of human genetics in elucidating causality

through Mendelian randomization. The fact that SNPs are

not able to dynamically reflect the extent of disease (or in-

deed subclinical disease) through reverse causality repre-

sents a further hindrance for the use of PRS in disease

prediction. If a hypothetical biomarker is generated in re-

sponse to a disease (i.e. through the process of reverse cau-

sality), this may be where such a biomarker might have a

role for prediction. Such a biomarker would be different to

those that are routinely measured because, unlike LDL

cholesterol, the hypothetical biomarker would not be pre-

sent (or measurable) under normal physiological condi-

tions in disease-free individuals (providing near-perfect

discrimination). For example, if the tunica intima of the ar-

terial wall produced a substance in response to subclinical

atherosclerosis that ‘leaked’ into the circulation in such a

concentration that it would be detectable before the mani-

festation of symptomatic disease, but where the same bio-

marker was not detectable in individuals without disease,

this biomarker might be able to discriminate between those

that go on to develop disease and those that do not.

Whereas a GRS may be used to identify a biomarker aris-

ing from reverse causality, the GRS itself in isolation can-

not reflect reverse causality.15

In contrast to reverse causality, where such a feature

may be an advantage of a biomarker for prediction, the

causal role of a biomarker is not a requirement for predic-

tive modelling.15 This is evident from LDL cholesterol, one

of the most well-recognized causal biomarkers with well

understood molecular pathways and specific drug treat-

ments available; notably, LDL cholesterol is a poor predic-

tor of CHD. However, causality of a biomarker makes all

the difference in terms of use in developing population-

level interventions for disease prevention.12,16

An interesting exception from the predictive perspective

are oligogenic medical conditions—that lie between com-

plex and Mendelian diseases—that are likely to be amena-

ble to GRS-based predictions.3,10 For example, auto-

immune diseases may represent one such category where

ROC curve values of around 0.9 from a GRS may be feasi-

ble.17,18 Of note, although the high C-statistic does not

mean that such a GRS can automatically translate into

clinical utility, it is likely a prerequisite for population

screening.3,9 Regarding the potential of genetic prediction,

it is notable that studies of monozygotic twins can provide

an ‘upper limit’ of what can be achieved; this information

may guide which traits and diseases have sufficient genetic

attributes that a GRS could be of potential clinical value.19

Finally, a GRS captures risk (arising from genetic variants

and gene-by-environment interactions) that occurs over a
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lifetime, and thus while violating conventional prevention

paradoxes that would argue that the focus of preventative

strategies should be the entire population rather than just

high-risk individuals, the identification of those at high ge-

netic risk may facilitate timely prevention targeted to those

who would develop early onset disease: it might therefore

be feasible that, e.g., a population-wide treatment with e.g.

a polypill given to everyone at say the age of 40 and above

might be enhanced with earlier targeted treatment in those

at high genetic risk. We note that the availability of

genome-wide genotyping facilitated by technological

advances and massive reductions in cost are likely to make

genotype a readily available trait at the population-level

(thus facilitating translational opportunities). Widespread

availability of genotyping is likely to occur (at least ini-

tially) in high- and middle-income countries, which, to-

gether with the predominance of genetic studies being

conducted in European populations, may have the net ef-

fect of further increasing global health inequalities.

In conclusion, we recognise and celebrate the incontro-

vertible role that genomics research has, and will continue

to provide, in our understanding of the molecular basis

of common diseases, in elucidating the mechanisms by

which diseases occur and in identifying new therapeutic

targets.20 Nonetheless, the likely inconvenient truth is that

for common diseases, no combination of normally-

distributed biomarkers, each modestly associated with dis-

ease, is likely to lead to clinically-relevant improvements in

risk prediction. Geoffrey Rose stated16 that for common

diseases, ‘a large number of people at a small risk may give

rise to more cases of disease than the small number who

are at a high risk’, which notably also relates to examining

the upper quantiles of a GRS, and concluded that the un-

derlying motivation ‘should always be to discover and con-

trol the causes of incidence’. This elegant elaboration on

sick individuals and sick populations by Rose16 over

30 years ago was prescient to the contemporary era of big

data and genome-wide association studies.
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