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Abstract

Objective: With its increasingly widespread adoption, electronic health records (EHR) have 

enabled phenotypic information extraction at an unprecedented granularity and scale. However, 

often a medical concept (e.g. diagnosis, prescription, symptom) is described in various synonyms 

across different EHR systems, hindering data integration for signal enhancement and complicating 

dimensionality reduction for knowledge discovery. Despite existing ontologies and hierarchies, 

tremendous human effort is needed for curation and maintenance – a process that is both 

unscalable and susceptible to subjective biases. This paper aims to develop a data-driven approach 

to automate grouping medical terms into clinically relevant concepts by combining multiple up-to-

date data sources in an unbiased manner.

Methods: We present a novel data-driven grouping approach – multi-view banded spectral 

clustering (mvBSC) combining summary data from multiple healthcare systems. The proposed 

method consists of a banding step that leverages the prior knowledge from the existing coding 

hierarchy, and a combining step that performs spectral clustering on an optimally weighted matrix.

Results: We apply the proposed method to group ICD-9 and ICD-10-CM codes together by 

integrating data from two healthcare systems. We show grouping results and hierarchies for 13 

representative disease categories. Individual grouping qualities were evaluated using normalized 

mutual information, adjusted Rand index, and F1-measure, and were found to consistently exhibit 

great similarity to the existing manual grouping counterpart. The resulting ICD groupings also 

enjoy comparable interpretability and are well aligned with the current ICD hierarchy.
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Conclusion: The proposed approach, by systematically leveraging multiple data sources, is able 

to overcome bias while maximizing consensus to achieve generalizability. It has the advantage of 

being efficient, scalable, and adaptive to the evolving human knowledge reflected in the data, 

showing a significant step toward automating medical knowledge integration.
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electronic health records (EHR); data-driven grouping; multiple data sources; International 
Classification of Disease (ICD); spectral clustering

INTRODUCTION

With the advent of high-throughput gene sequencing technologies, rich genotypic data of 

high quality can be readily obtained in a cost-effective manner. The growing availability of 

this high-quality biologic data has shifted the clinical research bottleneck to a paucity on its 

phenotypic counterpart. Most traditional “-omics” studies have focused on a small number 

of pre-specified phenotypic outcomes, limiting the potential to discover associations for 

phenotypes not recorded in the study. Recently, tremendous efforts have been made to link 

biorepository data to electronic health records (EHR), which contains phenotypic 

information at an unprecedented granularity and scale.[1–3] These linked data enable large-

scale next-generation omics studies (NGOS), significantly expanding opportunities for 

precision medicine research, such as individualized risk prediction with genetic and clinical 

profiles, pharmacogenomics studies inferring treatment effect heterogeneity, and discovery 

research to advance understanding of human diseases. One of such efforts that continues to 

prove invaluable is Phenome-Wide Association Study (PheWAS). [4] By screening for 

associations between genomic markers and a diverse range of phenotypes has PheWAS been 

able to unfold new therapeutic targets, side-effect predictions while deepening the 

understanding of diseases and prognosis.[5] Critical to the success of PheWAS that 

ultimately fulfils the promise of precision medicine is accurately and efficiently annotating 

patients with disease characteristics among millions of individuals.

Defining clinically relevant phenotypes accurately from the EHR in a scalable fashion, 

however, is a challenging task. A medical concept (e.g. diagnosis, laboratory test, 

prescription etc.) is often described with various “synonymous” terms in the EHR. For 

disease conditions, the International Classification of Disease (ICD) coding system uses 

many codes with slight variations to encode each disease condition. For example, ICD-9 

codes “714.0”, “714.1”,”714.2” describe slight variations of rheumatoid arthritis (RA). For 

epidemiological or genetic association studies on RA, these codes are often preferred to be 

grouped together to represent the overarching concept on RA.[6] Here and thereafter, we use 

“synonymous codes” to refer to codes that describe the same phenotype but differ in minor 

details in the context of research studies on disease conditions”. Grouping near-identical 

features into a single one saves a great degree of freedom for inference and thus plays an 

indispensable role in ensuring reproducibility and maintaining power. This is particularly 

important when it comes to EHR utilization efficiency, as medical codes, not limited to ICD 

codes per se, are often used in slightly different ways across EHR systems due to 

heterogeneity in the healthcare system as well as how or when the encodings are performed.
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[7] Towards such efforts, Denny et al. developed a PheWAS catalog, providing valuable 

human annotations that define disease phenotypes based on groups of ICD-9 codes.[8] 

Recently, the grouping has been updated to also include ICD-10-CM codes.[9]

While the ICD hierarchy is highly informative, not all diseases have the same level of 

granularity in the ICD codes and hence no universal rule can be applied to group codes 

based on the hierarchy to properly represent distinct phenotypes. On the other hand, while 

the existing PheWAS-oriented grouping is no doubt a highly valuable asset to the research 

community, the manual curation approach has several major limitations. First, it lacks 

scalability as it requires substantial manual efforts when a new version or type of concept 

needs to be added. Updating the PheWAS catalog to include over 68,000 ICD-10-CM codes 

inevitably required substantial human effort. Second, manual efforts are potentially 

susceptible to subjective bias. Heavily resting on domain knowledge also refrains its 

generalizability. Third, due to the coding heterogeneity across healthcare systems, manually 

curated groups based on experience from one healthcare center may not be very portable to 

others. Although healthcare-center-specific groupings may be needed to best reflect the 

coding process, it is often desirable to employ a unified grouping structure to capture shared 

clinical knowledge. Deriving such a unified structure may require synthesizing information 

from multiple healthcare centers. This signifies the need for a generalizable data-driven 

approach to efficiently group medical concepts – one that is scalable and resonating in 

lockstep with the continuing expansion of the coding system as well as human knowledge 

evolution. Compared to a manual approach, a data-driven approach also has the advantage of 

portability that could systematically leverage multiple data sources to overcome bias and 

maximize consensus to achieve generalizability.

Existing unsupervised clustering methods such as hierarchical clustering, k-means 

clustering, matrix and tensor factorization based are useful data-driven algorithms for 

grouping related concepts. [10–15] For example, such clustering methods can be used to 

group ICD codes together with related procedure codes based on the low dimensional 

representations of medical concepts described in Choi et al. [16] However, these clustering 

methods are not effective when the goal is to only group near synonymous concepts. In this 

paper, we present a novel data-driven grouping approach – multi-view banded spectral 

clustering (mvBSC) – to group near synonymous medical codes using their co-occurrence 

patterns observed from m healthcare systems. By convention in the network analysis 

community, each data source can also be termed as a view.[17–22] The proposed mvBSC 

algorithm groups codes by constructing a shared network based on m independently 

acquired similarity matrices, with each similarity matrix learned from the corresponding 

healthcare system. Using a single data source, the mvBSC approach is able to create a 

healthcare-system-specific grouping structure that reflects its underlying characteristics. To 

showcase its utility, we apply the mvBSC algorithm to group ICD-9 and ICD-10-CM 

(ICD-10 for brevity hereafter) codes using data from the Veteran Health Administration 

(VHA) and Partner’s Healthcare Biobank (PHB). The automated approach results in group 

structures highly consistent with human annotation while having the advantage of being 

efficient, scalable, and adaptive to evolving human knowledge reflected in the observed data.
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METHODS

Suppose there are a total of n ICD codes to be grouped. Let V = {vi, 1 ≤ i ≤ n} denote the 

vertex set in which node vi represents the ith ICD code. The input of the mvBSC algorithm 

requires m similarity matrices defined on the involved ICD codes obtained independently 

from m healthcare centers. To assemble such a similarity matrix, we first construct semantic 

vectors for each code based on the word2vec algorithm using the skip-gram model.[23, 24] 

Although other algorithms such as the GloVe have been proposed, we use the word2vec 
algorithm for its simplicity in implementation and superior performance. [25–28] The 

word2vec only requires a co-occurrence table that records the frequency of an ICD pair co-

occurring within a pre-specified time window, typically 7 or 30 days.[29, 30] The word2vec 
generates a semantic embedding vector for each of the ICD code within each healthcare 

system. For the sth (s = 1, …, m) healthcare system, a cosine similarity matrix 

W s = W ij
s

n × n is then computed in which the entry W ij
s  represents the pairwise cosine 

similarity between the semantic vectors corresponding to vi and vi in this healthcare system.

To more effectively group ICD codes, we also leverage the existing knowledge on ICD 

hierarchical structure.[31]. It is well known that ICD codes that are ontologically further 

apart are less likely to be grouped together. To measure the distance between ICD codes, we 

let d: V × V ↦ [0, +∞) be a pre-defined distance metric. We employ a specific choice of 

d(∙,∙) for our grouping algorithm as discussed below although plenty of alternatives can be 

used. For example, pairwise distances among ICD-9 codes can be intuitively calculated 

through their numeric representations. It is worth mentioning that this distance metric only 

needs to conform non-negativity and symmetry but not necessarily the triangle inequality. 

We set a distance upper bound 2δ which serves as the maximal group length such that codes 

with pairwise distance beyond 2δ are never grouped. As detailed below in the algorithm, the 

mvBSC also introduces a banding parameter h ∈ (0, δ] that forces W ij
s ,   s = 1, …, m to 0 

whenever d(vi, vj) > h. This banding operation can effectively reduce the chance of distant 

pairs being grouped.

The output of mvBSC is the grouping structure of all codes where codes in the same group 

are viewed as synonyms that collectively represent an ICD concept. The “ICD concept” is 

analogous to the “PheCode” in the PheWAS catlog and the “Concept Unique Identifier” 

(CUI) in the Unified Medical Language System (UMLS). A generic workflow is outlined in 

Figure 1.

mvSBC algorithm

We group ICD codes into concept groups by creating a unique non-overlapping partition 

such that V = ∪k Vk, Vk ∩ Vl = ∅, 1 ≤ k < l ≤ k where K is the total number of concept 

groups; in other words, every code vi should belong to one and only one concept group Vk. 

Let Z* denote the associated group membership matrix in that Zik* = 1 if vi ∈ Vk and 0 

otherwise. To infer about group membership Z* based on the m similarity matrices {Ws, s = 

1, …, m}, we propose the mvSBC algorithm which consists of the following four steps:
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1. Banding: given a banding parameter h ∈ (0, δ], keep W ij
s  if d(vi, vj) ≤ h and 0 

otherwise. Run eigen-decomposition on Ws, and construct a matrix Us whose 

columns are the eigenvectors of Ws corresponding to its first K largest singular 

values.

2. Combining: given ∑s = 1
m λs = 1,   λs ≥ 0,   s = 1, …,   m, run eigen-

decomposition on ∑s = 1
m λsUsUs′ whose eigenvectors corresponding to its first K 

largest singular values are concatenated to form a matrix U.

3. Clustering: group the codes by performing k-means clustering on the rows of U.

4. Trimming and Regrouping: given δ>0, calculate the group length lk := 

max{vi, vj ∈ vk} d (vi, vj), k = 1, …, K Repeat (1)-(3) on codes belonging to 

groups whose length is over δ until all group lengths are less than 2δ.

The banding step in step (1) enforces any pairwise similarity score to be 0 if the 

corresponding pairwise distance is larger than the given threshold h, as illustrated in Figure 

2. This thresholding induces sparsity on the similarity matrix, which in turn not only serves 

as a denoising step but also greatly improves computational efficiency. More essentially, this 

banding operation discourages ontologically distant pairs being grouped together, ensuring 

alignment with prior knowledge. By performing a spectral decomposition on the banded 

similarity matrix for each view, we obtain Us Us′ whose eigenspace approximates Z*Z*′. 
We then synthesize information from m views by optimally combining these m eigenspace 

estimators in step (2) to yield a central K-dimensional eigenvector estimator U. In step (3), 

we perform a simple k-means clustering algorithm on U to obtain the grouping structure. 

Considering k-means is a greedy algorithm that could potentially converge to a local 

minimum yielding a small number of groups with an extremely large group length exceeding 

the preset upper bound 2δ, in step (4) we repeat step (1)-(3) on codes within these overly 

stretched groups until all group lengths are well-behaved under 2δ. If m = 1 or let λs = 1 for 

sth view, the mvBSC algorithm provides the optimal grouping for each specific healthcare 

center.

Hierarchy building via roll up after mvBSC

The PheWAS catalog developed by Denny et al. [8] is formatted in a three-layer hierarchy in 

which each PheCode as a leaf node can automatically fold its digit(s) to roll up so long as its 

associated Boolean variable “rollup” is 1. For example, an ICD-9 code that maps to 

PheCode “008.11” also maps to “008.1” and “008”. Since our “ICD concept” is analogous 

to “PheCode”, it is interesting to build a similar three-level hierarchy to reflect ICD concept 

closeness. Such hierarchy is useful for other types of medical codes including CPT codes 

and medications. To this end, we introduce a variable “roll-up” indicating the hierarchy 

level. More specifically, rollup being 0 means the initial groupings, rollup is 1 if the initial 

groups are rolled one level up and is 2 if rolled twice up. After grouping by mvBSC, we run 

agglomerative clustering algorithm as follows:

1. Calculate group-level cosine similarity matrix G = [Gkl]K × K using U and 

convert to dissimilarity matrix D = [Dkl]K × K where Dkl := Gkk + Gll – 2Gkl.
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2. Calculate group-level distance matrix R = [Rkl]K × K where Rkl := median (d(vi, 

vj), vi ∈ Vk, vj ∈ Vl)

3. Run Agglomerative clustering algorithm on D = Dkl K × K where 

Dkl: = Dkl * Rkl. Cut at two desired heights along the dendrogram to produce a 

three-layer hierarchy.

Distance Metric d (∙,∙)

Since the ICD-9 and ICD-10 coding systems are not compatible, it is necessary to design a 

unified distance metric. To this end, we leverage the existing General Equivalence Mappings 

(GEM), in particular the ICD-9-to-ICD-10 mapping jointly developed by the Centers for 

Medicare & Medicaid Services (CMS) and the Centers for Disease Control and Prevention 

(CDC).[32] Mapping letters [A-Z] to [1–26], an ICD-10 code presents as an integer part 

followed by 1–3 digits. We then calculate all ICD-10 pairwise distances through their 

numeric representations. To reflect the fact that codes differing at the integer level are much 

more dissimilar than codes only differing among digits, we adopt a set of monotonically 

decreasing weights for distance calculation. A small constant number is assigned if an 

ICD-10 pair maps to the same ICD-9 code. Using the ICD-9-to-ICD-10 mapping, a pairwise 

distance involving an ICD-9 code is subsequently calculated based on distances involving all 

its mapped ICD-10 codes. For other medical codes such as CPT codes, distance metric can 

also be defined according to the numeric numbers representing the codes since the closer the 

numbers are the more similar the codes are. The explicit form of d(∙,∙) can be referred to in 

more details in the Supplementary Materials.

Parameter tuning and evaluation metric

The tuning parameters {h, λs, s = 1, …, m} as well as the total number of groups K are not 

known a priori in practice. We use the existing PheCodes on ICD-9 and ICD-10 codes as 

partial labels to tune these parameters. The evaluation metric for tuning we use is a 

composite score defined as the sum of the normalized mutual information (NMI) [33] and 

adjusted Rand index (ARI) [34], which are the two most commonly used metrics in the 

network analysis literature to evaluate the similarity between two partitions on the same 

vertex set. The range of NMI is [0,1], and that of ARI is [−1,1]; a higher value indicates a 

closer match between two partitions. Our experiments reveal that ARI tends to favor smaller 

K while NMI tends to favor larger K, so we use this composite score to render a more 

robust, consistent estimate of K. Optimal choices of the banding parameter h were tuned via 

a grid search where 100 equally-spaced values were considered between the minimal and 

maximal pairwise distance. Likewise, 11 equally spaced values between [0,1] were 

considered for λs. Since the number of PheCodes (KPheWAS) is a reasonably good estimate 

for K, we examined all values for K on the approximate range [KPheWAS, 2KPheWAS]. We 

referred to the most recent PheWAS catalog that provides groupings on both ICD-9 and 

ICD-10 codes. A small portion of ICD-10 codes are mapped to multiple PheCodes, to avoid 

ambiguity, we only used uniquely PheCode labeled ICD-10 codes for tuning. For hierarchy 

building, enabling the “rollup” option in the PheWAS catalog, we were able to fold 

PheCodes with two digits into ones with a single digit, from which we could decide at what 

height of the tree the composite score reaches the maximum. Similarly, PheCodes were 
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further collapsed into their integer representations to help cut the tree as the top layer. Figure 

3 shows the hierarchical clustering dendrogram on disease category I00-I25, in which 

clusters given by mvBSC are leaf nodes and the second and first layer are obtained at the 

height colored in blue and red respectively.

Training the Algorithm using PHB and VHA Data

To evaluate performance, we applied the proposed method (mvBSC) to group ICD-9 and 

ICD-10 codes by combining two sources: ICD data from a million subjects randomly 

selected from the Veterans Health Administration (VHA), and ICD data from patients in the 

Partners Healthcare Biobank (PHB). Two main factors contribute to the heterogeneity across 

these two healthcare systems. First, the underlying patient populations vary substantially. 

VHA serves the veteran population while PHS primarily consists of tertiary hospitals whose 

patients tend to have more complex and severe diseases. Second, the sample sizes are very 

different. VHA data has 1 million patients whereas PHB has only about 60,000.

An additional complication arises when grouping both ICD-9 and ICD-10 codes: these two 

sets of codes are adopted over non-overlapping time periods and hence nearly no co-

occurrences occur between ICD-9 and ICD-10 codes within a short time window for any 

patient. To overcome this, we use the ICD-9 to ICD-10 mapping provided by the Centers for 

Medicare and Medicaid (CMS)[32] and identified the subsets of ICD-9 and ICD-10 codes in 

which the ICD-9-to-ICD-10 mapping is unique. These ICD9-codes are then replaced by 

their corresponding ICD-10 codes for co-occurrence matrix calculations. Sufficient co-

occurrences between ICD-9 and ICD-10 codes are generated in this step, which in turn 

improves the training on the ICD embeddings.

We employ the mvBSC algorithm to create ICD concept groups based on (i) both VHA and 

PHB data; (ii) VHA data alone; and (iii) PHB data alone. The first set of groupings reflects 

the consensus knowledge and is expected to be more similar to the existing PheWAS 

groupings. Groupings based on data from individual healthcare systems are expected to 

reflect their unique patterns of coding behavior and patient population. Since ICD codes are 

organized by disease categories, groupings are performed within each of the categories. We 

focus on most common diseases and exclude categories that either lack sufficient EHR data 

due to rare prevalence or lack significance for grouping near-identical codes. Specifically, 

we demonstrate groupings for the following 13 disease categories: (1) Certain infectious and 

parasitic diseases (A00-B99); (2) Malignant neoplasms (C00-C97); (3) Diseases of the blood 

and blood-forming organs and certain disorders involving the immune mechanism (D50-

D89); (4) Mental and behavioral disorders (F00-F99); (5) Nervous system (G00-G99); (6) 

Eye and adnexa (H00-H59); (7) Ear and mastoid process (H60-H95); (8) Certain diseases 

involving the circulatory system (I00-I25); (9) Digestive system (K00-K93); (10) Skin and 

subcutaneous tissue (L00-L99); (11) Arthropathies (M00-M25); (12) Genitourinary system 

(N00-N99); and (13) Pregnancy, childbirth and the puerperium (O00-O99).

Evaluation

We report the accuracy of grouping by the mvBSC algorithm against the PheWAS grouping 

based on the NMI, ARI as well as the F1-measure defined as
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F1 − measure =   2 * Precision * Recall
Precision+Recall ,

wℎere   Precision =   #   PairsCorrectlyPredictedInSameCluster
#TotalPairsPredictedInSameCluster and   Recall =

  #   PairsCorrectlyPredictedInSameCluster
#TotalPairsInSameCluster   .

To further evaluate the grouping quality of our algorithm, we obtained an independent set of 

domain expert annotations of 698 pairs sampled from 5 disease categories that had been 

selected by domain experts according to their familiarity to guarantee relevancy. Out of 

these, we sampled 25 pairs randomly from each of category and 574 pairs from 15 groups of 

ICD codes. For each group, we sampled codes from one mvBSC cluster along with its two 

adjacent clusters and a cluster further apart. To ensure unbiasedness, the domain experts are 

blinded from the algorithm output during assessment and annotate whether a pair of ICD 

codes should be considered as “synonymous” for most clinical research studies. We report 

the F1-measure of the algorithm output at different levels of roll-up against this set of 

annotated grouping and compare to the benchmark of the agreement between the PheWAS 

grouping and the additional annotation which quantifies the level of agreement between 

different human annotations.

Results

Table 1 summarizes mvBSC’s groupings similarity in terms of NMI, ARI and F1-measure 

towards PheWAS at each hierarchy level for each ICD category detailed above by combining 

similarity matrices from both VHA and PHB. These results demonstrate that our data-driven 

groupings generally have high agreement with PheWAS groupings, and that our hierarchy 

follows closely with the one given by PheWAS and shows more resemblance as it is rolled 

up. Against the additional set of expert gold standard annotation, the F1-measure of the 

mvBSC algorithm is 0.73 at roll-up level 0 and 0.79 at roll-up level 1. The level of 

agreement is comparable to the agreement between PheWAS against these annotations, 

which has an F1-measure of 0.78 and 0.82 at roll-up levels of 0 and 1, respectively. This also 

suggests that domain experts may prefer level 1 roll-up groupings for clinical studies.

Detailed grouping results for five representative categories can be found in supplementary 

materials; here, we only analyze a few representative findings for arthritis, cardiovascular 

disease, and anemia. Overall, our groupings tend to separate disease codes by coarse 

pathophysiological attributes at the highest level of the hierarchy and more minute 

differences at lower levels. Within each level, groups of codes enjoy both intuitive internal 

consistency and clear separation from other groups. For instance, our method differentiates 

arthritis at the coarsest level into such broad categories as septic arthritis, post-infective 

arthropathies (i.e. immune complex-mediated disease), rheumatoid arthritis, and 

osteoarthritis. Within the rheumatoid arthritis group, it further distinguishes codes by extra-

articular involvement (i.e. rheumatoid lung, vasculitis) and presence of rheumatoid factor. 

Only at the lowest level of the hierarchy does the grouping distinguish by the joint affected – 
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a granular disease attribute. By contrast, the current PheWAS divides all ICD-9 codes related 

to Rheumatoid Arthritis (RA) into three groups – rheumatoid arthritis, juvenile rheumatoid 

arthritis, and other inflammatory polyarthropathies – that can be rolled up to the broad group 

of P714 (rheumatoid arthritis and other inflammatory polyarthropathies). While these groups 

are certainly clinically meaningful, our grouping both achieves more clinically meaningful 

separation with ICD-10 and at the same time can be utilized at different levels of the 

hierarchy depending on the level of specificity desired.

In addition to finding a consensus grouping using both VHA and PHB data, individual 

groupings reflective of each unique healthcare system were also obtained. Figure 4 shows 

such an example: whereas rheumatic valvular disease is distinguished from non-rheumatic 

disease for PHB, no such differentiation is made for VHA. This may reflect differing coding 

practices or patient population characteristics between the two healthcare systems, though 

ultimately both groupings are clinically sensible.

DISCUSSION

In this paper, we demonstrate the power of the proposed procedure through jointly grouping 

ICD-9 and ICD-10 codes in an unbiased manner of utilizing two data sources from the VHA 

and the PHB. Although the performance of the mvBSC method is only evaluated for 

grouping ICD codes in 13 disease categories against several sets of human annotations, these 

results suggest that the mvBSC produced grouping structure for the ICD codes that is highly 

consistent with human annotations. Our data-driven approach, however, has major 

advantages over manual approaches including scalability and transportability.

For the current ICD grouping analysis, we derived similarity matrices of the codes based on 

their co-occurrences observed in healthcare systems. It is also possible to additionally 

measure similarity between the codes based on the semantic similarities between the text 

strings associated with the codes, which can be achieved by deriving embeddings for the 

ICD text strings based on word or concept embeddings. The value of including such an 

additional source of similarity matrix warrants further research.

Results from the current ICD grouping analysis based on VHA and PHB data suggest that 

the mvBSC algorithm is generally capable of separating diseases into a clinically and 

physiologically meaningful hierarchy. Among the cardiovascular diseases, for instance, it 

broadly separates the cohort into rheumatic heart diseases, valvular disease, hypertensive 

heart (and kidney) disease, and coronary artery disease/ischemic heart disease (CAD/IHD). 

Within the CAD/IHD group, myBSC further distinguishes such clinically distinguishable 

groups as atherosclerosis, stable angina, unstable angina, myocardial infarction, and post-

infarction complications. Conditions such as heart failure, which can occur as a result of 

different etiologies, were generally separated by their physiologic cause; for example, 

rheumatic heart failure is grouped with other sequelae of rheumatic heart disease whereas 

heart failure secondary to uncontrolled hypertension is grouped with other hypertensive 

heart diseases. Likewise, among the hematologic diseases, our method separates the 

anemias, coagulopathies, and malignancies. It further differentiates the anemias into the 

anemias as a result of nutritional deficiencies (i.e. iron, B12, folate deficiency etc.), 
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hereditary production anemias (i.e. thalassemias, sickle-cell anemia, metabolic disorders 

etc.), hemolytic anemias (i.e. spherocytosis, autoimmune etc.), and aplastic anemias (i.e. 

drug induced, constitutional etc.). At further levels of the hierarchy it separates these subsets 

more finely, generally keeping very closely in line with the existing ICD hierarchies. Thus, 

across several different systems, our method develops a hierarchy that is internally consistent 

at every level, clinically meaningful, and easily interpretable using existing hierarchies as a 

standard.

While the data-driven grouping on ICD proposed in this paper are intended for research, it 

may inform updates on the existing GEM ICD-9 to ICD-10 mapping, which was developed 

for billing purposes. For example, it would be ideal to separate infectious arthropathies 

associated with bacteria (711.41 e.g.) from those associated with viruses, fungi or parasites 

(711.51, 711.71, 711.81 e.g.). Our method instead maps all of the above to PheCode “711.” 

due to the fact that the CMS ICD-9-to-ICD-10 mapping maps 711.41, 711.51, 711.71, and 

711. to the same ICD-10 code (M01.X19). Consequently, their pairwise distances are too 

small to tease them apart. On the other hand, such a “flaw” can effectively mirror out what 

parts need further investigation and refinement of the current ICD-9-to-ICD-10 mapping. 

The grouping quality could potentially improve as more data on ICD-10 code usage and 

from additional healthcare centers become available.

Our proposed mvBSC method is readily applicable for grouping many other types of 

medical terms in the EHR, including lab codes and procedure codes that are truly in need of 

a data-driven grouping strategy. One limitation of the current mvBSC algorithm is the need 

for a distance measure that can distinguish highly similar codes from dissimilar codes. For 

ICD, the method relies on the ICD hierarchy to derive a distance measure. Such distance 

measures can also be naturally constructed for some other medical terminologies such as the 

CPT and LOINC codes. In addition, if the codes can be mapped to the UMLS, one may 

leverage the UMLS ontology and define distance using the graphical structure of the UMLS 

concepts. When no or little prior knowledge exist to measure the distance between codes, the 

banding step of the mvBSC method can be removed or modified to accommodate such 

settings although the performance in the absence of banding needs further investigation. Our 

method can also easily facilitate its adaptivity and conformity to as many human annotations 

as needed simply by adding penalty terms in the final k-means clustering step. Given its 

data-driven nature, our method represents a significant step forward for efficient automation 

on large-scale medical term grouping that advances deep phenotyping in pursuit of precision 

medicine. One remaining challenge is to automatically label the groups created by such 

unsupervised algorithms. While this would generally require additional human annotation, a 

potential starting point is to identify common phrases in the code names for each group as an 

initial name.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
mvBSC algorithm work flow.
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Figure 2: 
An example of banding a 15-by-15 similarity matrix. The banding parameter h decides the 

window size that only entries whose corresponding pairwise distance is inside this range 

would be kept colored in gray. Otherwise entries would be thresholded to 0. This banding 

operation discourages distant pairs being grouped. In general, banding would sparsify the 

similarity matrix but not necessarily result in this nicely tapering structure centering at the 

diagonals.
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Figure 3: 
Clustering dendrogram on category I00-I25.
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Figure 4: 
Grouping comparison within I08 given by mvBSC using data from PHB (left) and VHA 

(right) respectively. ICD codes (in circle) are colored according to their belonged groups (in 

square).
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Table 1:

grouping result summary. Basic information on each specific disease category under consideration is displayed 

in the first two columns. The roll-up column indicates the level of hierarchy with 0 indicating no rollup, 1 

indicating rollup once and 2 indicating rollup twice. The KpheWAS and KmvBSC columns indicate the total 

number of groups suggested by PheWAS and by mvBSC at each hierarchy level. The last three columns 

summarize the similarity evaluation to PheWAS groupings by NMI, ARI, F1-measure.

Disease Category ICD Category # of codes (# w/ 
PheCode) Roll-up KpheWAS KmvBSC NMI ARI F1

(1) Certain infectious and parasitic 
diseases A00–B99 849 (828)

0 77 180 0.74 0.22 0.27

1 70 58 0.70 0.40 0.44

2 34 44 0.70 0.51 0.54

(2) Malignant neoplasms C00-C97 1081 (1081)

0 83 86 0.87 0.49 0.52

1 70 70 0.89 0.58 0.61

2 34 28 0.84 0.68 0.71

(3) Blood and blood-forming organs 
and certain disorders involving the 
immune mechanism

D50–D89 243 (241)

0 66 68 0.85 0.45 0.56

1 49 48 0.84 0.54 0.61

2 22 13 0.73 0.65 0.69

(4) Mental and behavioral disorders F00–F99 843 (840)

0 62 132 0.73 0.17 0.20

1 53 22 0.73 0.62 0.67

2 24 21 0.73 0.66 0.72

(5) Nervous system G00–G99 748 (748)

0 89 124 0.82 0.38 0.43

1 80 64 0.86 0.62 0.65

2 48 39 0.87 0.71 0.73

(6) Eye and adnexa H00–H59 1096 (1092)

0 100 100 0.79 0.44 0.48

1 85 58 0.81 0.51 0.54

2 30 36 0.80 0.64 0.66

(7) Ear and mastoid process H60–H95 458 (452)

0 31 36 0.76 0.58 0.62

1 29 22 0.76 0.67 0.70

2 14 6 0.75 0.62 0.69

(8)Circulatory diseases I00–I25 208 (182)

0 26 28 0.80 0.50 0.56

1 22 14 0.81 0.68 0.73

2 8 4 0.89 0.92 0.95

(9) Digestive system K00–K93 827 (782)

0 149 148 0.84 0.48 0.53

1 131 79 0.85 0.58 0.62

2 56 38 0.85 0.74 0.76

(10) Skin and subcutaneous tissue L00–L99 738 (738)

0 84 145 0.77 0.47 0.50

1 77 120 0.78 0.72 0.74

2 38 84 0.70 0.53 0.58

(11) Arthropathies M00–M25 1374 (1369)

0 59 114 0.83 0.43 0.45

1 52 62 0.82 0.51 0.53

2 18 16 0.79 0.65 0.70

(12) Genitourinary system N00–N99 685 (676) 0 149 155 0.84 0.38 0.46
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Disease Category ICD Category # of codes (# w/ 
PheCode) Roll-up KpheWAS KmvBSC NMI ARI F1

1 118 70 0.84 0.45 0.50

2 51 69 0.81 0.44 0.48

(13) Pregnancy, childbirth and the 
puerperium O00–O99 608 (603)

0 52 128 0.78 0.33 0.39

1 52 66 0.79 0.45 0.50

2 39 64 0.77 0.42 0.47
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