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Abstract

Population attributable fraction (PAF) is a widely used measure for quantifying the disease burden 

associated with a modifiable exposure of interest at the population level. It has been extended to a 

time-varying measure, population attributable hazard (PAH) function, to provide additional 

information on when and how the exposure’s impact varies over time. However, like the classic 

PAF, the PAH is generally biased if confounders are present. In this article, we provide a natural 

definition of adjusted PAH to take into account the effects of confounders, and its alternative that 

is identifiable from case-control studies under the rare disease assumption. We propose a novel 

estimator, which combines the odds ratio estimator from logistic regression model, and the 

conditional density function estimator of the exposure and confounding variables distribution 

given the failure times of cases or the current times of controls from a kernel smoother. We show 

that the proposed estimators are consistent and asymptotically normal with variance that can be 

estimated empirically from the data. Simulation studies demonstrate that the proposed estimators 

perform well in finite sample sizes. Finally, we illustrate the method by an analysis of a case-

control study of colorectal cancer. Supplementary materials for this article are available online.
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1 Introduction

For evidence-based disease prevention, the population attributable fraction (PAF) has been 

widely used as an indispensable metric to assess the impact of modifiable exposures on 

disease burden in populations to help plan and prioritize public health strategies1,2. First 

introduced by Levin3, the PAF is defined as the proportion of potential preventable disease 

cases, had the exposure been eliminated. Compared to association measures such as relative 

risk or rate ratio, the PAF is a more appropriate epidemiological measure for quantifying the 
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population impact because it integrates both the strength of association between the 

exposure and the disease and the prevalence of the exposure. The implication, estimation, 

and application of the PAF have been extensively studied for various epidemiological 

sampling designs, see, for example, Walter4, Whittemore5, Greenland6, Benichou and Gail7, 

Benichou8,9, Kooperberg and Petitti10.

PAF is a static measure, which evaluates the impact of exposure on binary disease outcome. 

In practice, mortality and morbidity incidences are often recorded as time-to-events. 

Therefore, rather than Levin’s PAF, a time-varying PAF can help researchers and policy 

makers better understand how the impact of risk exposure on disease varies over time, and 

provide guidance on the timing of actions or interventions. Recently, extensions of the PAF 

to right-censored failure time have been proposed, including the time-dependent population 

attributable hazard function (PAH)11-13 and time-dependent population attributable disease 

probability14-18. In survival analysis, the hazard function is a key concept that quantifies the 

impact of risk factors on the rate of developing the disease among subjects at risk at time t. 
Here we focus on the PAH because it directly assesses the instantaneous effect of 

eliminating risk factors on the hazard function.

Specifically, let T be the failure time and Z = (Z1, …, Zp)T be a p-vector of time-independent 

risk factors, then the PAH11 is defined as

ϕ(t) = λ(t) − λ(t ∣ Z = 0)
λ(t) , (1)

where λ(t) is the hazard function for the population of interest, which is the instantaneous 

rate of failing at time t, that is, λ(t) = limδt→0 Pr(t < T ≤ t + δt)/Pr(T > t); and λ(t∣Z = 0) is 

the conditional hazard function given Z = 0. Estimation of λ(t) requires estimates of hazard 

ratios, for which methods are well established for cohort data19, and estimates of the 

distribution of exposure and failure time11,15.

In the past several decades, the case-control study design is one of the most commonly used 

designs in epidemiological cancer research, because of its efficiency in logistic conduct, 

time and cost. In particular, Anderson20 and Prentice and Pyke21 provided theoretical basis 

that under the rare disease assumption the relative risk of exposure on disease occurrence 

can be obtained from the retrospective case-control data as if they were prospectively 

collected under the logistic regression model. For the time-to-event outcome, the hazard 

ratios under the Cox proportional hazards model can also be obtained from the (time-

matched) case-control data22. As a result, many case-control studies have been conducted. 

For example, in our motivating real data example, the Genetics and Epidemiology Colorectal 

Cancer Consortium (GECCO) is consisted of dozens of well-characterized case-control 

studies of colorectal cancer where extensive risk factor information has been collected. It is 

therefore important to make use of these rich data when estimating the PAH. Bruzzi et al.23 

showed that if one has the relative risk estimates, the PAF can be obtained from the 

distribution of exposure among the cases only. In a similar fashion, for time-varying PAH, 

Zhao et al.13 showed at any specific time t, PAH can be estimated consistently with the 

hazards ratio estimated from case-control data22 and the conditional distribution of exposure 

estimated from the cases at time t.
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Confounders are nevertheless ubiquitous in observational studies. If they were not properly 

accounted for, the association of exposure of interest and outcome and the PAF would be 

biased and could be misleading in some situations4,24. The unadjusted PAH proposed by 

Zhao et al.13 has the same issue. For instance, obesity is a potential confounder for the 

association between diabetes and colorectal cancer, because obese patients are more likely to 

have diabetes25 and also more likely to develop colorectal cancer26. Thus, without adjusting 

for obesity, the preventable effect of eliminating diabetes may be overestimated. Therefore, 

in order for the estimated PAH to have a meaningful interpretation, it is necessary to adjust 

for confounders. To this end, a natural generalization of the confounder-adjusted PAF for 

binary outcome8 to time-to-event outcome is to substitute λ(t∣Z = 0) in (1) by 

EU ∣ T ≥ t{λ(t ∣ Z = 0, U)}, where U are confounding variables and EU ∣ T ≥ t is the expectation 

of U given the subject at risk at time t in a ideal population where Z is eliminated at baseline. 

However, this quantity is not identifiable from case-control data because cases are over-

sampled and the distribution of (Z, U) in the sample does not reflect the distribution in the 

population.

The goal of the paper is to provide an alternative adjusted PAH that approximates well to 

EU ∣ T ≥ t under the rare disease assumption, and a novel kernel-based estimator integrating 

the information from both cases and controls. The rest of this article is organized as follows: 

in Section 2, we lay out the basic formulation and the kernel-based estimator for the adjusted 

PAH for case-control data. We establish the large sample properties and provide asymptotic-

based variance estimators. In Section 3, we present simulation studies and the performance 

of the proposed estimator in finite sample sizes. We show an application of the proposed 

estimator to a case-control study of colorectal cancer in Section 4. Finally, we provide some 

concluding remarks in Section 5. Some technical details are included in the appendices.

2 Formulation and Inference

2.1 Definition of Population Attributable Hazard Function Adjusting for Confounders

We first describe the data and notation. Consider a case-control study which consists of n1 

cases and n2 controls, in total n (n = n1 + n2) subjects. Let Δ be the binary disease status (1: 

case and 0: control) and X = min(T, C) be the observed age, which is the age-at-onset i.e. 
failure time T if the individual is diseased (case) and age at examination i.e. censoring time 

C if the individual is not diseased (control). Further we denote Z a vector of time-

independent covariates, which are of interest, and U a vector of time-independent 

confounders. We are interested in the proportion of the time-varying hazard attributed to Z 

while adjusting for potential confounders U.

Before we describe the PAH, we first review classic model-based adjusted PAF for binary 

disease status in the presence of confounders. Suppose the vector of time-independent 

confounders U form J levels and time-independent covariate of interest Z has I + 1 levels, 

then the adjusted PAF5,23 is defined as
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PAF = P (Δ = 1) − ∑j = 1
J P (Δ = 1 ∣ Z = 0, U = uj)P (U = uj)

P (Δ = 1)

= 1 − ∑
j = 1

J
∑
i = 0

I P (Z = zi, U = uj ∣ Δ = 1)
RRi ∣ j

(2)

where RRi∣j = P(Δ = 1→Z = zi, U = uj)/P(Δ = 1∣Z = 0, U = uj). The re-expression of the PAF 

in the second equation as a function of f(Z, U∣Δ) and RR indicates that both quantities can 

be estimated from the retrospectively collected case-control data under the rare disease 

assumption. As a result the adjusted PAF can also be estimated from case-control data.

Now we turn to the PAH. Let E denote the expectation with respect to the target population 

from which cases and controls are sampled, and E denote the expectation with respect to a 

ideal population in which exposure Z was eliminated at baseline. Let λ(t) be the hazard 

function of failure time T for the target population and λ{t∣Z = 0, U} be the hazard function 

of T given Z = 0 and U. In the same spirit as the adjusted PAF, we define a natural PAH of Z 

in the presence of U as

Φadj(t) = λ(t) − EU ∣ T ≥ t{λ(t ∣ Z = 0, U)}
λ(t) , (3)

which is the proportion of reduction of the hazard at time t from the current population to the 

ideal population that Z is eliminated at baseline, accounting for confounders U. The 

conditional expectation EU ∣ T ≥ t with respect to the ideal population is taken over U among 

subjects at risk at time t. Note that this can be obtained based on 

EU ∣ T ≥ t[λ{t ∣ Z = 0, U}] = EU[f(T = t ∣ Z = 0, U)] ∕ EU[Pr(T ≥ t ∣ Z = 0, U)] if λ{t ∣ Z, U} and 

the distribution function FU(u) at the baseline are known, as EU is the expectation taken over 

U at baseline.

Comparing (3) with the adjusted PAF (2), we see that in Φadj(t), the probability of being 

diseased is replaced with the hazard function at time t, and the probability mass function of 

confounders is replaced with the density of confounders for subjects who are at risk at time t 
in the ideal population. Thus, Φadj(t) can be regarded as the instantaneous evaluation of the 

confounder-adjusted PAF at t, and measures the impact on the disease development at time t 
due to eliminating exposure at baseline after taking into account confounding.

However, in case-control studies where cases are over sampled, λ{t∣Z, U} and the baseline 

distribution function of (Z, U) are not estimable, and thus, Φadj(t) can not be identified. Here 

we provide an alternative that is identifiable from the case-control data. The definition is as 

follows:

ϕadj(t) = λ(t) − EU ∣ T ≥ t{λ(t ∣ Z = 0, U)}
λ(t) . (4)

It is worth noting that while EU∣T≥t is taken with respect to the original (natural history) 

population conditional on {T ≥ t} in this original population, the expectation EU ∣ T ≥ t is 
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conditional on {T ≥ t} with respect to an ideal population. The difference between the 

original and ideal populations is that at baseline subjects who have exposure in the original 

population are free of exposure in the ideal population. Now let f(u∣T ≥ t) and f (u ∣ T ≥ t) be 

the density functions of U conditional on T ≥ t in the original and ideal populations, 

respectively. Under the rare disease assumption, both density functions are approximately 

f(u), which implies ϕadj(t) ≈ Φadj(t).

To check the sensitivity of this approximation to the rare disease assumption, we calculated 

the differences of ϕadj(t) and Φadj(t) numerically under a wide range of scenarios. When the 

disease probability Pr(T < 70) ≤ 0.05, ϕadj(t) approximates well Φadj(t) with absolute 

differences below 0.05 for the vast majority scenarios. When the disease probability 

increases, additional parameter restrictions (e.g., log-hazard ratio for the confounder < 2 

when 0.05 < Pr(T < 70) ≥ 0.1) need to be imposed for a good approximation. Appendix E 

shows more detailed results of the approximation of ϕadj(t) and Φadj(t). In real-data-based 

simulations in Section 3 and 4.2, the difference between the two is no more than several 

thousandths across a very wide range of t. Thus ϕadj(t) can be a promising alternative to 

Φadj(t) for accommodating the case-control data. We focus on ϕadj(t) in this article.

Assume the effects of Z and U on the hazard function of the failure time T follow the Cox 

proportional hazards model 27,

λ(t ∣ Z, U) = λ0(t) exp(βTZ + γTU), (5)

where β = (β1, ⋯, βp)T is a vector of regression parameters for Z, γ = (γ1, ⋯, γq)T is a 

vector of regression parameters for U, and λ0(t) is the baseline hazard function. For the 

target population, let FU∣T≥t(u) be the distribution function of confounders U of subjects who 

are disease-free at time t with the corresponding density function fU∣T≥t(u) if U is 

continuous, and U be the space for U (i.e., Pr{U ∈ U} = 1). Similarly we denote FZ∣T(z∣t) 
and FZ∣T(z∣t) the distribution function and the density function of Z given T = t, respectively, 

FZ,U∣T≥t(z, u) and fZ,U∣T≥t the joint distribution function and the joint density function of Z 

and U given T ≥t, respectively, and Z the space for Z.

By using the relationship λ(t) = fT(t)/ST(t) and applying the total probability theorem on 

ST(t), we can express as ϕadj(t) as

ϕadj(t) = 1 −
∫Uλ(t ∣ Z = 0, u)dFU ∣ T ≥ t(u)

λ(t)
= 1 − λ0(t)

λ(t) ∫U
exp(γTu)fU ∣ T ≥ t(u)du .

= 1 − ∫
U
∫

Z
exp(βTz + γTu)fZ, U ∣ T ≥ t(z, u)dzdu

−1∫
U

exp(γTu
)fU ∣ T ≥ t(u)du .

(6)

The above equation explicitly show the impact of U. For example, when β = 0, ϕadj(t) = 0 for 

all t. When γ = 0, we have ϕadj(t) = ϕ(t) the unadjusted PAH. Furthermore, we have
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∫U
exp(γTu)fU ∣ T ≥ t(u)du = ∫U

exp(γTu)∫Z
fZ, U ∣ T ≥ t(z, u)dzdu

= ∫U∫Z
exp(γTu + βTz) exp( − βTz)fZ, U ∣ T ≥ t(z, u)dzdu

= ∫U∫Z
fT ∣ Z, U(t ∣ z, u)

S(t ∣ z, u)λ0(t) exp( − βTz)fZ, U ∣ T ≥ t(z, u)dzdu

= ∫U∫Z
fT , Z, U(t, z, u)

S(t)λ0(t) exp( − βTz)dzdu

=
fT (t)

S(t)λ0(t)∫U∫Z
exp( − βTz)fZ, U ∣ T (z, u ∣ t)dzdu

= λ(t)
λ0(t)∫Z

exp( − βTz)fZ ∣ T (z ∣ t)dz,

and thus we can also express (6) as

ϕadj(t) = 1 − ∫
Z

exp( − βTz) fZ ∣ T(z ∣ t)dz . (7)

Equation (7) involves hazard ratios and conditional distribution of Z given T = t, i.e. cases 

who develop disease at time t. Complementary to (7), equation (6) involves hazard ratios and 

conditional distributions of (ZT, UT)T and U given T > t, i.e., controls who are disease-free 

at time t.

2.2 Estimation and Large Sample Properties

Now we describe estimation of ϕadj(t) on the basis of (6) and (7) from case-control data. It is 

well established that if cases and controls are time-matched, hazard ratio parameters θ = (βT, 

γT)T can be consistently estimated by maximizing conditional likelihood function with 

logistic regression model22. For unmatched case-control studies, θ can be estimated by the 

convention maximum likelihood of a logistic regression model with time adjusted as a 

covariate. The approximation is generally not consistent, but yields little bias in practice. We 

denote the hazard ratio estimates by θ = (βT , γT ). For ϕadj(t), what remains to be estimated is 

the conditional distribution function FV∣T(v∣t) and FV∣T≥t(v). Here V represents Z, U, or (ZT, 

UT)T.

Under the random censoring assumption that the censoring time is independent of the failure 

time, exposures and confounders as derived in Xu and O’Quigley28, we can show that FV∣T 

(v∣t) equals to F(v∣T = t, T ≤ C) = P{V ≤ v∣T = t, T ≤ C}, which can be estimated from the 

cases, and FV∣T≥t(v) equals to F(v∣C = t, T ≥ C) = P{V ≤ v∣C = t, T ≥ C}, a quantity that can 

be estimated from the controls. Therefore, either FV∣T (v∣t) or FV∣T≥t(v) can be estimated by 

its empirical estimator. However, these empirical estimators would have poor performance 

because of few subjects observed at time t. To improve the performance, we use a kernel 

smoother to estimate these distribution functions. Let
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φ(t) = ∫Z
exp( − βTz) fZ ∣ T (z ∣ t)dz,

ψ(t) = ∫U∫Z
exp(βTz + γTu)fZ, U ∣ T ≥ t(z, u)dzdu,

v(t) = ∫U
exp(γTu)fU ∣ T ≥ t(u)du .

Then ϕadj(t) can be expressed as ϕadj(t) = 1 – φ(t) or ϕadj(t) = 1 – ψ−1(t)v(t).

Consider n subjects in a case-control study. Let Xi, Δi, Zi and Ui be the observed time, the 

censoring indicator, the exposure and confounders, respectively, for i = 1, …, n. Assume that 

{(Xi, Δi, Zi, Ui), i = 1, …, n} are independently and identically distributed. We propose the 

following estimators for φ(t), ψ(t), and v(t), respectively:

φ(t; β) =
∑i = 1

n exp( − βTZi)ΔiKℎ(t − Xi)

∑i = 1
n ΔiKℎ(t − Xi)

,

ψ(t; β, γ) =
∑i = 1

n exp(βTZi + γTUi)(1 − Δi)Kℎ(t − Xi)

∑i = 1
n (1 − Δi)Kℎ(t − Xi)

,

v(t; γ) =
∑i = 1

n exp(γTUi)(1 − Δi)Kℎ(t − Xi)

∑i = 1
n (1 − Δi)Kℎ(t − Xi)

,

where Kh(x) = K(x/h)/h, K(·) is a kernel function that is a weighting function that satisfies ∫ 
K(x)dx = 1, and h is the bandwidth that controls the spread of weighting window.

We propose two estimators for ϕadj(t), corresponding to equations (7) and (6), respectively:

ϕadj + (t; β) = 1 − φ(t; β), (8)

and

ϕadj − (t; β, γ) = 1 − ψ−1(t; β, γ)v(t; γ) . (9)

Since the kernel estimators of ϕadj + (t; β) and ϕadj − (t; β, γ) are based on cases and controls 

separately, combining the two estimators could potentially improve the efficiency. We 

therefore propose a weighted estimator as follows:

ϕadjw(t; β, γ) = w(t)ϕadj + (t; β) + {1 − w(t)}ϕadj − (t; β, γ) .

where w(t) is a weighting function with value between 0 and 1. A natural choice of the 

weight is iw(t) = πq, which is proportion of cases in the sample. Then the weighted 

estimator is

ϕadjw(t; β, γ) = π0ϕadj + (t; β) + (1 − π0)ϕadj − (t; β, γ) . (10)
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Next we derive the asymptotic properties of ϕadjw(t; β, γ). Assume the number of cases n1 

and the total number of subjects n satisfy n1/n → π0 as n → ∞, where 0 < π0 < 1. In 

addition, we assume the following regularity conditions:

A1. The time t is in a range of [0, τ] for a constant τ > 0 such that the density of failure time 

fT(t), the density of censoring time fC(t) and their survival functions, ST(t) and SC(t) all take 

positive real values on [0, τ].

A2. The density of failure time fT(t) and the density of censoring time fC(t) are both 

continuous, uniformly bounded, and have second derivatives on [0, τ].

A3. Random censoring: the censoring time C is independent of the failure time T, exposure 

Z and confounder U for t ∈ [0, τ].

A4. The bandwidth satisfies h = ndh0 for constants −1/2 < d < −1/5 and h0 > 0.

A5. The kernel function K(·) has bounded variation and satisfies the following conditions,

∫−∞
∞

K(u)du = 1, ∫−∞
∞

K2(u)du < ∞,

∫−∞
∞

uK(u)du = 0, ∫−∞
∞

u2K(u)du < ∞ .

A6. Z and U are bounded almost surely and have uniformly bounded total variation on [0, 

τ].

We define the following notation.

Bn(t) = 1
n ∑

i = 1

n
ΔiKℎ(t − Xi),

Dn(t; β) = 1
n ∑

i = 1

n
ΔiKℎ(t − Xi)Zi exp( − βTZi),

An(t; β, γ) = 1
n ∑

i = 1

n
(1 − Δi)Kℎ(t − Xi) exp(βTZi + γTUi),

Bn(t) = 1
n ∑

i = 1

n
(1 − Δi)Kℎ(t − Xi),

Dn(t; θ) = 1
n ∑

i = 1

n
(1 − Δi)Kℎ(t − Xi)Vi exp(θTVi),

Gn(t; γ) = 1
n ∑

i = 1

n
(1 − Δi)Kℎ(t − Xi)Ui exp(γTUi) .

We use P0 and E0 to denote the probability and expectation with respect to the target 

population from which cases and controls are sampled. As shown in Appendix A and B, it is 

also useful to regard cases and controls as members of a second, hypothetical population of 

individuals whose disease probability is given by π0
13. We use P* and E* to denote the 

probability and expectation with respect to this hypothetical population. Let p0 = P0(T ≤ C), 
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π0 = P*(T ≤ C). Denote the limits of Bn(t), Dn(t; β), An(t; β, γ), Bn(t), Dn(t; θ) and Gn(t; γ) by 

B(t), D(t;β), A(t), B(t), D(t; θ) and G(t; γ) the detailed expressions of which can be found in 

Appendix A. The main results, namely consistency and asymptotic normality of the 

proposed estimators, are summarized in the following two theorems.

Theorem 1. Consistency. Suppose assumptions A1-A6 are satisfied. Then as n → ∞, 

ϕadj + (t; β), ϕadj − (t; β, γ) and ϕadjw(t; β, γ) are uniformly consistent for ϕadj(t; β0, γ0) for t ∈ 

[0, τ], where ϕadj(t; β0, γ0) is the true value of ϕadj(t) defined in (4) under the Cox 

proportional hazards model (5).

Theorem 2. Asymptotic Normality. Suppose assumptions A1-A6 are satisfied. Then

nℎ{ϕadj + (t; β) − ϕadj(t; β0, γ0)} d N(0, σ+2 (t)), for t ∈ [0, τ],

where the limiting variance σ+2 (t) = ∫ K2(u)du∫ {exp( − β0
Tz) − ϕadj(t; β0, γ0)}2dFZ ∣ T (z)/B(t). 

We also have

nℎ{ϕadj − (t; β, γ) − ϕadj(t; β0, γ0)} d N(0, σ−2 (t)), for t ∈ [0, τ],

where the limiting variance σ−2 (t) = B(t)A−2(t)∫ K2(u)du∫ ∫ {exp(γ0
Tu) − ψ−1(t)v(t)

exp(β0
Tz + γ0

Tu)}2fZ, U ∣ T ≥ t(z, u)dzdu. The asymptotic normality of the weighted estimator 

ϕadjw(t; β, γ) then follows, that is, nℎ{ϕadjw(t; β, γ) − ϕadj(t; β0, γ0)} d N(0, σw2 (t)) for t ∈ 

[0, τ], where σw2 (t) = π0
2σ+2 (t) + (1 − π0)2σ−2 (t).

The proofs of Theorem 1 and 2 are provided in Appendix A and B.

2.3 Variance Estimation with Correction for Finite Sample

One natural estimator for σ+2 (t), σ−2 (t) or σw2 (t), denoted as σ+
2 (t), σ−

2 (t) and 

π0
2σ+

2 (t) + (1 − π0)2σ−
2 (t), can be obtained by replacing the expectation components with the 

corresponding empirical estimators, and replacing parameters (βT, γT) with their estimators. 

However, variance estimates relying solely on the asymptotic results may perform poorly 

due to the slow vanishing rate of ℎ. In fact, in real practice with finite samples, ℎ might 

not be close to zero even with large sample size. In this case some components in 

nℎ{ϕadj + (t; β) − ϕadj(t; β0, γ0)}, nℎ{ϕadj − (t; β, γ) − ϕadj(t; β0, γ0)}, and 

nℎ{ϕadjw(t; β, γ) − ϕadj(t; β0, γ0)} cannot be ignored even though their asymptotic 

contribution to the overall variance is negligible. Instead, we need to consider their 

contributions to the asymptotic results by taking the bandwidth h as a known non-zero 

constant. The variance estimators with finite sampling correction are
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σ+∗ 2(t; ℎ) = σ+2 (t) + ℎDn(t; β)T I−1(β)Dn(t; β) ∕ Bn2(t)

+ 2ℎ
n ∑

i = 1

n
ΔiKℎ(t − Xi){1 − ϕadj + (t; β) − exp( − βTZi)}lβ(Xi)TDn(t; β) ∕ Bn2(t),

σ−∗ 2(t; ℎ) = σ−2 (t) + ℎ
n ∑

i = 1

n
[ lγ(Xi)TGn(t; γ) − {1 − ϕadj − (t; β, γ)}lθ(Xi)TDn(t; θ)]2 ∕ An

2(t; β, γ)

+ 2ℎ
n ∑

i = 1

n
(1 − Δi)Kℎ(t − Xi) exp(γTUi) − {1 − ϕadj − (t; β, γ)} exp(βTZi + γTUi)

× [lγ(Xi)TGn(t; γ) − {1 − ϕadj − (t; β, γ)}lθ(Xi)TDn(t; θ)] ∕ An
2(t; β, γ),

σw∗ 2(t; ℎ) = π0
2σ+∗ 2(t; ℎ) + (1 − π0)2σ−∗ 2(t; ℎ) + 2π0(1 − π0)σ+ −∗ (t; ℎ),

where I−1(β) is the estimated information matrix for β, lβ(Xi), lγ(Xi) and lθ(Xi) are the 

estimated efficient influence functions for β, γ and θ, respectively, and

σ+ −∗ (t; ℎ) = − {σAF (t; ℎ)An
−1(t; β, γ)Bn−1(t) + σCE(t; ℎ)An

−1(t; β, γ)Bn−1(t)
+ σCF (t; ℎ)An

−1(t; β, γ)Bn−1(t)}

σAF (t; ℎ) = ℎ
n ∑

i = 1

n
ΔiKℎ(t − Xi){φ(t; β) − exp( − βTZi)}

× [lγ(Xi)TGn(t; γ) − {1 − ϕadj − (t; β, γ)}lθ(Xi)TDn(t; θ)],

σCE(t; ℎ) = ℎ
n ∑

i = 1

n
(1 − Δi)Kℎ(t − Xi) exp(γTUi) − {1 − ϕadj − (t; β, γ)} exp(βTZi + γTUi)

× {lβ(Xi)TDn(t; γ)},

σCF (t; ℎ) = ℎ
n ∑

i = 1

n
{lβ(Xi)TDn(t; γ)}[lγ(Xi)TGn(t; γ) − {1 − ϕadj − (t; β, γ)}lθ(Xi)TDn(t; θ)] .

The consistency of σ+
∗ 2(t; ℎ), σ−

∗ 2(t; ℎ) and σw
∗ 2(t; ℎ) are summarized in the following 

theorem with the proof and derivation of the correction terms provided in Appendix C.

Theorem 3. Suppose that assumptions A1-A6 are satisfied. Then for t ∈ [0, τ], σ+
∗ 2(t; ℎ), 

σ−
∗ 2(t; ℎ) and σw

∗ 2(t; ℎ) are uniformly consistent for σ+2 (t), σ−2 (t) and σw2 (t).

Based on the variance estimator, we can construct the point-wise 100(1 – α%) confidence 

interval for the three estimators:

ϕadj + (t; β) ∓ z1 − α ∕ 2(nℎ)−1 ∕ 2σ+
∗ (t; ℎ),

ϕadj − (t; β, γ) ∓ z1 − α ∕ 2(nℎ)−1 ∕ 2σ−
∗ (t; ℎ),

ϕadjw(t; β, γ) ∓ z1 − α ∕ 2(nℎ)−1 ∕ 2σw
∗ (t; ℎ),

(11)

where z1–α/2 is the 100(1 – α/2)th percentile of the standard distribution.

In practice, it is also often of interest to construct simultaneous 100(1–α)% confidence 

bands. Here we use the bootstrap resampling approach to construct the confidence 

bands29,30. The original bootstrap method, random resampling with replacement, works well 

from the simulation studies. For simplicity, we only illustrate the construction of confidence 
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band for ϕadjw(t; β, γ). Consider a process nℎ{ϕadjw(t; β, γ) − ϕadjw(t; β0, γ0)}. For each 

resampling, denote the resultant estimator as ϕadjw(t; β, γ) and its corresponding variance 

estimator as σw
∗ 2(t; ℎ), calculated using the resampled data. We use the process 

nℎ{ϕadjw(t; β, γ) − ϕadjw(t; β, γ)} to approximate nℎ{ϕadjw(t; β, γ) − ϕadjw(t; β0, γ0)} by 

simulating a large number of realizations through random resampling with replacement. 

Then the critical value for 100(1–α)th percentile simultaneous confidence band can be 

calculated based on these simulations:

Pr sup
t ∈ [0, τ]

∣ nℎ{ϕadjw(t; β, γ) − ϕadjw(t; β, γ)} ∣
σw

∗ (t; ℎ)
≤ z1 − α ∕ 2 − 1 − α, (12)

and the resulting confidence band for the time range of [0, τ] is

ϕadjw(t; β, γ) ∓ z1 − α ∕ 2(nℎ)−1 ∕ 2σw
∗ (t; ℎ) . (13)

2.4 Kernel and Bandwidth Selection

In the kernel estimation, the performance of the estimator depends on choices of the kernel 

function and the bandwidth. While the kernel function has much less impact, it is known that 

bandwidth choice is critical to the adequacy of the estimator. Here we use the Epanechinikov 

kernel given its optimization property31 and a “leave-one-out” least squares cross-validation 

approach which is a well-working approach for automatically optimizing the 

bandwidth32,33. The idea is to split the data into two parts, the larger part that contains all 

but one subject, and the smaller part that contains one subject, then use the larger part of the 

data for estimation and the smaller part for evaluation of accuracy. The optimal bandwidth 

would minimize the average prediction squared errors. In particular, let

ϕadj +
( − j) (Xj; ℎ) = 1 −

∑i = 1
n I(i ≠ j) exp( − βTZi)ΔiKℎ(Xj − Xi)

∑i = 1
n I(i ≠ j)ΔiKℎ(Xj − Xi)

,

ϕadj −
( − j) (Xj; ℎ) = 1 −

∑i = 1
n I(i ≠ j) exp(γTUi)(1 − Δi)Kℎ(Xj − Xi)

∑i = 1
n I(i ≠ j) exp(βTZi + γTUi)(1 − Δi)Kℎ(Xj − Xi)

.

which are the estimators of ϕadj(Xj) computed with all but the jth subjects. Then the cross-

validation loss function is given by

CV (ℎ) = 1
n ∑

j = 1

n
1 − exp( − βTZj) − ϕadjw

( − j)(Xj; ℎ)
2
,

where ϕadjw
( − j)(Xj; ℎ) is π0ϕadj +

( − j) (Xj; ℎ) + (1 − π0)ϕadj − (Xj; ℎ) if Δj = 1 and 

π0ϕadj + (Xj; ℎ) + (1 − π0)ϕadj −
( − j) (Xj; ℎ) if Δj = 0. A cross-validation bandwidth is obtained by 

minimizing CV(h) with respect to h, ℎCV = arg minℎ > 0 CV (ℎ). In practice, this approach 

generally works well.
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3 Simulation Studies

We conducted simulation studies to evaluate the finite sample performance of the proposed 

estimators for case-control data. Specifically, we first generated a large population with 

100000 subjects. For each subject, we generated an exposure and a confounder. We then 

generated a failure time T based on the Cox model (5) with a Weibull baseline hazard λ0(t) 
= (ν/η)(t/η)ν−1, where ν and η are shape and scale parameters, respectively. We also 

generated an independent censoring time C. The observed time X was the minimum of T 
and C, and the disease status Δ = 1 if T ≤ C and Δ = 0 if T > C. We obtained the case-control 

sample by randomly sampling 2000 cases (Δ = 1), and 1000, 2000 or 4000 controls (Δ = 0) 

with time matched to the cases within five-year intervals. Thus the observed data for analysis 

consist of X, Z, U and Δ. We estimated (βT, γT) using conventional logistic regression 

adjusting for age. The proposed estimators were obtained using the Epanechnikov kernel 

(i.e., K(x) = 0.75(1 – x2)I∣x∣<1) and the bandwidth was selected by the proposed automatic 

cross-validation approach. We also obtained estimators with a range of fixed bandwidths to 

evaluate the performance of the automatic bandwidth selector.

We set parameters in the baseline hazard function as η = 180 or 360, and ν = 2. For 

generating (Z, U), we considered two scenarios. In scenario I, (Z, U) jointly follow Bernoulli 

distributions with the probabilities of (Z, U) being (1, 1), (1, 0), (0, 1), and (0, 0) as 0.35, 

0.15, 0.15, and 0.35, respectively. In scenario II, we generated a continuous U which follows 

a normal distribution N(0, 0.5) and then a binary Z was generated with the probability of Z = 

1 as exp(U)/{exp(U) + 1}. The log-hazard ratios of Z and U were set to be log(3) and 

log(1.5), respectively. Censoring time was truncated normal between 1 and 100 with 

standard deviation of 30, and the mean was set to yield censoring probability of 70% or 80% 

for η = 180, 90% or 95% for η = 360. For each simulation scenario, a total of 2000 

simulated datasets were generated. It can be seen from Table 1 that ϕadj(t) decreases 

monotonically, as subjects who had the exposure experienced diseases at an earlier age, 

leaving fewer subjects with exposure in the older age. The performance of the proposed 

estimators was assessed by following summary statistics: bias, empirical standard deviation 

(ESD), asymptotic-based standard error (ASE), and 95% coverage rate at selected age t. In 

addition, we calculated the coverage rate of the 95% simultaneous confidence band 

calculated by bootstrap with 200 repetitions, across the range of the observed ages. 

Specifically, the bias was calculated by taking the absolute difference between the mean of 

the point estimates and the true value of ϕadj(t). The ESD was the empirical standard 

deviation of the point estimates, and ASE was the average of the standard error estimators 

over the 2000 simulated datasets. The 95% pointwise coverage rate was the proportion of 

95% estimated confidence intervals that covered the true value ϕadj(t) at time t.

Table 1 shows the summary results of the simulations under scenarios I and II for 80% 

censoring and an equal number of cases and controls. Results of other combinations of 

censoring probability and case/control ratio have similar patterns and are presented in 

Appendix D. We see ϕadj(t) approximates Φadj(t) very well. The bias for the proposed 

estimators is small under both scenarios across a wide range of ages. The ASE is close to the 

ESD. The estimated pointwise coverage rates are generally close to 95%, so are the 

simultaneous confidence bands. This indicates that the proposed estimators and the 
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asymptotic-based variance estimators perform well. We also evaluated the proposed methods 

across a wide range of bandwidths and present the results in Appendix D. As expected from 

the bias-variance trade-off, when a small bandwidth is used, the bias tends to be smaller 

while the variance becomes larger, and when the bandwidth is larger, the bias tends to be 

greater especially at late ages, and the variance is smaller. The cross-validation selected 

bandwidths balance the bias and variance, yielding satisfactory estimates. As expected, 

ϕadjw(t; β , γ ) is more robust than either of ϕadj + (t; β ) and ϕadj − (t; β , γ ) in terms of bias, 

efficiency and coverage rates.

4 An Application to a Case-Control Study of Colorectal Cancer

4.1 Real Data Analysis

We apply our proposed methods to three case-control studies from the Genetics and 

Epidemiology Colorectal Cancer Consortium (GECCO). GECCO consists of dozens of 

well-characterized (nested) case-control studies of colorectal cancer (CRC)34. The broad 

objective of the consortium is to evaluate both lifestyle, environmental and genetic risk 

factors in relation to colorectal cancer risk. Key clinical and environmental data have been 

harmonized across all studies. Although CRC is one of the common cancers, it is still rare in 

the general population. As a result, the most common study design for studying CRC is the 

case-control study design. For illustration, the subset of the data we used includes 5498 

subjects (2742 cases and 2756 controls) from three cohort-based nested case-control studies, 

for which controls are frequency matched on both age and gender and the risk factor 

information was collected at the study entry. All models are adjusted for study, age and 

gender. The aim of this data analysis is to estimate the adjusted PAHs of various risk factors 

to colorectal cancer.

In the analysis, we focus on history of diabetes (yes/no) and obesity (body mass index, BMI, 

>30kg/m2). Both are risk factors for colorectal cancer and obesity is a risk factor for 

diabetes. It is therefore of interest to examine the adjusted PAH of obesity accounting for 

diabetes history, and vice versa. For ever-smokers, we also examine the adjusted PAH of 

years-since-quit-smoking (≤ 10 years vs > 10 years) while adjusting for pack-years (≥ 22.5 

vs < 22.5), and vice versa.

The descriptive statistics of risk factors as well as matching variables age and gender by 

case-control status are summarized in Table 2. It also includes estimates of odds ratios, 

classic Levin’s PAFs7, and the model-based adjusted PAFs for each of the risk factors35, 

treating the outcome colorectal cancer as binary (yes/no). By study design, age and gender 

are balanced between cases and controls. History of diabetes, obesity, and ever smoking are 

more common in cases than controls. For ever-smokers, cases also have a higher average of 

pack-year and shorter years-since-quit-smoking. History of diabetes has the highest OR 

estimate of 1.57, however, the prevalence of exposure is low with 7.5% in cases and 4.7% in 

controls, resulting in an estimated unadjusted PAF of only 0.029 (95% confidence interval 

(CI): 0.016–0.043). In contrast, the odds ratio estimate for obesity is 1.17 (95% CI: 1.04–

1.32) and the prevalence is 29.5% in cases and 25.7% in controls. As a result, the unadjusted 

PAF is 0.051 (95% CI: 0.020-0.083), which is greater than obesity. The adjusted PAF 
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estimates are roughly the same, suggesting that both risk factors contribute to colorectal 

cancer risk. For ever-smokers, pack-year has an estimated unadjusted PAF of 0.153 (95% 

CI: 0.089-0.218) and years-since-quit-smoking has an estimate of 0.073 (95% CI: 

0.024-0.121). After adjusting for pack-year, the adjusted PAF for years-since-quit-smoking 

is reduced roughly to half.

We estimated the adjusted PAH for each of the risk factors using the weighted estimator 

ϕadjw(t; β , γ ), because it has the most robust performance as shown in the simulation studies. 

The Epanechnikov kernel was used and the bandwidth was obtained by cross-validation. We 

fit a logistic regression model for obesity and diabetes history, and likewise for pack-year 

and years-since-quit-smoking in ever-smokers. As comparison, we also calculated the 

unadjusted PAH13. To test whether the constant hazard ratio hold for the underlying Cox 

model, an interaction term between time and the risk factor was added to the logistic model 

and the interaction term was not significantly different with 0 for each of the four risk 

factors at the 0.05 level.

It is worth noting that while obesity is a well-known confounder for the relationship between 

diabetes and CRC, it may not be true that diabetes is a confounder for obesity and CRC. 

Therefore, the PAH of obesity adjusting for diabetes need to be interpreted with caution. As 

diabetes may likely be on the pathway from obesity to CRC risk, such an adjusted PAH may 

be interpreted as the proportion of reduction of the hazard due to the direct effect of obesity 

with the indirect effect of obesity to CRC through diabetes unchanged. If one were to 

measure the impact of eliminating the total effect of obesity, adjusting for diabetes in the 

PAH of obesity might not be needed.

Figure 1 shows both unadjusted and adjusted PAHs for each of the four risk factors on CRC. 

The adjusted PAH for diabetes after adjusting for obesity is nearly unchanged compared to 

the unadjusted PAH, while the adjusted PAH for obesity after adjusting for diabetes is 

slightly lower than the unadjusted PAH and the mean difference across the age is about 0.02. 

The 95% confidence intervals for both adjusted PAHs of obesity and diabetes exclude 0, 

suggesting that despite somewhat reduced the PAH for obesity after adjusting for diabetes, 

both risk factors contribute to colorectal cancer risk. For ever-smokers, the PAH for pack-

year after adjusting for years-since-quit-smoking is essentially the same as the unadjusted 

PAH. In contrast, the PAH for the years-since-quit-smoking is greatly reduced after adjusting 

for pack-year, and the 95% confidence intervals include 0 over time, suggesting that the 

PAH of years-since-quit-smoking is largely explained by pack-year.

The PAH for diabetes, year-since-quit-smoking and pack-years are approximately flat. The 

PAH for obesity decreases over time, from 8.8% at age 50 years old to 4.4% at age 80 years 

old, suggesting an early intervention may possibly reduce risk for early-onset colorectal 

cancer. Estimates of the adjusted PAHs and 95% confidence intervals at selected ages, and 

figures of the simultaneous confidence bands can be found in Appendix D.

4.2 Real Data Based Simulation

To assess the performance of the proposed weighted estimator for the real data, we 

conducted a simulation study mimicking the scenarios for diabetes and obesity as shown in 
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the real data example. Specifically, we generated two binary covariates (diabetes and 

obesity) from a multinomial distribution that the probabilities of having diabetes only, 

obesity only and both are 4.7%, 25.7% and 2.3%, respectively, same as what we observed in 

the controls of the GECCO data. The failure time T was generated based on the Cox 

proportional hazards model with log-hazard ratios as the estimated coefficients from logistic 

regression for diabetes (0.45) and obesity (0.15). The baseline hazard function was chosen 

such that the age-specific colorectal cancer incidence rates follow the Surveillance 

Epidemiology and End Results Registry (SEER) registry (https://seer.cancer.gov/data/). The 

probability of developing colorectal cancer is 2%, which can be considered as a rare disease 

scenario. We generated independent right censoring time as the minimum of current age and 

age at death obtained from the US lifetable. We generated a large population with 300000 

subjects. The case-control sample was obtained by randomly sampling 2500 cases, and 

1250, 2500 or 5000 controls with age matched to the cases within five-year intervals. The 

estimation and inference were identical as in Section 3. A total of 2000 simulated datasets 

were generated.

Two exposures were considered: (1) diabetes as the exposure and obesity as the confounder; 

(2) obesity as the exposure and diabetes as the confounder. The same summary statistics as 

in Section 3 were calculated to assess the performance of the proposed estimators. The 

results for equal number of cases and controls are presented in Table 3, and the results for 

other case/control ratios are presented in Appendix D. The bias for the proposed estimators 

is small across a wide range of ages. The ASE approximates the ESD well. The pointwise 

coverage rates are close to 95%, so are the simultaneous confidence bands. Note that mild 

under-coverage for the scenario of diabetes as the exposure at 40 and 80 years is mainly due 

to relatively small sample sizes. The average sample sizes within the kernel range at 40, 60 

and 80 years are 714, 1746 and 753 for the method using only cases, 795, 1887 and 828 for 

the method using only controls, 1523, 3657 and 1597 for the method using both cases and 

controls, respectively. In this situation, the kernel bandwidth selection balances between bias 

and variance, which may lead to moderate bias and/or somewhat imprecise estimate of 

standard error. For age 40, the standard error approximates the empirical standard deviation 

well, but the bias is not very close to 0, resulting in under-coverage; for age 80, the bias is 

close to 0, but the estimated standard error is a bit lower than the empirical standard 

deviation, also resulting in under-coverage.

5 Discussion

In this article, we define an adjusted population attributable hazard function and propose a 

kernel-based estimator for the data from case-control studies. We establish the consistency 

and asymptotic normality of the proposed estimator, and show through extensive simulation 

the proposed estimator and the analytical variance estimator perform well in finite sample 

sizes. Our simulation also shows that the proposed estimator is robust with the proposed 

cross-validation bandwidth selection.

Our adjusted PAH for time-to-event outcome has connection to the adjusted PAF for binary 

outcome under the case-control study design. Estimation of the adjusted PAF from case-

control data could be based on equation (2) where the odds ratio can be estimated by the 
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logistic regression model to approximate relative risk (by assuming rare disease), and the 

density of exposure and confounders in disease can be estimated by an empirical 

estimator8,23. In comparison, our estimator of the adjusted PAH is obtained by plugging in 

the odds ratio estimates from logistic regression model for log-hazard ratio in the Cox model 

and kernel estimators of the conditional density functions of exposure and confounders 

given T = t or T ≥ t. If a very large bandwidth is used to cover the entire time interval, the 

adjusted PAH becomes a flat line and approaches to the adjusted PAF proposed by Bruzzi et 

al.23.

In observational studies, important assumptions underlie the unadjusted and adjusted PAFs, 

as well as their extensions to time-to-event. The first assumption is that removing the 

exposure does not change the distribution of other risk factors. It may not be true in real life, 

however. For example, quitting smoking may simultaneously decrease alcohol consumption 

due to improved health behavior, which makes interpretation of the smoking PAF for 

coronary deaths difficult1. The second assumption, which is untestable, is no unmeasured 

confounding, i.e., measured covariates should be sufficient for confounding control36. While 

untestable, its plausibility may be determined on a case-by-case basis using subject matter 

knowledge. If it is violated, the PAF and extensions need to be interpreted with caution. The 

third assumption is that the exposure can be eradicated perfectly by an intervention. 

However, complete removal of an exposure is often unrealistic. To relax this assumption, one 

may consider the generalized impact fraction, which is the fractional reduction of cases that 

would result from changing the current level of exposure in the population to some modified 

(partially removed) level37.

Our proposed estimator was derived under the Cox proportional hazards model. In practice, 

the Cox model has been shown fairly robust, as long as the proportionality of the hazards 

functions between exposed and non-exposed is not seriously violated or could be adequately 

accounted for by for example, interaction between time and covariates. However, such 

robustness is not necessarily guaranteed. A further extension to allow for non-

proportionality would be of interest. Another potential extension is that since in practice it is 

not uncommon that many exposures and/or confounders change with time, accommodating 

time-dependent exposures and/or confounders is also of importance. However, the additional 

methodological development for time-dependent exposures and/or confounders requires 

special techniques such as a marginal structural model38,39. This is beyond the scope of the 

current manuscript and will be communicated in the future work.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimates of the unadjusted and adjusted PAHs with 95% pointwise confidence intervals 

versus time t (age in years) for various risk factors.
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Table 1.

Summary statistics of the ϕadj(t) estimators under scenario I and II for 80% censoring and an equal number of 

cases and controls. Bias: absolute difference between the true value of ϕadj(t) and the mean of the point 

estimator. ESD: empirical standard deviation. ASE: mean of asymptotic-based standard error estimates. CR 

pointwise: coverage rate of 95% pointwise confidence intervals. CR: coverage rate of 95% simultaneous 

confidence bands.

Scenario I: binary U Scenario II: continuous U

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

30 0.509 0.507 30 0.512 0.510

50 0.491 0.486 50 0.497 0.492

70 0.462 0.450 70 0.473 0.463

Age ϕadj + ϕadj − ϕadjw Age ϕadj + ϕadj − ϕadjw
Bias 30 0.000 −0.001 0.000 Bias 30 −0.001 −0.001 0.000

50 0.000 −0.001 0.000 50 0.000 −0.001 0.000

70 0.001 −0.001 0.000 70 0.001 −0.002 0.000

ESD 30 0.025 0.030 0.025 ESD 30 0.027 0.032 0.026

50 0.027 0.031 0.025 50 0.027 0.031 0.026

70 0.030 0.043 0.028 70 0.029 0.038 0.028

ASE 30 0.027 0.029 0.026 ASE 30 0.027 0.030 0.026

50 0.027 0.030 0.026 50 0.027 0.030 0.026

70 0.030 0.038 0.028 70 0.029 0.036 0.027

CR(%) pointwise 30 95.7 95.5 95.4 CR(%) pointwise 30 94.8 94.0 94.3

50 95.1 94.8 95.1 50 94.6 95.3 94.9

70 95.4 93.5 95.4 70 94.8 93.9 94.7

CR(%) 20:70 95.2 94.1 94.8 CR(%) 20:70 93.9 93.4 94.0
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Table 2.

Summary statistics of risk factors by case-control status in GECCO data. Age: age at onset for cases and age at 

selection for controls. Years since quit smoking: <=10 years compared to >10 years since quit smoking, for 

ever-smokers only. Pack-year (>=22.5): for ever-smokers only.

Variables cases controls OR(95% CI) PAF (95 % CI) PAFadj (95 % CI)

Age (years) (Mean, range) 70.8 (50-91) 70.9 (50-91) - - -

Gender (female) 73.9% 74.2% - - -

History of Diabetes 7.5% 4.7% 1.57 (1.24, 1.98) 0.029 (0.016, 0.043) 0.027 (−0.002, 0.056)

Obesity 29.5% 25.7% 1.17 (1.04, 1.32) 0.051 (0.020, 0.083) 0.043 (0.002, 0.083)

Ever smoking 55.2% 50.8% - - -

Years since quit smoking 35.0% 29.9% 1.12 (0.94, 1.33) 0.073 (0.024, 0.121) 0.037 (−0.029, 0.104)

Pack-year (>=22.5) 53.9% 46.2% 1.38 (1.16, 1.63) 0.153 (0.089, 0.218) 0.150 (0.074, 0.226)
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Table 3.

Summary statistics of the estimators from simulated datasets based on real data for equal number of cases and 

controls. Bias: absolute difference between the true value of ϕadj(t) and the mean of the point estimator. ESD: 

sampling standard deviation. ASE: mean of asymptotic-based standard error estimates. CR pointwise: 

coverage rate of 95% pointwise confidence intervals. CR: coverage rate of 95% simultaneous confidence 

bands.

Diabetes as the exposure Obesity as the exposure

Age ϕadj(t) Φadj(t) Age ϕadj(t) Φadj(t)

40 .0269 .0269 40 .0408 .0408

60 .0266 .0266 60 .0407 .0407

80 .0253 .0252 80 .0403 .0401

Age ϕadj + ϕadj − ϕadjw Age ϕadj + ϕadj − ϕadjw
Bias 40 −.0004 −.0007 −.0007 Bias 40 .0003 .0003 .0002

60 −.0006 −.0006 −.0005 60 .0003 .0003 .0003

80 −.0001 −.0001 −.0002 80 .0005 .0005 .0004

ESD 40 .0084 .0085 .0081 ESD 40 .0172 .0172 .0171

60 .0074 .0074 .0074 60 .0170 .0170 .0170

80 .0083 .0083 .0079 80 .0172 .0171 .0170

ASE 40 .0083 .0084 .0080 ASE 40 .0173 .0173 .0172

60 .0073 .0074 .0073 60 .0171 .0171 .0171

80 .0079 .0081 .0077 80 .0171 .0171 .0170

CR(%) pointwise 40 93.6 92.8 93.9 CR(%) pointwise 40 95.7 95.5 95.7

60 95.0 94.9 95.4 60 95.4 95.5 95.4

80 93.3 93.8 93.7 80 95.4 95.7 95.3

CR(%) 40:80 92.5 92.0 92.7 CR(%) 40:80 94.6 94.5 94.9
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