Skip to main content
. Author manuscript; available in PMC: 2021 Feb 1.
Published in final edited form as: J Comput Aided Mol Des. 2020 Jan 23;34(2):99–119. doi: 10.1007/s10822-020-00289-y

Table 1.

Top-performing pose predictions for BACE1 Stage 1a (A) and Stage 1b (B), based on median Pose 1 RMSD (Å). The standard deviations (SD RMSD) of the Pose 1 RMSDs are also provided as measure of scatter. Software lists the software listed by the participants in their protocol files. Submitter/PI: names of submitter and principal investigator (PI) provided with submission. Organization: institution of PI provided with submission. Visual Inspection lists the participant’s response to the standard question “Did you use visual inspection to select, eliminate, and/or manually adjust your final predicted poses?” Similar Ligands lists the participant’s response to the standard question “Did you use publicly available co-crystal structures of this protein with similar ligands to guide your pose predictions?”

(A)
Median RMSD Mean RMSD SD RMSD Software Submitter/PI Organization Visual Inspection Similar Ligands Submission ID
0.55 0.81 0.58 efindsite 1.3, openbabel 2.4.1, discover studio visualizer 4.5, maestro 10.2, shafts, gaussian 09, amber 16, homemade deep learning K. Gao/G. Wei Michigan State yes yes 5t302
0.56 0.81 0.57 efindsite 1.3, openbabel 2.4.1, discover studio visualizer 4.5, maestro 10.2, shafts, gaussian 09, amber 16, homemade deep learning K. Gao/G. Wei Michigan State yes yes 0invp
0.64 0.77 0.34 brikard, libmol, rdkit, openbabel D. Kozakov/D. Kozakov Stony Brook yes yes 4x5a8
0.72 0.94 0.65 rdkit/torch/macromodel Anonymous Anonymous yes yes uq8b0
0.74 0.93 0.45 molsoft icm 3.8–7b P. Lam/M. Totrov Molsoft no yes fky0k
0.83 1.46 2.07 cactvs chemoinformatics toolkit v3.433/schrodinger suite 2018–1/corina v3.60/ucsf chimera v1.10.2/gold v5.2 I. Bogdan/I. Bogdan Institut de Chimie des Substances Naturelles no yes 0zdxk
0.83 1.1 0.63 cactvs chemoinformatics toolkit v3.433/schrodinger suite 2018–1/corina v3.60/ucsf chimera v1.10.2/gold v5.2 I. Bogdan/I. Bogdan Institut de Chimie des Substances Naturelles no yes rapwf
0.96 1.2 0.8 Rosetta/corina classic, webserver version/openbabel-2.4.1/antechamber-17.3 H. Park/ University of Washington no yes xdd3r
1.02 1.33 0.71 htmd1.13.8/acemd2/rdkit2018.03.4 A. Rial/G. Fabritiis Accelera yes yes qqou3
1.02 1.06 0.57 maestro/openeye/mgltools/autodock vina X.Xu/X. Zou University of Missouri-Columbia yes yes t3ddc
(B)
Median RMSD Mean RMSD SD RMSD Software Submitter/PI Organization Visual
Inspection
Similar Ligands Submission ID
0.56 0.61 0.23 molsoft icm 3.8–7b L.Polo/M.Totrov Molsoft No no 5od5g
0.57 0.84 0.58 efindsite 1.3, openbabel 2.4.1, discover studio visualizer 4.5, maestro 10.2, shafts, guassian 09, amber 16, homemade deep learning K. Gao/G.Wei Michigan State yes yes 2ieqo
0.59 0.85 0.56 efindsite 1.3, openbabel 2.4.1, discover studio visualizer 4.5, maestro 10.2, shafts, guassian 09, amber 16, homemade deep learning K. Gao/G.Wei Michigan State yes yes 4myne
0.64 0.76 0.32 brikard, libmol, rdkit, openbabel, vina, libsampling D.Kozakov/D.Kozakov Stonybrook yes yes mwnwr
0.66 0.84 0.63 rdkit/torch/macromodel Anonymous Anonymous no yes qaezm
0.69 1.18 1.27 moe2016.08/autodock4/mgltools1.5.7rc1/amber16/ligprep/rdkit2018–3 M.Carlos/M.Marti yes yes xd07v
0.71 0.92 1.01 schrodinger/in-house deep learning D.Nguyen/G.Wei Michigan State no yes bix32
0.71 0.74 0.37 schrodinger/in-house deep learning D.Nguyen/G.Wei Michigan State no yes itzv6
0.74 1.34 1.92 openbabel 2.3.2 maestro 2018–3 prime smina apr 2 2016 B.Wingert/C.Camacho university of pittsburgh yes yes ah0e6
0.76 0.89 0.35 autodock vina with in-house modifications (convex-pl as a scoring function), rdkit 2018, scipy, pymol 1.8.4, unreleased version of convex-pl scoring function M.Kadukova/S.Grudinin inria grenoble, mipt moscow no yes nyrou