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Abstract

Advanced technology in whole-genome sequencing has offered the opportunity to 

comprehensively investigate the genetic contribution, particularly rare variants, to complex traits. 

Several region-based tests have been developed to jointly model the marginal effect of rare 

variants but methods to detect gene-environment (GE) interactions are underdeveloped. 

Identifying the modification effects of environmental factors on genetic risk poses a considerable 

challenge. To tackle this challenge, we develop a method to detect GE interactions for rare variants 

using generalized linear mixed effect model. The proposed method can accommodate either binary 

or continuous traits in related or unrelated samples. Under this model, genetic main effects, GE 

interactions, and sample relatedness are modeled as random effects. We adopt a kernel-based 

method to leverage the joint information across rare variants and implement variance component 

score tests to reduce the computational burden. Our simulation studies of continuous and binary 

traits show that the proposed method maintains correct type I error rates and appropriate power 

under various scenarios, such as genotype main effects and GE interaction effects in opposite 

directions and varying the proportion of causal variants in the model. We apply our method in the 

Framingham Heart Study to test GE interaction of smoking on body mass index or overweight 

status and replicate the CHRNB4 gene association reported in previous large consortium meta-

analysis of single nucleotide polymorphism (SNP)-smoking interaction. Our proposed set-based 

GE test is computationally efficient and is applicable to both binary and continuous phenotypes, 

while appropriately accounting for familial or cryptic relatedness.
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1. Introduction

Although genome-wide association studies (GWAS) have been successful in identifying 

genetic variants with strong association with disease, the variants evaluated in GWAS have 

been mostly restricted to common variants, typically defined as those with minor allele 

frequency (MAF) greater than 1 or 5%. Additionally, these identified variants explain only a 

small portion of disease heritability, which could be due to limited sample size and power in 

GWAS, and thus calls for performing meta-analysis.1 Nevertheless, even in large scale 

GWAS meta-analyses, much of the heritability remains unexplained. For example, in GWAS 

meta-analysis of adult height in > 93,000 East Asians, the investigators identified 98 loci at 

genome-wide significance that explain only about 9% of height heritability, which is a small 

proportion considering that human height heritability is approximately 80%.2

One plausible explanation for missing heritability is the presence of rare variants, which are 

not analyzed in GWAS due to their low MAF. It is well known that rare variants are 

responsible for many Mendelian disorders, but they have not been fully investigated in 

complex diseases.3,4 With rapid advances and decreasing cost of whole-genome sequencing, 

attention has been shifted to investigating the potential role of low frequency variants in 

complex human disease etiology. There is now an abundance of growing empirical evidence 

that rare variants may be responsible for complex diseases, which might account for missing 

heritability.4,5,6 For example, Igartua et al.7 identified two novel rare variants associated with 

low-density lipoprotein cholesterol and high-density lipoprotein cholesterol with larger 

effects than the previously discovered variants within the known blood lipid associated loci. 

In another study by He et al.,8 multiple rare variants were found to be associated with lower 

systolic blood pressure. Successes from rare variant association studies highlight the 

importance of rare variants to complex disease susceptibility.

When single variant tests are applied to rare genetic variants, they are severely 

underpowered, and hence several statistical methods have been developed to increase power. 

These methods are usually region-based tests that study the joint effects of rare variants in a 

specified region and can be broadly categorized into burden tests and non-burden tests. For 

burden tests, the cumulative effects of variants in a region are summarized into a single 

variable which is then tested for association with the trait of interest. Variants can be 

collapsed by summing up the number of rare alleles in a region or by using a binary variable 

to indicate whether an individual has any rare alleles in that region. Other extensions of 

burden tests have been developed.8,9,10 Burden tests are most powerful when variants in 

consideration are causal and the direction of the effect on risk of the alternate/minor allele is 

the same. When the alternate/minor alleles of causal variants have effects on the phenotype 

in different direction, and/or the proportion of causal variants is small, burden tests suffer 

from low power.4,12,13 To address this issue, non-burden tests have been proposed that focus 
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on aggregating individual test statistics. Among non-burden tests, the sequence kernel 

association test (SKAT) is a popular method that summarizes variant information using a 

kernel function and applies variance component score test to evaluate the significance.14 

SKAT is powerful when there are variants in mixed directions or when the proportion of 

causal variant is small, but it is less powerful than the burden tests when the majority of 

variants in a region are causal with effects in the same direction.14,15

Another plausible explanation for missing heritability is due to gene-environment (GE) 

interactions. Complex diseases are multifactorial and involve both genetics and 

environmental factors. Therefore, studying just the main effects, either genetic or 

environmental, cannot provide full insights into the biological mechanisms. Studying GE 

interactions can provide better insights into the biological mechanisms of complex diseases, 

which help to identify subgroups that are at high risk and eventually lead to better 

diagnostics and personalized treatments.16,17 Typically, GE tests require larger sample sizes 

than a main effects test to achieve appropriate power, and rare variant analysis also needs 

bigger sample compared to common variant analysis to maintain power.17,18,19

Several GE interaction of rare variant methods are available but they are only applicable to 

unrelated individuals and cannot correctly account for familial correlation in their models.
12,20 Tzeng et al.19 developed similarity-based regression method (SimReg) to test GE 

interaction effects of rare variants for continuous traits. SimReg allows for covariate 

adjustments, models both main and interaction effects, and is computationally efficient. 

Zhao et al.17 extended SimReg to allow for binary traits for common or rare variants. Lin et 

al.21 introduced rare variant by environment interaction method using a variance component 

test under the generalized linear model framework. Chen et al.18 proposed two GE 

interaction tests (rareGE) and a joint test of main effect and interaction effect for rare 

variants using variance component score tests. In rareGE, genetic variants can be included as 

fixed or random effects for the interaction test and rareGE works for both binary and 

continuous traits. Recently, Mazo Lopera et al.22 developed SNP-set GE interaction method 

for family data but it was proposed in the context of common variants. Coombes et al.23 

extended gene-based GE interaction methods to account for multiple interactions in family 

data but they are applicable to continuous outcomes only.

In this article, we introduce a unified approach for GE interaction tests for rare variants 

(famGE) to correctly incorporate sample relatedness. Our approach can accommodate both 

binary and continuous traits in family data, eliminating the need to restrict samples to just 

unrelated individuals. We adopt a kernel-based method to leverage the joint information 

across rare variants. We assume main genetic variants, GE interaction term, and family 

correlation to be random effects and implemented a variance component score test in the 

generalized linear mixed model (GLMM) framework to reduce the computational burden.

The paper is organized as follows. In section 2, we introduce our notation, the GE 

interaction model, and the test statistic. In section 3, we conduct extensive simulations under 

various settings to assess type 1 error rates and power of our approach, comparing it to 

rareGE and the burden test. We apply our method in testing gene by smoking interaction on 
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body mass index (BMI), using family data from the Framingham Heart Study (FHS) in 

section 4. We discuss our findings of our approach in section 5.

2. Methods

Notations and model settings for interaction test for family data

Assuming a sample of size n, let Y be n × 1 vector of phenotype (binary or continuous) with 

E(Y) = μ and var(Y) = ϕv(μ), where μ = [μ1…μn]T is the mean vector, ϕ is the dispersion 

parameter (1 for binary), and v(·) is the variance function. We consider the following 

GLMM for testing GE interactions:

g μ = Xα + GW 1θ + EGW 2γ + d, (1)

where g(·) is the link function, X is an n × p covariate matrix including the intercept and the 

environmental variable E, α is a p × 1 vector associated with the fixed covariate effects, G is 

an n × q genotype matrix, θ is a q × 1 vector of random effects for the genetic variants, EG 
is an n × q GE interaction matrix, γ is a q × 1 vector of random effects for GE interaction, 

and d is an n × 1 vector for the random effects of familial correlation. W1 and W2 are q × q 

diagonal matrices with pre-specified weights for genetic main effects and GE interaction 

effects, respectively. In famGE framework, user-defined weights can be flexibly included, 

such as weighs calculated based on MAF or functional annotation scores. Good choices of 

weights can boost power. For the three random effects (genetic variants, GE interactions, and 

relatedness in families respectively), we assume that

θ N 0, σM
2 Iq

γ N 0, σI
2Iq

d N 0, σG
2 ψ

where ψ is twice the n × n kinship matrix from family relationships obtained from a 

pedigree or an empirical kinship calculated from genotype data to account for cryptic 

relatedness. Kinship coefficient summarizes genetic similarity between two individuals. The 

random effects θ, γ, and d are assumed to be independent from each other. If γ is treated as 

a fixed effect, we would perform a q degrees of freedom score test, but this test can lead to 

power loss when q is large.12 By assuming that γ follows a normal distribution with mean 0 

and variance σI
2Iq, the null hypothesis for the interaction test: H0: γ = 0 is equivalent to 

testing H0: σI
2 = 0 with a variance component score test.12,14 Score tests only require fitting 

the model under the null hypothesis, so they are more computationally efficient.
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Estimation and hypothesis testing

To fit the null model for binary traits, we use the penalized quasi-likelihood method. (See 

Appendix 1 for complete derivation). Because the integrated quasi-likelihood function for 

binary traits contains a high dimensional integral that is intractable, we use the Laplacian 

method to approximate the integral. To estimate the parameters, we define the linear 

working vector under the null hypothesis Y0 = Xα + GW1θ + d + Δ(Y−μ), where Δ = diag{g

′(μi)}, and let D = diag 1
ϕv μi g′ μi

2 . We iteratively fit the working vector to estimate the 

parameters until convergence to obtain our restricted maximum likelihood (or maximum 

likelihood) estimates.24

Let α, σM
2 , and σG

2  be the restricted maximum likelihood (or maximum likelihood) estimates 

under the null hypothesis. We can then calculate μ, Δ and D using the aforementioned 

restricted maximum likelihood (or maximum likelihood) estimates. Restricted maximum 

likelihood estimates the variance components independent of the fixed effects. Maximum 

likelihood produces unbiased estimation for the fixed effects but biased estimation of 

variance components. In large samples, their results are usually close to each other. The 

restricted maximum quasi-likelihood function is defined as:

qlR = − 1
2log Σ − 1

2log|XTΣ−1X| −   1
2 Y 0 − Xα TΣ−1 Y 0 − Xα (2)

where Σ = D−1 + σM
2 GW 1W 1GT + σG

2 ψ + σI
2 EGW 2W 2GT E .

To derive the score test for H0: σI
2 = 0, we take the first derivative of the quasi-likelihood 

with respect to σI
2 = 0,

∂qlR
∂σI

2 = − 1
2tr Σ−1EGW 2W 2GTE + 1

2 Y 0 − Xα TΣ−1EGW 2W 2GTEΣ−1

Y 0 − Xα
(3)

The first term in equation 3 is fixed and independent of the phenotype. We follow the same 

rationale in the derivation of the SKAT score statistic and take twice the second term to be 

our test statistic14,25

Q = Y 0 − Xα TΣ−1EGW 2W 2GTEΣ−1 Y 0 − Xα (4)

where Σ = D−1 + σM
2 GW 1W 1GT + σG

2 ψ.

Under the null hypothesis, Q ∑j = 1
q λjχ1, j

2 , where λj’s are eigenvalues of the matrix 

W 2GT E Σ−1 − Σ−1X XT Σ−1X
−1

XT Σ−1 EGW 2.14,26
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3. Simulation studies

Simulation settings for type I error evaluation

We performed simulation studies to evaluate type I error rates for our proposed approach. 

For the null simulation study, we first considered the scenario where there are main genotype 

effects but no GE interaction effects. To simulate the genotypes, we used SeqSIMLA 

software, which can simulate sequence data in families with user-specified pedigree 

structures and different disease models. We used reference sequence based on 1000 

Genomes Project for European populations.27 We picked 7 pedigrees from FHS with family 

membership ranging from 120 to 640 (2030 individuals in total). In the simulated genotypes, 

we chose a region that spans from 1,100 base pairs to 1,140 base pairs in chromosome 1. To 

simulate our phenotype, we varied the proportion of low frequency (MAF <5%) causal 

SNPs included in our model to 20% to 40% to 60% and 80% for each of 20,000 replicates. 

We considered both continuous and binary phenotypes. For each of 20,000 replicates, we 

simulated phenotype datasets from

y = 0.1 + 0.1age + 0.5sex + 0.3smoke + d + G W 1γ + ϵ,

where age was generated from a normal distribution with mean of 50 and standard deviation 

equal to 5, sex was generated from a Bernoulli distribution with probability 0.5, smoke was 

generated from a Bernoulli distribution with probability 0.5, and ϵ was generated from a 

standard normal distribution. W1 are the weights from beta density function with parameters 

1 and 25 that are applied to the main genotype effects.14 Family correlation, d, is from a 

multivariate normal distribution with means 0 and covariance σG
2 ψ, where σG

2  is set to 1 and 

ψ is twice the kinship matrix. γ consist of effect sizes for the causal SNPs. For binary traits, 

we simulated the continuous traits and set the lower 80% as controls (0’s) and the upper 

20% as cases (1’s). We simulated variants where the directions of the main effect 

(represented by γ) on risk of the minor allele are either all positive or mixed with 50% 

positive and 50% negative and the effect sizes were determined by

γi = ℎ
2MAFi 1 − MAFi

where MAF is the minor allele frequency of SNP i. The constant h is calculated as

ℎ =   R2

vTLv

where R2, the proportion of variance explained by the causal SNPs, was fixed at 1% for 

causal SNPs with effect sizes in same direction and 5% for causal SNPs with effect sizes in 

opposite directions. The correlations between the SNPs are in matrix L, and v is a vector that 

indicates the direction of the SNP effects. We performed three tests for the type I error 

comparison: our proposed method that correctly accounts for familial correlation (famGE), 

rareGE where the main genetic effects are treated as random and family correlation is 
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ignored (rareGE), and the burden test using GLMMs to account for familial correlation 

(BT). For the burden test, we used an indicator of whether or not the rare allele was present 

in the testing region. We simulated 20,000 replicates and used Wu weights, which are the 

beta density function with parameters 1 and 25 evaluated at the MAF of the variants, for 

famGE and rareGE tests.14

Simulation settings for power analysis

To assess power, we simulated data under the alternative hypothesis, where we include a 

gene by smoking interaction effect in addition to the main genotype effects. Similar to the 

type I error simulation, genotypes were simulated using the SeqSIMLA software and we 

varied the direction of genetic main effect and the proportion of causal SNPs with MAF less 

than 5%. We simulated 10,000 phenotype datasets from

y = 0.1 + 0.1age + 0.5sex + 0.3smoke + d + G W 1γ + smoke−0.5 G W 2δ + ϵ,

where age, sex, and smoke, family correlation, and error terms were generated from the 

same distribution described in the type I error simulation study and the genotype effects γ 
were determined the same way as in our null simulation study. Interaction effects δ were 

generated independently from the genotypes from a normal distribution with mean 2 and 

standard deviation of 0.3. W1 and W2 are the weights from beta density function with 

parameters 1 and 25 that are applied to the main genotype and interaction effects 

respectively.14 We considered the scenarios where the directions of the interaction of a 

causal variant (represented by δ) is either the same or opposite to the directions of the 

corresponding main effect (represented by γ). Negative interaction effects were simulated 

the same way as above except we multiplied the effects by −1. To test binary outcomes, we 

set the lower 80% of the simulated continuous outcome to be the controls and the upper 20% 

to be the cases. For power comparison, we also performed a burden test, where the summary 

variable for each individual was created using an indicator of whether or not the rare allele 

was present in the testing region.

Results for type 1 error simulations

Table 1 includes the partial results for type 1 error for famGE, rareGE, and BT at 

significance levels, α, of 0.05, 0.01, and 0.001 from 20,000 simulation replicates (refer to 

Appendix 2 for full results). Both famGE and BT have correct type 1 error rates at all three 

α levels for both continuous and binary traits. When familial correlation is not appropriately 

taken into account in the model, rareGE test suffers from type 1 error inflation, which is 

more pronounced in binary traits. FamGE has valid type 1 error rates under various 

scenarios, such as differing the direction of main genotype effects and increasing the 

proportion of causal variants in the model for both continuous and binary traits. Because 

rareGE does not have correct type 1 error rate when familial correlation is not taken into 

account, we did not include rareGE in the power comparison in the next section.
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Results for power simulations

Figure 1 shows the power comparison for famGE and BT for continuous traits at α = 0.001 

from 10,000 replicates. When the proportion of causal variants is low, BT has lower power 

than famGE (1A). This is expected because burden tests are powerful when a large 

proportion of causal variants are included in the region. When the proportion of causal 

variants increases, we see that powers for both BT and famGE increase but we see a larger 

power increase in BT compared to famGE. However, when variants have interaction effects 

in different direction, we observe a power drop, with power close to 0 for BT, whereas 

famGE shows increasing power as proportion of causal variants increases (1B). FamGE 

maintains fairly consistent power across different scenarios, regardless of the direction of the 

main effects.

Figure 2 shows power comparisons of famGE and BT for binary traits at α = 0.001 from 

10,000 replicates. We come to the same conclusion as the results seen from continuous 

traits. Even though burden tests have higher power than famGE in the case where interaction 

effects are in the same direction, with the exception where there are 4 causal variants and 16 

neutral variants in the model, famGE is able to maintain high power regardless of the 

direction or the proportion of variants (2A). The burden test significantly loses power in the 

presence of both trait-increasing and decreasing alleles, whereas performance of famGE is 

robust across different scenarios (2B).

4. Application to the Framingham Heart Study

In the real data application, we illustrate our method to test gene-based interaction with 

smoking on a quantitative trait, BMI, and a dichotomous trait, overweight status (BMI ≥ 25), 

using participants from the Framingham Heart Study (FHS). FHS is a longitudinal 

cardiovascular cohort study that was initiated in 1948 in Framingham, Massachusetts. The 

study began with 5209 participants (Original Cohort) in 1948 and in 1971, 5124 children of 

the original cohort and their spouses (Offspring Cohort) were enrolled. A total of 4095 

additional participants, who were the grandchildren of the original cohort, were recruited in 

the third generation cohort (Gen 3 Cohort) in 2002.28 To reflect ethnic diversity in 

Framingham, 917 additional non-white participants were recruited to form the Omni Cohort.
29

Obesity is a world-wide problem that can lead to serious health problems, such as high 

blood pressure, type 2 diabetes, heart disease. Conventionally, BMI has been used to 

measure obesity. GWAS have identified numerous loci associated with BMI, but whether 

these genetic effects are modulated by environmental factors has not been extensively 

investigated.30,31 Recently, Justice et al.32 investigated the effect of smoking on genetic 

susceptibility to obesity in a large consortium meta-analysis of 241,258 individuals and 

reported two common variants reaching genome-wide significance, rs12902602 and 

rs336396 near the CHRNB4 and INPP4B genes respectively. Here we evaluated whether 

there are modification effects of smoking status on genetic risk from these two loci for 

obesity with rare or less frequency variants.
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We analyze genotype data from the Illumina V1.0 Exome Chip and select variants with 

MAF less than 5%. We adjust for age, sex, cohort (four category variable), first two principal 

components, and smoking main effect in our model and pedigree-based kinship matrix to 

account for familial correlation. Our data consists of 596 individuals from the Original 

Cohort (Exam 21), 2547 from the Offspring Cohort (Exam 8), 3868 from the Gen 3 Cohort 

(Exam 1), and 177 from the Omni Cohort (Exam 1). There are 3264 males (45.4% males), 

6063 non-smokers (84.4% non-smokers), and their age ranges from 19 to 85 (median = 49). 

We test for gene × smoking interaction by treating BMI as continuous trait or dichotomizing 

BMI at 25 into a binary trait, which classified 4502 individuals as overweight and 2686 

individuals in the normal range. A total of 7188 individuals are included in the gene × 

smoking interaction analysis.

We consider two genes, Cholinergic Receptor Nicotinic Beta 4 (CHRNB4) and Inositol 

Polyphosphate-4-Phosphatase (INPP4B). Table 2 summarizes the analysis results for the two 

aforementioned genes using our proposed method and the burden test. In order to minimize 

the inclusion of potential noise in our testing region, we consider variants that are annotated 

as either stop-gain/loss, splice, or missense. We can achieve higher statistical power by 

utilizing functional annotation to prioritize variants predicted to have potential biological 

significance. With the burden test, we find a significant CHRNB4 × smoking interaction for 

overweight status (p-value = 0.0184) at α = 0.025. Using famGE, we find CHRNB4 to be 

statistically significant at α = 0.025 for both continuous (p-value = 0.0063) and 

dichotomized (p-value = 0.0023) BMI, but no gene × smoking interaction were identified for 

gene INPP4B. (See Appendix 3 for quantile-quantile plot of famGE applied genome-wide.) 

For CHRNB4, we noticed that the signal is stronger in the binary model, which could 

potentially indicate a non-linear interaction between smoking and CHRNB4.

From the two genes we test in the real data application, CHRNB4 shows statistical 

significance in interacting with smoking on BMI. The CHRNB4 gene has been reported to 

be associated with higher BMI in never smokers and lower BMI in current smokers, 

implying that genetics variants may influence BMI via the weight-reducing effects of 

smoking in opposite directions.33 INPP4B gene is a novel locus identified in the meta-

analysis by Justice et al.32 but to our knowledge, this finding has not yet been replicated in 

other studies. We cannot exclude the possibility that there are no rare variants interacting 

with smoking in INPP4B gene.32 However, it is also possible that reduced power due to 

limited sample size in our study compared to that of in the meta-analysis restrict us from 

finding a significant association.

5. Discussion

In this article, we develop a unified method called famGE to detect GE interactions of a set 

of rare variants under the GLMM framework. This proposed approach can accommodate 

both binary and continuous traits in family data or samples with cryptic relatedness. 

Additionally, famGE allows weighting variants differently based on prior information such 

as allele frequency. Under this model, we treat the genetic variants, familial correlation, and 

GE interaction effects as random effects and implement a variance component score test, 

which only requires fitting the null model, and thus, reduces computational burden. Our 
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simulation studies show that famGE maintains correct type 1 error and high power under 

various scenarios.

Ignoring familial correlation when using linear or logistic regression to analyze family data 

lead to inflated type I error.25 One way to resolve this issue is to select a subset of unrelated 

individuals, but this may substantially reduce the sample size and lead to power loss. In the 

case of rare variants, especially for GE interaction test, it is important to retain as many 

samples as possible to have appropriate power. A preferable method is to use GLMMs that 

account for familial correlation as a random effect and thus, eliminates the need to restrict to 

unrelated individuals. In famGE, kinship coefficients can be obtained either from a pedigree 

or an empirical kinship matrix. Because the empirical kinship matrix can account for cryptic 

relatedness, it is advantageous to use the empirical kinship to estimate the level of 

relatedness among individuals.14

The proposed famGE method models the main genotypes as random effects in order to 

reduce the number of parameters that need to be estimated. If one wishes to model the main 

effect as fixed effects, the derivations of the new test statistic follows the same framework as 

the statistic for famGE with random genotype main effects. When the number of variants 

included in the model is large, however, there is a potential for multicollinearity with the 

covariates and/or among the variants when fitting the model. It is also shown that modeling 

the genetic main effects as fixed leads to slightly inflated type 1 error rate at less stringent α 
levels when the number of variants included in the testing region is large.18 Therefore, 

modelling genetic main effects as random effects is preferable.

Further efforts are warranted along the lines of this work. For example, developing a joint 

test of both genetic main effects and GE interaction effects in the presence of related 

individuals may enhance the statistical power for identifying genetic associations. 

Considering both the main effect and interaction effect can potentially identify important 

genes that were originally missed.

Advanced development and decreasing cost of sequencing technology have facilitated the 

discovery and accessibility to low frequency variants and there is growing evidence that they 

are implicated in complex diseases. Therefore, more attention has been brought to analyzing 

and developing rare variants methods. GE interaction may contribute to the unexplained 

heritability, provide insight into etiology of disease, identify subgroups in the population that 

are at high risk, and help develop personalized treatments. Our proposed approach provides 

a powerful, robust and efficient test to identify GE interaction of rare variants for both 

continuous and binary traits in the sample with related or independent participants.
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Appendix 1:: Derivation of famGE

We used a generalized linear mixed model (GLMM) framework to derive the famGE 

statistic. We consider the following gene-environment (GE) model:

g E Y X, b = g μ = Xα + b1 + b2 + b3 = Xα + Zb,

where b1 = GW1θ, b2 = EGW2γ, and b3 = d and Z = [In, In, In], 

b = b1
T , b2

T , b3
T T N 0, B σ2 , where B σ2 = diag σM

2 GW 1W 1GT , σI
2 EGW 2W 2GT E , σG

2 Ψ

depends on an unknown vector of variance components σ2.

For subject i, the quasi-likelihood given random effects b is defined by:

qli α; b =   ∫yi

μi yi − μ
ϕv μ dμ .

The integrated quasi-likelihood function used to estimate (α, σ2) is written as

L α, σ2 = eql α, σ2 ∝ B − 1
2∫ exp ∑

i = 1

n
qli α, b − 1

2bTB−1b db . (A1)

After applying the Laplacian transformation for integral approximation, the log of A1 

becomes

ql α, σ2 = − 1
2log B − 1

2log f″ b − f′ b , (A2)

where b is the solution to

f′ b = ∂qli
∂b = − yi − μi zi

ϕv μi g′ μi
+ B−1b = 0. (A3)

For canonical link functions, the second partial derivative with respect to b is equal to

f″ b = ∂2qli
∂b∂bT = ziziT

ϕv μi g′ μi
2 + B−1 ≈ ZTDZ + B−1, (A4)

where = diag 1
ϕv μi g′ μi

2 .

Combining equations (A3) – (A4), equation (A2) becomes

ql α, σ2 = − 1
2log|I + ZTDZB| − ∑

i = 1

n
qli α, b − 1

2bTB−1b, (A5)
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where b = b α, σ2  is the solution to

∂
∂b ∑i = 1

n qli α, b − 1
2bT B−1b = 0.

Defining Δ = diag{g′(μi)} and assuming that the weight matrix D vary slowly as a function 

of the mean24, we maximize by differentiating with respect to α and b:

∂ql
∂α = ∑

i = 1

n yi − μi Xi
T

ϕv μi g′ μi
= XTDΔ y − μ , (A6)

∂ql
∂b = ∑

i = 1

n yi − μi Zi
T

ϕv μi g′ μi
− B−1b = ZTDΔ y − μ − B−1b . (A7)

Defining the working vector Y0 = Xα + Zb + Δ(y−μ), solutions to A6 and A7 can be 

expressed as an iterative solution to the system

XT DX XT DZ

ZT DX (ZT DZ + B−1)

α
b =

XT DY 0

ZT DY 0
.

The test statistic for H0: σI
2 = 0 is

Q = Y 0 − Xα T Σ−1EGW 2W 2GT EΣ−1 Y 0 − Xα

where Σ = D−1 + σM
2 GW 1W 1GT + σG

2 Ψ .

Appendix

Appendix 2:

Full table for type 1 errors results based on 20,000 replications (in %)

Continuous Binary

Scenarios (+/−/0) α level famGE
a

rareGE
b

BT
c

famGE
a

rareGE
b

BT
c

4/0/16 5 4.96 5.30 5.01 5.03 5.51 5.07

1 1.00 1.10 1.02 1.02 1.25 1.05

0.1 0.10 1.70 0.10 0.12 0.18 0.10

8/0/12 5 4.88 5.21 4.99 4.84 5.57 4.92

1 1.00 1.03 1.00 0.97 1.34 0.95

0.1 0.10 0.11 0.10 0.11 0.19 0.09

12/0/8 5 4.95 5.20 4.99 4.82 5.54 4.98

1 0.94 1.20 0.96 1.06 1.22 0.90

Lim et al. Page 12

Stat Med. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Continuous Binary

Scenarios (+/−/0) α level famGE
a

rareGE
b

BT
c

famGE
a

rareGE
b

BT
c

0.1 0.10 0.15 0.10 0.08 0.15 0.10

16/0/4 5 5.04 5.38 5.00 4.84 5.70 5.00

1 0.91 1.16 0.99 0.97 1.41 0.94

0.1 0.11 0.16 0.10 0.12 0.20 0.10

2/2/16 5 4.80 5.25 5.00 4.97 5.56 5.06

1 0.95 1.20 1.01 0.94 1.16 0.97

0.1 0.10 0.14 0.11 0.11 0.16 0.11

4/4/12 5 4.99 5.33 5.02 4.84 5.52 4.89

1 0.93 1.05 1.00 0.97 1.16 0.96

0.1 0.10 0.19 0.10 0.10 0.14 0.09

6/6/8 5 4.93 5.41 4.94 4.88 5.61 4.88

1 1.03 1.10 1.04 0.92 1.37 1.00

0.1 0.10 0.14 0.10 0.11 0.17 0.11

8/8/4 5 5.02 5.31 4.93 4.89 5.55 4.79

1 0.90 1.11 0.99 0.97 1.27 0.94

0.1 0.10 0.17 0.12 0.10 0.16 0.10

+/−/0: number of variants with main genotype effect sizes that are positive, negative, and neutral
a
famGE: our proposed method accounting for family correlation

b
rareGE: interaction test ignoring family correlation

c
BT: burden test
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Appendix 3: 
QQ plot of famGE applied genome-wide to detect gene × smoking interaction on BMI in the 

Framingham Heart Study data
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Figure 1. Power comparison of famGE and BT for continuous trait.
The X-axis indicates different SNP scenarios and the y-axis presents power (%). For 

example, in the first scenario, there are 4 variants where the minor alleles have positive main 

effects (16 variants with no main effect), and 4 variants where the minor alleles have positive 

GE interaction effect (16 variants with no GE interaction effect).

(A) All positive interaction effects

(B) Minor alleles with both positive and negative interaction effects

+/− indicates the number of SNPs with positive and negative effects. θ denotes SNP main 

effects and γ denotes GE interaction effects
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Figure 2. Power comparison of famGE and BT for binary trait.
The X-axis indicates different SNP scenarios and the y-axis presents power (%). For 

example, in the first scenario, there are 4 variants where the minor alleles have positive main 

effects (16 variants with no main effect), and 4 variants where the minor alleles have positive 

GE interaction effect (16 variants with no GE interaction effect).

(A) All positive interaction effects

(B) Minor alleles with both positive and negative interaction effects

+/− indicates the number of SNPs with positive and negative effects. θ denotes SNP main 

effects and γ denotes GE interaction effects
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Table 1.

Comparison of type 1 errors based on 20,000 replications (in %)

Continuous Binary

Scenarios (+/−/0) α level famGE
a

rareGE
b

BT
c

famGE
a

rareGE
b

BT
c

4/0/16 5 4.96 5.30 5.01 5.03 5.51 5.07

1 1.00 1.10 1.02 1.02 1.25 1.05

0.1 0.10 0.17 0.10 0.12 0.18 0.11

16/0/4 5 5.04 5.38 5.00 4.84 5.70 5.00

1 0.91 1.16 0.99 0.97 1.41 0.94

0.1 0.10 0.16 0.10 0.10 0.20 0.10

2/2/16 5 4.80 5.25 5.00 4.97 5.56 5.06

1 0.95 1.20 1.01 0.94 1.16 0.97

0.1 0.10 0.14 0.11 0.11 0.16 0.11

8/8/4 5 5.02 5.31 4.93 4.89 5.55 4.79

1 0.90 1.11 0.99 0.97 1.27 0.94

0.1 0.10 0.17 0.12 0.10 0.16 0.10

+/−/0: number of variants with main genotype effect sizes that are positive, negative, and neutral

a
famGE: our proposed method accounting for family correlation

b
rareGE: interaction test ignoring family correlation

c
BT: burden test
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Table 2.

Association results of gene by smoking interaction on continuous trait: BMI and binary trait: overweight status 

(BMI ≥ 25) for two previously identified loci using the Framingham Heart Study

Gene Chromosome # of variants used famGE p-value Burden test p-value

Continuous: BMI

CHRNB4 15 8 0.0063 0.3787

INPP4B 4 5 0.5504 0.7797

Binary: BMI ≥ 25

CHRNB4 15 8 0.0023 0.0184

INPP4B 4 5 0.9166 0.9952

# of variants used refer to functionally relevant variants (stop-gain/loss, splice, or missense) that were included in famGE test
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